Newer
Older
"# GAMES OR ADVERSARIAL SEARCH\n",
SnShine
a validé
"\n",
"This notebook serves as supporting material for topics covered in **Chapter 5 - Adversarial Search** in the book *Artificial Intelligence: A Modern Approach.* This notebook uses implementations from [games.py](https://github.com/aimacode/aima-python/blob/master/games.py) module. Let's import required classes, methods, global variables etc., from games module."
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Contents\n",
"\n",
"* Game Representation\n",
"* Game Examples\n",
" * Tic-Tac-Toe\n",
" * Figure 5.2 Game\n",
"* Min-Max\n",
"* Players\n",
"* Let's Play Some Games!"
]
},
SnShine
a validé
"cell_type": "code",
"execution_count": 1,
"metadata": {
SnShine
a validé
},
"outputs": [],
"metadata": {},
"source": [
"# GAME REPRESENTATION\n",
"\n",
"To represent games we make use of the `Game` class, which we can subclass and override its functions to represent our own games. A helper tool is the namedtuple `GameState`, which in some cases can come in handy, especially when our game needs us to remember a board (like chess)."
]
},
{
"cell_type": "markdown",
"metadata": {},
SnShine
a validé
"## `GameState` namedtuple\n",
"`GameState` is a [namedtuple](https://docs.python.org/3.5/library/collections.html#collections.namedtuple) which represents the current state of a game. It is used to help represent games whose states can't be easily represented normally, or for games that require memory of a board, like Tic-Tac-Toe.\n",
"\n",
"`Gamestate` is defined as follows:\n",
"\n",
"`GameState = namedtuple('GameState', 'to_move, utility, board, moves')`\n",
"\n",
"* `to_move`: It represents whose turn it is to move next.\n",
"\n",
"* `utility`: It stores the utility of the game state. Storing this utility is a good idea, because, when you do a Minimax Search or an Alphabeta Search, you generate many recursive calls, which travel all the way down to the terminal states. When these recursive calls go back up to the original callee, we have calculated utilities for many game states. We store these utilities in their respective `GameState`s to avoid calculating them all over again.\n",
"\n",
"* `board`: A dict that stores the board of the game.\n",
"\n",
"* `moves`: It stores the list of legal moves possible from the current position."
SnShine
a validé
"metadata": {
SnShine
a validé
},
SnShine
a validé
"## `Game` class\n",
"\n",
"Let's have a look at the class `Game` in our module. We see that it has functions, namely `actions`, `result`, `utility`, `terminal_test`, `to_move` and `display`.\n",
SnShine
a validé
"\n",
"We see that these functions have not actually been implemented. This class is just a template class; we are supposed to create the class for our game, by inheriting this `Game` class and implementing all the methods mentioned in `Game`."
{
"cell_type": "code",
SnShine
a validé
"execution_count": 2,
SnShine
a validé
"%psource Game"
"Now let's get into details of all the methods in our `Game` class. You have to implement these methods when you create new classes that would represent your game.\n",
"\n",
"* `actions(self, state)`: Given a game state, this method generates all the legal actions possible from this state, as a list or a generator. Returning a generator rather than a list has the advantage that it saves space and you can still operate on it as a list.\n",
SnShine
a validé
"\n",
"\n",
"* `result(self, state, move)`: Given a game state and a move, this method returns the game state that you get by making that move on this game state.\n",
SnShine
a validé
"\n",
"\n",
"* `utility(self, state, player)`: Given a terminal game state and a player, this method returns the utility for that player in the given terminal game state. While implementing this method assume that the game state is a terminal game state. The logic in this module is such that this method will be called only on terminal game states.\n",
SnShine
a validé
"\n",
"\n",
"* `terminal_test(self, state)`: Given a game state, this method should return `True` if this game state is a terminal state, and `False` otherwise.\n",
SnShine
a validé
"\n",
"\n",
"* `to_move(self, state)`: Given a game state, this method returns the player who is to play next. This information is typically stored in the game state, so all this method does is extract this information and return it.\n",
SnShine
a validé
"\n",
"\n",
"* `display(self, state)`: This method prints/displays the current state of the game."
