Newer
Older
"# Solving problems by Searching\n",
"\n",
"This notebook serves as supporting material for topics covered in **Chapter 3 - Solving Problems by Searching** and **Chapter 4 - Beyond Classical Search** from the book *Artificial Intelligence: A Modern Approach.* This notebook uses implementations from [search.py](https://github.com/aimacode/aima-python/blob/master/search.py) module. Let's start by importing everything from search module."
"from search import *\n",
"\n",
"# Needed to hide warnings in the matplotlib sections\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")"
"## CONTENTS\n",
"\n",
"* Overview\n",
"* Problem\n",
"* Search Algorithms Visualization\n",
"* Breadth-First Tree Search\n",
"* Breadth-First Search\n",
"* Uniform Cost Search\n",
"* A\\* Search\n",
"* Genetic Algorithm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## OVERVIEW\n",
"Here, we learn about problem solving. Building goal-based agents that can plan ahead to solve problems, in particular, navigation problem/route finding problem. First, we will start the problem solving by precisely defining **problems** and their **solutions**. We will look at several general-purpose search algorithms. Broadly, search algorithms are classified into two types:\n",
"* **Uninformed search algorithms**: Search algorithms which explore the search space without having any information about the problem other than its definition.\n",
"* Examples:\n",
" 1. Breadth First Search\n",
" 2. Depth First Search\n",
" 3. Depth Limited Search\n",
" 4. Iterative Deepening Search\n",
"\n",
"\n",
"* **Informed search algorithms**: These type of algorithms leverage any information (heuristics, path cost) on the problem to search through the search space to find the solution efficiently.\n",
"* Examples:\n",
" 1. Best First Search\n",
" 2. Uniform Cost Search\n",
" 3. A\\* Search\n",
" 4. Recursive Best First Search\n",
"\n",
"*Don't miss the visualisations of these algorithms solving the route-finding problem defined on Romania map at the end of this notebook.*"
"Let's see how we define a Problem. Run the next cell to see how abstract class `Problem` is defined in the search module."
"metadata": {
"collapsed": true
},
"source": [
"The `Problem` class has six methods.\n",
"\n",
"* `__init__(self, initial, goal)` : This is what is called a `constructor` and is the first method called when you create an instance of the class. `initial` specifies the initial state of our search problem. It represents the start state from where our agent begins its task of exploration to find the goal state(s) which is given in the `goal` parameter.\n",
"\n",
"\n",
"* `actions(self, state)` : This method returns all the possible actions agent can execute in the given state `state`.\n",
"\n",
"\n",
"* `result(self, state, action)` : This returns the resulting state if action `action` is taken in the state `state`. This `Problem` class only deals with deterministic outcomes. So we know for sure what every action in a state would result to.\n",
"\n",
"\n",
"* `goal_test(self, state)` : Given a graph state, it checks if it is a terminal state. If the state is indeed a goal state, value of `True` is returned. Else, of course, `False` is returned.\n",
"\n",
"\n",
"* `path_cost(self, c, state1, action, state2)` : Return the cost of the path that arrives at `state2` as a result of taking `action` from `state1`, assuming total cost of `c` to get up to `state1`.\n",
"\n",
"\n",
"* `value(self, state)` : This acts as a bit of extra information in problems where we try to optimise a value when we cannot do a goal test."
"We will use the abstract class `Problem` to define our real **problem** named `GraphProblem`. You can see how we define `GraphProblem` by running the next cell."
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"%psource GraphProblem"
"Now it's time to define our problem. We will define it by passing `initial`, `goal`, `graph` to `GraphProblem`. So, our problem is to find the goal state starting from the given initial state on the provided graph. Have a look at our romania_map, which is an Undirected Graph containing a dict of nodes as keys and neighbours as values."