]
},
{
"cell_type": "markdown",
"# GAME EXAMPLES\n",
"\n",
"Below we give some examples for games you can create and experiment on."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tic-Tac-Toe\n",
"\n",
"Take a look at the class `TicTacToe`. All the methods mentioned in the class `Game` have been implemented here."
SnShine
a validé
"execution_count": 3,
SnShine
a validé
"%psource TicTacToe"
]
},
{
"cell_type": "markdown",
"The class `TicTacToe` has been inherited from the class `Game`. As mentioned earlier, you really want to do this. Catching bugs and errors becomes a whole lot easier.\n",
SnShine
a validé
"\n",
"Additional methods in TicTacToe:\n",
"\n",
"* `__init__(self, h=3, v=3, k=3)` : When you create a class inherited from the `Game` class (class `TicTacToe` in our case), you'll have to create an object of this inherited class to initialize the game. This initialization might require some additional information which would be passed to `__init__` as variables. For the case of our `TicTacToe` game, this additional information would be the number of rows `h`, number of columns `v` and how many consecutive X's or O's are needed in a row, column or diagonal for a win `k`. Also, the initial game state has to be defined here in `__init__`.\n",
"\n",
"\n",
"* `compute_utility(self, board, move, player)` : A method to calculate the utility of TicTacToe game. If 'X' wins with this move, this method returns 1; if 'O' wins return -1; else return 0.\n",
"\n",
"\n",
"* `k_in_row(self, board, move, player, delta_x_y)` : This method returns `True` if there is a line formed on TicTacToe board with the latest move else `False.`"
]
},
{
"cell_type": "markdown",
"### TicTacToe GameState\n",
SnShine
a validé
"\n",
"Now, before we start implementing our `TicTacToe` game, we need to decide how we will be representing our game state. Typically, a game state will give you all the current information about the game at any point in time. When you are given a game state, you should be able to tell whose turn it is next, how the game will look like on a real-life board (if it has one) etc. A game state need not include the history of the game. If you can play the game further given a game state, you game state representation is acceptable. While we might like to include all kinds of information in our game state, we wouldn't want to put too much information into it. Modifying this game state to generate a new one would be a real pain then.\n",
"\n",
"Now, as for our `TicTacToe` game state, would storing only the positions of all the X's and O's be sufficient to represent all the game information at that point in time? Well, does it tell us whose turn it is next? Looking at the 'X's and O's on the board and counting them should tell us that. But that would mean extra computing. To avoid this, we will also store whose move it is next in the game state.\n",
"\n",
"Think about what we've done here. We have reduced extra computation by storing additional information in a game state. Now, this information might not be absolutely essential to tell us about the state of the game, but it does save us additional computation time. We'll do more of this later on."
]
},
{
"cell_type": "markdown",
"To store game states will will use the `GameState` namedtuple.\n",
"* `to_move`: A string of a single character, either 'X' or 'O'.\n",
SnShine
a validé
"\n",
"* `utility`: 1 for win, -1 for loss, 0 otherwise.\n",
SnShine
a validé
"\n",
"* `board`: All the positions of X's and O's on the board.\n",
SnShine
a validé
"\n",
"* `moves`: All the possible moves from the current state. Note here, that storing the moves as a list, as it is done here, increases the space complexity of Minimax Search from `O(m)` to `O(bm)`. Refer to Sec. 5.2.1 of the book."
]
},
{
"cell_type": "markdown",
"### Representing a move in TicTacToe game\n",
"\n",
"Now that we have decided how our game state will be represented, it's time to decide how our move will be represented. Becomes easy to use this move to modify a current game state to generate a new one.\n",
"\n",
"For our `TicTacToe` game, we'll just represent a move by a tuple, where the first and the second elements of the tuple will represent the row and column, respectively, where the next move is to be made. Whether to make an 'X' or an 'O' will be decided by the `to_move` in the `GameState` namedtuple."
]
},
{
"cell_type": "markdown",
SnShine
a validé
"\n",
"For a more trivial example we will represent the game in **Figure 5.2** of the book.\n",
SnShine
a validé
"\n",
"<img src=\"images/fig_5_2.png\" width=\"75%\">\n",
SnShine
a validé
"\n",
"The states are represented wih capital letters inside the triangles (eg. \"A\") while moves are the labels on the edges between states (eg. \"a1\"). Terminal nodes carry utility values. Note that the terminal nodes are named in this example 'B1', 'B2' and 'B2' for the nodes below 'B', and so forth.\n",
SnShine
a validé
"\n",
"We will model the moves, utilities and initial state like this:"
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"moves = dict(A=dict(a1='B', a2='C', a3='D'),\n",
" B=dict(b1='B1', b2='B2', b3='B3'),\n",
" C=dict(c1='C1', c2='C2', c3='C3'),\n",
" D=dict(d1='D1', d2='D2', d3='D3'))\n",
"utils = dict(B1=3, B2=12, B3=8, C1=2, C2=4, C3=6, D1=14, D2=5, D3=2)\n",
"initial = 'A'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In `moves`, we have a nested dictionary system. The outer's dictionary has keys as the states and values the possible moves from that state (as a dictionary). The inner dictionary of moves has keys the move names and values the next state after the move is complete.\n",
"Below is an example that showcases `moves`. We want the next state after move 'a1' from 'A', which is 'B'. A quick glance at the above image confirms that this is indeed the case."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"B\n"
]
}
],
"source": [
"print(moves['A']['a1'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will now take a look at the functions we need to implement. First we need to create an object of the `Fig52Game` class."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"fig52 = Fig52Game()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`actions`: Returns the list of moves one can make from a given state."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource Fig52Game.actions"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
]
}
],
"source": [
"print(fig52.actions('B'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`result`: Returns the next state after we make a specific move."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource Fig52Game.result"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"B\n"
]
}
],
"source": [
"print(fig52.result('A', 'a1'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`utility`: Returns the value of the terminal state for a player ('MAX' and 'MIN'). Note that for 'MIN' the value returned is the negative of the utility."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource Fig52Game.utility"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
]
}
],
"source": [
"print(fig52.utility('B1', 'MAX'))\n",
"print(fig52.utility('B1', 'MIN'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`terminal_test`: Returns `True` if the given state is a terminal state, `False` otherwise."
]
},
{
"cell_type": "code",
"%psource Fig52Game.terminal_test"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n"
]
}
],
"source": [
"print(fig52.terminal_test('C3'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`to_move`: Return the player who will move in this state."
]
},
{
"cell_type": "code",
"%psource Fig52Game.to_move"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"MAX\n"
]
}
],
"source": [
"print(fig52.to_move('A'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As a whole the class `Fig52` that inherits from the class `Game` and overrides its functions:"
]
},
{
"cell_type": "code",
"outputs": [],
"source": [
"%psource Fig52Game"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# MIN-MAX\n",
"\n",
"## Overview\n",
"\n",
"This algorithm (often called *Minimax*) computes the next move for a player (MIN or MAX) at their current state. It recursively computes the minimax value of successor states, until it reaches terminals (the leaves of the tree). Using the `utility` value of the terminal states, it computes the values of parent states until it reaches the initial node (the root of the tree).\n",
"It is worth noting that the algorithm works in a depth-first manner."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Implementation\n",
"\n",
"In the implementation we are using two functions, `max_value` and `min_value` to calculate the best move for MAX and MIN respectively. These functions interact in an alternating recursion; one calls the other until a terminal state is reached. When the recursion halts, we are left with scores for each move. We return the max. Despite returning the max, it will work for MIN too since for MIN the values are their negative (hence the order of values is reversed, so the higher the better for MIN too)."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource minimax_decision"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