"metadata": {
"collapsed": true
},
"romania_map = UndirectedGraph(dict(\n",
" Arad=dict(Zerind=75, Sibiu=140, Timisoara=118),\n",
" Bucharest=dict(Urziceni=85, Pitesti=101, Giurgiu=90, Fagaras=211),\n",
" Craiova=dict(Drobeta=120, Rimnicu=146, Pitesti=138),\n",
" Drobeta=dict(Mehadia=75),\n",
" Eforie=dict(Hirsova=86),\n",
" Fagaras=dict(Sibiu=99),\n",
" Hirsova=dict(Urziceni=98),\n",
" Iasi=dict(Vaslui=92, Neamt=87),\n",
" Lugoj=dict(Timisoara=111, Mehadia=70),\n",
" Oradea=dict(Zerind=71, Sibiu=151),\n",
" Pitesti=dict(Rimnicu=97),\n",
" Rimnicu=dict(Sibiu=80),\n",
" Urziceni=dict(Vaslui=142)))\n",
"\n",
"romania_map.locations = dict(\n",
" Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288),\n",
" Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449),\n",
" Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506),\n",
" Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537),\n",
" Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410),\n",
" Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350),\n",
" Vaslui=(509, 444), Zerind=(108, 531))"
]
},
{
"cell_type": "markdown",
"metadata": {
"It is pretty straightforward to understand this `romania_map`. The first node **Arad** has three neighbours named **Zerind**, **Sibiu**, **Timisoara**. Each of these nodes are 75, 140, 118 units apart from **Arad** respectively. And the same goes with other nodes.\n",
"\n",
"And `romania_map.locations` contains the positions of each of the nodes. We will use the straight line distance (which is different from the one provided in `romania_map`) between two cities in algorithms like A\\*-search and Recursive Best First Search.\n",
"\n",
"**Define a problem:**\n",
"Hmm... say we want to start exploring from **Arad** and try to find **Bucharest** in our romania_map. So, this is how we do it."
"metadata": {
"collapsed": true
},
"outputs": [],
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)"
"### Romania Map Visualisation\n",
"Let's have a visualisation of Romania map [Figure 3.2] from the book and see how different searching algorithms perform / how frontier expands in each search algorithm for a simple problem named `romania_problem`."
"Have a look at `romania_locations`. It is a dictionary defined in search module. We will use these location values to draw the romania graph using **networkx**."
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'Oradea': (131, 571), 'Eforie': (562, 293), 'Timisoara': (94, 410), 'Hirsova': (534, 350), 'Bucharest': (400, 327), 'Rimnicu': (233, 410), 'Fagaras': (305, 449), 'Lugoj': (165, 379), 'Giurgiu': (375, 270), 'Mehadia': (168, 339), 'Pitesti': (320, 368), 'Drobeta': (165, 299), 'Craiova': (253, 288), 'Sibiu': (207, 457), 'Iasi': (473, 506), 'Urziceni': (456, 350), 'Vaslui': (509, 444), 'Neamt': (406, 537), 'Zerind': (108, 531), 'Arad': (91, 492)}\n"
"source": [
"romania_locations = romania_map.locations\n",
"print(romania_locations)"
]
},
{
"cell_type": "markdown",
"Let's start the visualisations by importing necessary modules. We use networkx and matplotlib to show the map in the notebook and we use ipywidgets to interact with the map to see how the searching algorithm works."
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import networkx as nx\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import lines\n",
"\n",
"from ipywidgets import interact\n",
"import ipywidgets as widgets\n",
"from IPython.display import display\n",
"import time"
{
"cell_type": "markdown",
"source": [
"Let's get started by initializing an empty graph. We will add nodes, place the nodes in their location as shown in the book, add edges to the graph."
]
},
"metadata": {
"collapsed": true
},
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
"outputs": [],
"source": [
"# initialise a graph\n",
"G = nx.Graph()\n",
"\n",
"# use this while labeling nodes in the map\n",
"node_labels = dict()\n",
"# use this to modify colors of nodes while exploring the graph.\n",
"# This is the only dict we send to `show_map(node_colors)` while drawing the map\n",
"node_colors = dict()\n",
"\n",
"for n, p in romania_locations.items():\n",
" # add nodes from romania_locations\n",
" G.add_node(n)\n",
" # add nodes to node_labels\n",
" node_labels[n] = n\n",
" # node_colors to color nodes while exploring romania map\n",
" node_colors[n] = \"white\"\n",
"\n",
"# we'll save the initial node colors to a dict to use later\n",
"initial_node_colors = dict(node_colors)\n",
" \n",
"# positions for node labels\n",
"node_label_pos = { k:[v[0],v[1]-10] for k,v in romania_locations.items() }\n",
"\n",
"# use this while labeling edges\n",
"edge_labels = dict()\n",
"\n",
"# add edges between cities in romania map - UndirectedGraph defined in search.py\n",
"for node in romania_map.nodes():\n",
" connections = romania_map.get(node)\n",
" for connection in connections.keys():\n",
" distance = connections[connection]\n",
"\n",
" # add edges to the graph\n",
" G.add_edge(node, connection)\n",
" # add distances to edge_labels\n",
" edge_labels[(node, connection)] = distance"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"# initialise a graph\n",
"# use this while labeling nodes in the map\n",
"node_labels = dict()\n",
"# use this to modify colors of nodes while exploring the graph.\n",
"# This is the only dict we send to `show_map(node_colors)` while drawing the map\n",
"node_colors = dict()\n",
"for n, p in romania_locations.items():\n",
" # add nodes from romania_locations\n",
" G.add_node(n)\n",
" # add nodes to node_labels\n",
" node_labels[n] = n\n",
" # node_colors to color nodes while exploring romania map\n",
" node_colors[n] = \"white\"\n",
"# we'll save the initial node colors to a dict to use later\n",
"initial_node_colors = dict(node_colors)\n",
" \n",
"node_label_pos = { k:[v[0],v[1]-10] for k,v in romania_locations.items() }\n",
"# use this while labeling edges\n",
"edge_labels = dict()\n",
"\n",
"# add edges between cities in romania map - UndirectedGraph defined in search.py\n",
"for node in romania_map.nodes():\n",
" connections = romania_map.get(node)\n",
" for connection in connections.keys():\n",
" distance = connections[connection]\n",
" G.add_edge(node, connection)\n",
" # add distances to edge_labels\n",
" edge_labels[(node, connection)] = distance"
]
},
{
"cell_type": "markdown",
"We have completed building our graph based on romania_map and its locations. It's time to display it here in the notebook. This function `show_map(node_colors)` helps us do that. We will be calling this function later on to display the map at each and every interval step while searching, using variety of algorithms from the book."
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
},
"outputs": [],
"source": [
"def show_map(node_colors):\n",
" # set the size of the plot\n",
" plt.figure(figsize=(18,13))\n",
" # draw the graph (both nodes and edges) with locations from romania_locations\n",
" nx.draw(G, pos = romania_locations, node_color = [node_colors[node] for node in G.nodes()])\n",
"\n",
" # draw labels for nodes\n",
" node_label_handles = nx.draw_networkx_labels(G, pos = node_label_pos, labels = node_labels, font_size = 14)\n",
" # add a white bounding box behind the node labels\n",
" [label.set_bbox(dict(facecolor='white', edgecolor='none')) for label in node_label_handles.values()]\n",
"\n",
" # add edge lables to the graph\n",
" nx.draw_networkx_edge_labels(G, pos = romania_locations, edge_labels=edge_labels, font_size = 14)\n",
" \n",
" # add a legend\n",
" white_circle = lines.Line2D([], [], color=\"white\", marker='o', markersize=15, markerfacecolor=\"white\")\n",
" orange_circle = lines.Line2D([], [], color=\"orange\", marker='o', markersize=15, markerfacecolor=\"orange\")\n",
" red_circle = lines.Line2D([], [], color=\"red\", marker='o', markersize=15, markerfacecolor=\"red\")\n",
" gray_circle = lines.Line2D([], [], color=\"gray\", marker='o', markersize=15, markerfacecolor=\"gray\")\n",
" green_circle = lines.Line2D([], [], color=\"green\", marker='o', markersize=15, markerfacecolor=\"green\")\n",
" plt.legend((white_circle, orange_circle, red_circle, gray_circle, green_circle),\n",
" ('Un-explored', 'Frontier', 'Currently Exploring', 'Explored', 'Final Solution'),\n",
" numpoints=1,prop={'size':16}, loc=(.8,.75))\n",
" \n",
" # show the plot. No need to use in notebooks. nx.draw will show the graph itself.\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"source": [
"We can simply call the function with node_colors dictionary object to display it."