"We will now play the Fig52 game using this algorithm. Take a look at the Fig52Game from above to follow along.\n",
"\n",
"It is the turn of MAX to move, and he is at state A. He can move to B, C or D, using moves a1, a2 and a3 respectively. MAX's goal is to maximize the end value. So, to make a decision, MAX needs to know the values at the aforementioned nodes and pick the greatest one. After MAX, it is MIN's turn to play. So MAX wants to know what will the values of B, C and D be after MIN plays.\n",
"\n",
"The problem then becomes what move will MIN make at B, C and D. The successor states of all these nodes are terminal states, so MIN will pick the smallest value for each node. So, for B he will pick 3 (from move b1), for C he will pick 2 (from move c1) and for D he will again pick 2 (from move d3).\n",
"\n",
"Let's see this in code:"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"b1\n",
"c1\n",
"d3\n"
]
}
],
"source": [
"print(minimax_decision('B', fig52))\n",
"print(minimax_decision('C', fig52))\n",
"print(minimax_decision('D', fig52))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now MAX knows that the values for B, C and D are 3, 2 and 2 (produced by the above moves of MIN). The greatest is 3, which he will get with move a1. This is then the move MAX will make. Let's see the algorithm in full action:"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a1\n"
]
}
],
"source": [
"print(minimax_decision('A', fig52))"
]
},
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# ALPHA-BETA\n",
"\n",
"## Overview\n",
"\n",
"While *Minimax* is great for computing a move, it can get tricky when the number of games states gets bigger. The algorithm needs to search all the leaves of the tree, which increase exponentially to its depth.\n",
"\n",
"For Tic-Tac-Toe, where the depth of the tree is 9 (after the 9th move, the game ends), we can have at most 9! terminal states (at most because not all terminal nodes are at the last level of the tree; some are higher up because the game ended before the 9th move). This isn't so bad, but for more complex problems like chess, we have over $10^{40}$ terminal nodes. Unfortunately we have not found a way to cut the exponent away, but we nevertheless have found ways to alleviate the workload.\n",
"\n",
"Here we examine *pruning* the game tree, which means removing parts of it that we do not need to examine. The particular type of pruning is called *alpha-beta*, and the search in whole is called *alpha-beta search*.\n",
"\n",
"To showcase what parts of the tree we don't need to search, we will take a look at the example `Fig52Game`.\n",
"\n",
"In the example game, we need to find the best move for player MAX at state A, which is the maximum value of MIN's possible moves at successor states.\n",
"\n",
"`MAX(A) = MAX( MIN(B), MIN(C), MIN(D) )`\n",
"\n",
"`MIN(B)` is the minimum of 3, 12, 8 which is 3. So the above formula becomes:\n",
"\n",
"`MAX(A) = MAX( 3, MIN(C), MIN(D) )`\n",
"\n",
"Next move we will check is c1, which leads to a terminal state with utility of 2. Before we continue searching under state C, let's pop back into our formula with the new value:\n",
"\n",
"`MAX(A) = MAX( 3, MIN(2, c2, .... cN), MIN(D) )`\n",
"\n",
"We do not know how many moves state C allows, but we know that the first one results in a value of 2. Do we need to keep searching under C? The answer is no. The value MIN will pick on C will at most be 2. Since MAX already has the option to pick something greater than that, 3 from B, he does not need to keep searching under C.\n",
"\n",
"In *alpha-beta* we make use of two additional parameters for each state/node, *a* and *b*, that describe bounds on the possible moves. The parameter *a* denotes the best choice (highest value) for MAX along that path, while *b* denotes the best choice (lowest value) for MIN. As we go along we update *a* and *b* and prune a node branch when the value of the node is worse than the value of *a* and *b* for MAX and MIN respectively.\n",
"\n",
"In the above example, after the search under state B, MAX had an *a* value of 3. So, when searching node C we found a value less than that, 2, we stopped searching under C."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Implementation\n",
"\n",
"Like *minimax*, we again make use of functions `max_value` and `min_value`, but this time we utilise the *a* and *b* values, updating them and stopping the recursive call if we end up on nodes with values worse than *a* and *b* (for MAX and MIN). The algorithm finds the maximum value and returns the move that results in it.\n",
"\n",
"The implementation:"
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource alphabeta_search"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example\n",