]
},
{
"cell_type": "code",
"execution_count": 11,
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABTsAAAPKCAYAAABbVI7QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGXjxvF7kEVZlARR1Nw3XNAMUUsTcyH3LOVV0KRw\neU1xwTU3IPdywaXXNC1cMktzSS1TTMMMy6XMkspsU1/T1FREk+38/uDHvI3ggoKDw/dzXXPVnHnO\nOfeMjebN85xjMgzDEAAAAAAAAAA84OysHQAAAAAAAAAA8gJlJwAAAAAAAACbQNkJAAAAAAAAwCZQ\ndgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAA\nAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAA\nAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAm\nUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0A\nAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAA\nAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADA\nJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSd\nAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAA\nAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAA\nwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmU\nnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAA\nAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAA\nAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJ\nlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScA\nAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAA\nAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACw\nCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUn\nAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ3AA84wDGtHAAAAAAAAKBAoO4EC7Pr160pL\nS7vl66dOnbqPiQAAAAAAAAouyk6ggNq1a5fatm0rO7ubf01TU1PVuHFjffnll/cxGQAAAAAAQMFE\n2QkUQIZhaNKkSerbt+8ty05XV1dNnz5dgwcPVkZGxn1MCAAAAAAAUPBQdgIFUFxcnP78808FBwff\ndmyvXr1kb2+v2NjY/A8GAAAAAABQgJkM7m4CFCiGYeixxx7T0KFD1aNHjzva59ChQ+rQoYMSExPl\n7u6ezwkBAAAAAAAKJmZ2AgXMtm3blJSUpO7du9/xPg0bNlTnzp0VGRmZj8kAAAAAAAAKNmZ2AgWI\nYRjy9/fXmDFj1K1bt1zte+7cOdWuXVuffPKJ6tatm08JAQAAAAAACi5mdgIFyObNm5Wamqpnnnkm\n1/t6enoqMjJS4eHh4mcYAAAAAACgMGJmJwAAAAAAAACbwMxOAAAAAAAAADaBshMAAAAAAACATaDs\nBAAAAAAAAGATKDsBAAAAAAAA2ATKTsAGrFu3TiaTydoxAAAAAAAArIqyE8gHp06dUv/+/VW+fHk5\nOjqqXLly6tevn06ePGntaAAAAAAAADaLshPIY7/88ov8/Pz07bffavny5frpp5+0atUqfffdd2rU\nqJF+/fXXHPdLSUm5v0EBAAAAAABsDGUnkMcGDRokOzs7xcXFqVWrVqpQoYJatmypuLg42dnZadCg\nQZKkgIAADRw4UCNHjlSpUqX0+OOPS5LmzJkjX19fubi4qFy5curbt68uXrxocY4VK1aoYsWKcnZ2\nVseOHXXmzJlsOTZv3qxHH31URYsWVeXKlTV+/HiLQnXVqlVq1KiR3Nzc5OXlpe7du+vUqVP5+MkA\nAAAAAADkL8pOIA9duHBB27Zt06BBg+Ts7GzxmrOzs1588UV99NFH+uuvvyRlFo6GYWjPnj1asWKF\nJMnOzk4xMTH67rvvtHr1an355ZcKDw83H+eLL75QaGio+vfvr6+//lqdOnXSpEmTLM718ccfKyQk\nRIMHD9Z3332nN998U+vWrdO4cePMY1JSUhQdHa3Dhw9ry5YtOnfunHr27JlfHw0AAAAAAEC+MxmG\nYVg7BGArvvjiCzVp0kTr169X165ds72+YcMGPfPMM/riiy80evRoXbhwQd98880tj7lt2zZ16dJF\n165dk52dnYKDg/Xnn39qx44d5jF9+/bVsmXLlPV1fuKJJ9SmTRtNnDjRPGbjxo3q1auXkpKScryZ\n0ffffy8fHx+dOHFC5cuXv9uPAAAAAAAAwGqY2QlY0aOPPppt2yeffKI2bdqofPnycnNz0zPPPKOU\nlBT98ccfkqTExEQ1bdrUYp8bnx88eFBTp06Vq6ur+REcHKzk5GTzcQ4dOqQuXbqoYsWKcnNzk5+f\nnyTp999/z4+3CgAAAAAAkO8oO4E8VK1aNZlMJh09ejTH148ePSqTyaRq1apJklxcXCxe/+2339Sh\nQwf5+Pho7dq1OnjwoN58801JubuBUUZGhiIjI/X111+bH998842OHTumUqVKKTk5WYGBgXJ2dtbK\nlSu1f/9+bdu2LdfnAQAAAAAAKEjsrR0AsCUeHh4KDAzUf/7zHw0fPtziup1Xr17Va6+9pnbt2qlk\nyZI57n/gwAGlpKRo7ty5KlKkiCRpy5YtFmN8fHy0b98+i203Pm/YsKG+//57c6l6o8OHD+vcuXOa\nNm2aKleuLElav3597t4sAAAAAABAAcPMTiCPLVy4UGlpaWrdurU++eQTnThxQrt371abNm1kGIYW\nLlx4032rV6+ujIwMxcTE6JdfftE777yjmJgYizFDhgxRXFycpk+frmPHjumNN97Qhg0bLMZMmjRJ\nq1ev1qRJk/Ttt9/q+++/17p16zR69GhJUoUKFeTk5KSFCxfq559/1tatWy2u7wkAAAAAAPAgouwE\n8ljVqlV14MAB1alTR71791aVKlUUHBwsHx8f7d+/3zyTMie+vr6aN2+e5syZo9q1a2vp0qWaNWuW\nxZgmTZpo2bJlWrRokXx9fbV+/XpFRUVZjAkMDNTWrVu1a9cu+fv7y9/fXzNmzFCFChUkSaVKldLy\n5cu1ceNG1a5dW9HR0ZozZ06efxYAAAAAAAD3E3djBwAAAAAAAGATmNkJAAAAAAAAwCZwgyIAAAAA\nAFCgXb58WWfPnlVqaqq1owAPNAcHB3l5eal48eLWjpJvKDsBAAAAAECBdfnyZZ05c0blypVTsWLF\nZDKZrB0JeCAZhqFr167p1KlTkmSzhSfL2AEAAAAAQIF19uxZlStXTs7OzhSdwD0wmUxydnZWuXLl\ndPbsWWvHyTeUnQAAAAAAoMBKTU1VsWLFrB0DsBnFihWz