"\n",
"We will play the Fig52 Game with the *alpha-beta* search algorithm. It is the turn of MAX to play at state A."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"a1\n"
]
}
],
"source": [
"print(alphabeta_search('A', fig52))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The optimal move for MAX is a1, for the reasons given above. MIN will pick move b1 for B resulting in a value of 3, updating the *a* value of MAX to 3. Then, when we find under C a node of value 2, we will stop searching under that sub-tree since it is less than *a*. From D we have a value of 2. So, the best move for MAX is the one resulting in a value of 3, which is a1.\n",
"\n",
"Below we see the best moves for MIN starting from B, C and D respectively. Note that the algorithm in these cases works the same way as *minimax*, since all the nodes below the aforementioned states are terminal."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"b1\n",
"c1\n",
"d3\n"
]
}
],
"source": [
"print(alphabeta_search('B', fig52))\n",
"print(alphabeta_search('C', fig52))\n",
"print(alphabeta_search('D', fig52))"
]
},
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"from canvas import Canvas_minimax, Canvas_alphabeta\n",
"import random"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<script type=\"text/javascript\" src=\"./js/canvas.js\"></script>\n",
"<div>\n",
"<canvas id=\"minimax_viz\" width=\"800\" height=\"600\" style=\"background:rgba(158, 167, 184, 0.2);\" onclick='click_callback(this, event, \"minimax_viz\")'></canvas>\n",
"</div>\n",
"\n",
"<script> var minimax_viz_canvas_object = new Canvas(\"minimax_viz\");</script>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<script>\n",
"minimax_viz_canvas_object.font(\"12px Arial\");\n",
"minimax_viz_canvas_object.clear();\n",
"minimax_viz_canvas_object.stroke(0, 0, 0);\n",
"minimax_viz_canvas_object.strokeWidth(1);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(390, 8, 20, 15);\n",
"minimax_viz_canvas_object.line(390, 8, 410, 8);\n",
"minimax_viz_canvas_object.line(390, 8, 390, 23);\n",
"minimax_viz_canvas_object.line(410, 23, 410, 8);\n",
"minimax_viz_canvas_object.line(410, 23, 390, 23);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(123, 198, 20, 15);\n",
"minimax_viz_canvas_object.line(123, 198, 143, 198);\n",
"minimax_viz_canvas_object.line(123, 198, 123, 213);\n",
"minimax_viz_canvas_object.line(143, 213, 143, 198);\n",
"minimax_viz_canvas_object.line(143, 213, 123, 213);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(390, 198, 20, 15);\n",
"minimax_viz_canvas_object.line(390, 198, 410, 198);\n",
"minimax_viz_canvas_object.line(390, 198, 390, 213);\n",
"minimax_viz_canvas_object.line(410, 213, 410, 198);\n",
"minimax_viz_canvas_object.line(410, 213, 390, 213);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(657, 198, 20, 15);\n",
"minimax_viz_canvas_object.line(657, 198, 677, 198);\n",
"minimax_viz_canvas_object.line(657, 198, 657, 213);\n",
"minimax_viz_canvas_object.line(677, 213, 677, 198);\n",
"minimax_viz_canvas_object.line(677, 213, 657, 213);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(34, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(34, 388, 54, 388);\n",
"minimax_viz_canvas_object.line(34, 388, 34, 403);\n",
"minimax_viz_canvas_object.line(54, 403, 54, 388);\n",
"minimax_viz_canvas_object.line(54, 403, 34, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(123, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(123, 388, 143, 388);\n",
"minimax_viz_canvas_object.line(123, 388, 123, 403);\n",
"minimax_viz_canvas_object.line(143, 403, 143, 388);\n",
"minimax_viz_canvas_object.line(143, 403, 123, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(212, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(212, 388, 232, 388);\n",
"minimax_viz_canvas_object.line(212, 388, 212, 403);\n",
"minimax_viz_canvas_object.line(232, 403, 232, 388);\n",
"minimax_viz_canvas_object.line(232, 403, 212, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(301, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(301, 388, 321, 388);\n",
"minimax_viz_canvas_object.line(301, 388, 301, 403);\n",
"minimax_viz_canvas_object.line(321, 403, 321, 388);\n",
"minimax_viz_canvas_object.line(321, 403, 301, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(390, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(390, 388, 410, 388);\n",
"minimax_viz_canvas_object.line(390, 388, 390, 403);\n",
"minimax_viz_canvas_object.line(410, 403, 410, 388);\n",
"minimax_viz_canvas_object.line(410, 403, 390, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(479, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(479, 388, 499, 388);\n",
"minimax_viz_canvas_object.line(479, 388, 479, 403);\n",
"minimax_viz_canvas_object.line(499, 403, 499, 388);\n",
"minimax_viz_canvas_object.line(499, 403, 479, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(568, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(568, 388, 588, 388);\n",
"minimax_viz_canvas_object.line(568, 388, 568, 403);\n",
"minimax_viz_canvas_object.line(588, 403, 588, 388);\n",
"minimax_viz_canvas_object.line(588, 403, 568, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(657, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(657, 388, 677, 388);\n",
"minimax_viz_canvas_object.line(657, 388, 657, 403);\n",
"minimax_viz_canvas_object.line(677, 403, 677, 388);\n",
"minimax_viz_canvas_object.line(677, 403, 657, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(200, 200, 200);\n",
"minimax_viz_canvas_object.rect(746, 388, 20, 15);\n",
"minimax_viz_canvas_object.line(746, 388, 766, 388);\n",
"minimax_viz_canvas_object.line(746, 388, 746, 403);\n",
"minimax_viz_canvas_object.line(766, 403, 766, 388);\n",
"minimax_viz_canvas_object.line(766, 403, 746, 403);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(5, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(5, 578, 25, 578);\n",
"minimax_viz_canvas_object.line(5, 578, 5, 593);\n",
"minimax_viz_canvas_object.line(25, 593, 25, 578);\n",
"minimax_viz_canvas_object.line(25, 593, 5, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"34\", 7, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(34, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(34, 578, 54, 578);\n",
"minimax_viz_canvas_object.line(34, 578, 34, 593);\n",
"minimax_viz_canvas_object.line(54, 593, 54, 578);\n",
"minimax_viz_canvas_object.line(54, 593, 34, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"45\", 36, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(64, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(64, 578, 84, 578);\n",
"minimax_viz_canvas_object.line(64, 578, 64, 593);\n",
"minimax_viz_canvas_object.line(84, 593, 84, 578);\n",
"minimax_viz_canvas_object.line(84, 593, 64, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"21\", 66, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(94, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(94, 578, 114, 578);\n",
"minimax_viz_canvas_object.line(94, 578, 94, 593);\n",
"minimax_viz_canvas_object.line(114, 593, 114, 578);\n",
"minimax_viz_canvas_object.line(114, 593, 94, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"5\", 96, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(123, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(123, 578, 143, 578);\n",
"minimax_viz_canvas_object.line(123, 578, 123, 593);\n",
"minimax_viz_canvas_object.line(143, 593, 143, 578);\n",
"minimax_viz_canvas_object.line(143, 593, 123, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"8\", 125, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(153, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(153, 578, 173, 578);\n",
"minimax_viz_canvas_object.line(153, 578, 153, 593);\n",
"minimax_viz_canvas_object.line(173, 593, 173, 578);\n",
"minimax_viz_canvas_object.line(173, 593, 153, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"49\", 155, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(183, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(183, 578, 203, 578);\n",
"minimax_viz_canvas_object.line(183, 578, 183, 593);\n",
"minimax_viz_canvas_object.line(203, 593, 203, 578);\n",
"minimax_viz_canvas_object.line(203, 593, 183, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"15\", 185, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(212, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(212, 578, 232, 578);\n",
"minimax_viz_canvas_object.line(212, 578, 212, 593);\n",
"minimax_viz_canvas_object.line(232, 593, 232, 578);\n",
"minimax_viz_canvas_object.line(232, 593, 212, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"46\", 214, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(242, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(242, 578, 262, 578);\n",
"minimax_viz_canvas_object.line(242, 578, 242, 593);\n",
"minimax_viz_canvas_object.line(262, 593, 262, 578);\n",
"minimax_viz_canvas_object.line(262, 593, 242, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"16\", 244, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(271, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(271, 578, 291, 578);\n",
"minimax_viz_canvas_object.line(271, 578, 271, 593);\n",
"minimax_viz_canvas_object.line(291, 593, 291, 578);\n",
"minimax_viz_canvas_object.line(291, 593, 271, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"50\", 273, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(301, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(301, 578, 321, 578);\n",
"minimax_viz_canvas_object.line(301, 578, 301, 593);\n",
"minimax_viz_canvas_object.line(321, 593, 321, 578);\n",