6UtCUHYC+ejChQvy9PTU8ePHrR3lplJT\nU1WnTh1t3LjR2lEAAAAAIEfM6ATyjq1/nyg7gXwUExOjrl27qmrVqtaOclMODg6aP3++IiIidO3a\nNWvHAQAAAAAAuGsmwzAMa4cAbJFhGEpLS1NycrLc3d2tHee2unXrJl9fX02aNMnaUQAAAADALDEx\nUT4+PtaOAdgUW/5eMbMTyCcmk0kODg4PRNEpSbNnz9b8+fP122+/WTsKAAAAANi00NBQlS9fPsfX\ndu/eLZPJpLi4uPucKu9kvYfdu3dbO4pZaGioKlWqZO0YuA8oOwFIkipWrKghQ4ZoxIgR1o4CAAAA\nAABwVyg7AZiNGjVKhw4d0s6dO60dBQAAAAAApaenKy0tzdox8ACh7ARgVqxYMc2ZM0fh4eFKTU21\ndhwAAAAAKPQqVaqkXr16ac2aNfLx8ZGLi4v8/Pz02Wef3fExlixZovr166to0aLy9PRUWFiYLly4\nYH592bJlMplM2rhxo3lbenq6WrRooapVq+ry5cuSpKioKJlMJh05ckQtW7aUs7OzvL29NWnSJGVk\nZNwyg2EYmjt3rmrWrClHR0d5e3tr8ODB5mNnMZlMGj9+vGbMmKHKlSvL0dFRR44ckST9+eef+ve/\n/61y5crJyclJtWrV0pIlS7Kda+fOnWrYsKGKFi2qqlWravHixXf8WeHBR9kJwEKXLl308MMPa+HC\nhdaOAgAAAACQtGfPHs2ePVuTJ0/Wu+++q/T0dHXs2FEXL1687b5jx47VoEGD1Lp1a33wwQd69dVX\ntW3bNrVr107p6emSpLCwMHXv3l19+/bVqVOnJEmTJ0/W559/rtWrV6t48eIWx3z66afVunVrbdy4\nUcHBwZo8ebJefvnlW+YYP368IiIi1KZNG23evFmjR49WbGysOnTokK0ojY2N1datWzVr1ixt3bpV\nZcuW1eXLl9WsWTN9+OGHioqK0tatW9WpUycNHDhQCxYsMO+bmJio9u3bq1ixYlqzZo2mTZummJgY\nVjAWIvbWDgCgYDGZTJo3b56aN2+u4OBglS5d2tqRAAAAAKBQu3z5sr7++ms99NBDkqQyZcqoUaNG\n+vDDDxUcHHzT/X799Ve9+uqrioyM1KRJk8zba9SooWbNmmnz5s16+umnJf1v9mfv3r0VGRmpKVOm\naPLkyWrcuHG24/br109jx46VJLVt21aXL1/W7NmzNWzYsBxv0nvhwgXNnj1bffr0MU+sCQwMVKlS\npdS7d29t2bJFnTt3No83DEPbt29XsWLFzNsmT56s3377TUeOHFH16tUlSa1bt9bFixcVHR2tgQMH\nyt7eXlOmTJGbm5u2b98uFxcXSdJjjz2mqlWrqmzZsnf2geOBxsxO4C79c8q/ralVq5ZCQ0PNf3gB\nAAAAAKynadOm5qJTkurVqydJ+v333yVlloNpaWnmR9aMzR07digjI0MhISEWrzdu3Fhubm6Kj483\nH9Pd3V2rV69WfHy8AgMD9cQTT2jMmDE55gkKCrJ43qNHD125ckXffvttjuP37dunlJQU9erVK9t+\n9vb2+vTTTy22P/XUUxZFpyRt27ZNjRs3VuXKlS3eS2BgoM6fP6+jR49KkhISEtS+fXtz0SlJDz/8\nsB5//PEcs8H2UHYCd2Hp0qWKiIjQ7t27sy0bMAzjls8fFBMnTtT27du1b98+a0cBAAAAAJtib29v\nLiRvlLXd3v5/i3FLlixpMcbJyUmS9Pfff0uSli9fLgcHB/OjatWqkqSzZ89KkqpVq2bxuoODg5KS\nknT+/HmL4zZp0kQ1a9bU9evXNWTIENnZ5Vwb3bgCMOt51hL4G2VNFvL29rbYbm9vLw8Pj2yTiW4c\nl/Ve4uPjs72P7