"minimax_viz_canvas_object.line(321, 593, 301, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"20\", 303, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(331, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(331, 578, 351, 578);\n",
"minimax_viz_canvas_object.line(331, 578, 331, 593);\n",
"minimax_viz_canvas_object.line(351, 593, 351, 578);\n",
"minimax_viz_canvas_object.line(351, 593, 331, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"6\", 333, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(360, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(360, 578, 380, 578);\n",
"minimax_viz_canvas_object.line(360, 578, 360, 593);\n",
"minimax_viz_canvas_object.line(380, 593, 380, 578);\n",
"minimax_viz_canvas_object.line(380, 593, 360, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"22\", 362, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(390, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(390, 578, 410, 578);\n",
"minimax_viz_canvas_object.line(390, 578, 390, 593);\n",
"minimax_viz_canvas_object.line(410, 593, 410, 578);\n",
"minimax_viz_canvas_object.line(410, 593, 390, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"6\", 392, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(420, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(420, 578, 440, 578);\n",
"minimax_viz_canvas_object.line(420, 578, 420, 593);\n",
"minimax_viz_canvas_object.line(440, 593, 440, 578);\n",
"minimax_viz_canvas_object.line(440, 593, 420, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"3\", 422, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(449, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(449, 578, 469, 578);\n",
"minimax_viz_canvas_object.line(449, 578, 449, 593);\n",
"minimax_viz_canvas_object.line(469, 593, 469, 578);\n",
"minimax_viz_canvas_object.line(469, 593, 449, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"35\", 451, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(479, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(479, 578, 499, 578);\n",
"minimax_viz_canvas_object.line(479, 578, 479, 593);\n",
"minimax_viz_canvas_object.line(499, 593, 499, 578);\n",
"minimax_viz_canvas_object.line(499, 593, 479, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"3\", 481, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(509, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(509, 578, 529, 578);\n",
"minimax_viz_canvas_object.line(509, 578, 509, 593);\n",
"minimax_viz_canvas_object.line(529, 593, 529, 578);\n",
"minimax_viz_canvas_object.line(529, 593, 509, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"36\", 511, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(538, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(538, 578, 558, 578);\n",
"minimax_viz_canvas_object.line(538, 578, 538, 593);\n",
"minimax_viz_canvas_object.line(558, 593, 558, 578);\n",
"minimax_viz_canvas_object.line(558, 593, 538, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"29\", 540, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(568, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(568, 578, 588, 578);\n",
"minimax_viz_canvas_object.line(568, 578, 568, 593);\n",
"minimax_viz_canvas_object.line(588, 593, 588, 578);\n",
"minimax_viz_canvas_object.line(588, 593, 568, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"27\", 570, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(597, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(597, 578, 617, 578);\n",
"minimax_viz_canvas_object.line(597, 578, 597, 593);\n",
"minimax_viz_canvas_object.line(617, 593, 617, 578);\n",
"minimax_viz_canvas_object.line(617, 593, 597, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"15\", 599, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(627, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(627, 578, 647, 578);\n",
"minimax_viz_canvas_object.line(627, 578, 627, 593);\n",
"minimax_viz_canvas_object.line(647, 593, 647, 578);\n",
"minimax_viz_canvas_object.line(647, 593, 627, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"45\", 629, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(657, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(657, 578, 677, 578);\n",
"minimax_viz_canvas_object.line(657, 578, 657, 593);\n",
"minimax_viz_canvas_object.line(677, 593, 677, 578);\n",
"minimax_viz_canvas_object.line(677, 593, 657, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",
"minimax_viz_canvas_object.fill_text(\"11\", 659, 591);\n",
"minimax_viz_canvas_object.fill(255, 255, 255);\n",
"minimax_viz_canvas_object.rect(686, 578, 20, 15);\n",
"minimax_viz_canvas_object.line(686, 578, 706, 578);\n",
"minimax_viz_canvas_object.line(686, 578, 686, 593);\n",
"minimax_viz_canvas_object.line(706, 593, 706, 578);\n",
"minimax_viz_canvas_object.line(706, 593, 686, 593);\n",
"minimax_viz_canvas_object.fill(0, 0, 0);\n",