t27S5L5vZw+fTrHFYqsWiw8WMYO5FJ6erpGjBihlJQUffzxx+ratat69Oih+vXr\nq0SJEjKZTJKk5ORkOTg4yNHR0cqJ707x4sU1Y8YMhYeH64svvrjpH3IAAAAAgNzx8vLSuXPnlJKS\nku3vjP/9738l5a6c69Spk/bv329+nlWGenh4SJK2b99uMTM0S9brWaKjo3Xs2DH5+vpq+PDhatmy\npUqUKJFtvzNnzqhKlSoWzyWpXLlyOebLKmv/+OMP1alTx7w9LS1N58+fz1bmZv29+sasXl5emjdv\nXo7nqFmzpqTMojQrz42ZUTjQXgC5tG7dOtWpU0dfffWVoqOj9eGHH6p79+6aOHGi9uzZo6SkJElS\nTEyMpk+fbuW096ZXr15ydHTUm2++ae0oAAAAAGAzWrZsqbS0NH3wwQfZXnv//ffl7e1tLu/uhIeH\nh/z8/MyPrGXubdq0kZ2dnX7//XeL17MelStXNh9jz549mjp1qqZOnarNmzfr4sWLGjhwYI7ne++9\n9yyer1mzRq6urubz3qhJkyZydHTUmjVrLLa/++67SktLU0BAwG3f41NPPaXvv/9eFSpUyPG9uLm5\nScpc8v/hhx8qOTnZvO+JEye0d+/e254DtoGZnUAuubq6qkmTJnJ3d1f//v3Vv39/LVy4UDNnztTa\ntWvVs2dP+fv7a+LEidqxY4e1494Tk8mkBQsWqH379nr22Wdz/EkgAAAAACB3WrdurTZt2ig0NFTf\nf/+9GjdurKSkJK1Zs0abNm3SW2+9lSer66pWraoxY8Zo8ODB+uGHH9SiRQsVLVpUJ06c0I4dO9S3\nb1+1bNlSf/31l0JCQtSqVSuNHDlSJpNJS5YsUVBQkAIDA9WnTx+L477xxhvKyMhQo0aN9PHHH2vp\n0qWKiorKcRaolDmzc8SIEZo+fbpcXFzUvn17JSYmasKECWrWrJk6dOhw2/cyfPhwvfvuu2revLmG\nDx+umjVrKjk5Wd9//7327NmjTZs2SZImTJigtWvXqm3btho1apRSUlIUFRXFMvbCxABwx5KSkgzD\nMIzjx48bhmEYqampFq/HxMQYFStWNEwmk/HEE0/c93z5ZcCAAUZ4eLi1YwAAAAAohI4ePWrtCPni\n6tWrxvjx443q1asbjo6Ohqurq9GsWTNj48aNFuMqVqxohISEZNtfkhEZGXlH51qxYoXRuHFjw9nZ\n2XBxcTFq1aplDBo0yDhx4oRhGIbRrVs3w9PT0/jvf/9rsV9YWJjh6upqHDt2zDAMw4iMjDQkGUeO\nHDECAgKMokWLGqVLlzYmTJhgpKenm/fbtWuXIcnYtWuXeVtGRoYxZ84co0aNGoaDg4NRpkwZ48UX\nXzQuXbqU7X2NHz8+x/dx4cIFY9iwYUalSpUMBwcHo1SpUkazZs2MuXPnWozbsWOH0aBBA8PR0dGo\nXLmy8frrrxt9+vQxKlaseEefV2Fgq98rwzAMk2E8oHdPAe6zv//+Wx07dtSMGTPk5+cnwzDM1xFJ\nS0szXzz6+++/V+3atbVv3z75+/tbM3KeOX/+vHx8fLRz586bLksAAAAAgPyQmJgoHx8fa8eApKio\nKEVHRys1NdXiBkp48Njy94prdgJ3aMKECfrkk080btw4JSUlWVwwOes3+fT0dE2bNk3Vq1e3maJT\nyrz+S1RUlMLDwx/Yu8sDAAAAAADbR9kJ3IFLly5p3rx5Wrp0qf773/+qZ8+eOn36tCQpIyPDPM4w\nDDVv3lxr1661VtR8M2DAAF28eDHbhagBAAAAAAAKCpaxA3egb9+++vnnn/XJJ59o1apVGjZsmIKD\ngzV//vxsY9PT01WkSBErpMx/e/bsUUhIiBITE+Xi4mLtOAAAAAAKAVtebgtYiy1/r7jAAnAb58+f\n1/Lly/X5559Lknr16iV7e3uFh4fL3t5eU6dOVbFixZSRkSE7OzubLTolqXnz5mrevLmmTZumqVOn\nWjsOAAAAAACABZaxA7cxYcIENW/eXI0aNVJ6eroMw9Czzz6rwYMH66233tLq1aslSXZ2hePr9Mor\nr2jx4sX66aefrB0FAAAAAADAAjM7gduYN2+ekpKSJMk8a9PBwUGRkZFKSUnR8OHDlZ6erv79+1sz\n5n1Trlw5jRo1SsOHD9fmzZutHQcAAAAAAMCscExFA+6Bo6OjPDw8LLZl3ZRoxIgR6tSpk1566SV9\n/fXX1ohnFcOGDdMPP/ygDz/80NpRAAAAAAAAzCg7gbuQtWS9ZMmSWrp0qRo0aCBnZ2crp7p/nJyc\nNG/ePA0dOlTXr1+3dhwAAAAAAABJLGMH7klGRoaKFSumDRs2qHjx4taOc1+1a9dOPj4+mjt3rsaO\nHWvtOAAAAABwe4YhnUuQzn8ppSZJDm6Sh7/k2VQymaydDkAeoOwEcsEwDJn+8Qdg1gzPwlZ0Zpk7\nd64aN26s3r17q1y5ctaOAwAAAAA5y0iVji+Tjr4iXT+b+TwjVbJzyHw4eUm1R0tVwzKfA3hgsYwd\nuENHjx7VxYsXZRiGtaMUGFWrVtXAgQM1atQoa0cBAAAAgJylXpF2PikdGiEl/yKlJUsZKZKMzH+m\nJWduPzRC2tkqc3w+i42NlclkyvERFxeX7+f/p/Xr1ysmJibb9ri4OJlMJn322Wf3NQ9wryg7gTs0\naNAgbdy40WJmJ6SXXnpJe/fuVXx8vLWjAAAAAICljFRpdzvp/H4p/eqtx6ZfzVzevrt95n73wdq1\na5WQkGDx8Pf3vy/nznKzstPf318JCQmqX7/+fc0D3CuWsQN3YNeuXTp58qR69+5t7SgFjrOzs2bN\nmqXw8HAdPHhQ9vb8tgIAAACggDi+TLpwSMq4wxurZlyXLhyUjr8pVR+Qv9kkNWjQQNWqVbujsdev\nX5eTk1M+J/qf4sWLq0mTJnlyLMMwlJqaKkdHxzw5HnArzOwEbsMwDE2aNEmRkZEUeTfRrVs3eXh4\naPHixdaOAgAAAACZDCPzGp23m9F5o/SrmftZ8RJmWUvIN27cqBdeeEGenp4W90n48MMP1bhxYxUr\nVkzu7u7q2rWrjh07ZnGMZs2aKSAgQNu3b9cjjzwiZ2dn1a1bVx988IF5TK9evfT222/rt99+My+j\nzypfb7aMfd26dWrcuLGcnZ3l7u6uoKAgnTx50mJM+fLlFRoaqjfeeEM1a9aUo6OjPv7447z+mIAc\nUXYCtxEXF6c///xTPXv2tHaUAstkMmnBggWKjo7WuXPnrB0HAAAAADLvun797N3te/1M5v75LD09\nXWlpaeZHenq6xeuDBg2Svb293n77bS1btkyStGXLFnXs2FEPPfSQ3nvvPb322ms6fPiwmjVrpj/+\n+MNi/x9//FEREREaOXKk1q9fr9KlS+vZZ5/VL7/8IkmKjo5WYGCgypQpY15Gv27dupvmXbhwoYKC\nglSvXj29//77ev3113X48GEFBAToyhXLa53u2LFD8+fPV3R0tLZt26Y6derkxUcG3BbT1IBbMAxD\nEydOVFRUlIoUKWLtOAVanTp1FBwcrPHjxzPDEwAAAED+OjhM+uvrW4+5elJKy+WszixpV6WE5yTn\n8jcf81AD6dHs17rMjVq1alk8f/zxxy1mUj722GNasmSJxZgJEyaoRo0a2rp1q/nvqY0bN1atWrU0\nZ84cvfLKK+ax586d02effaYqVapIkurXr6+yZctq7dq1Gj16tKpWrSpPT085OTnddsn65cuX9dJL\nL6lv374WmRo1aqRatWopNjZWgwcPNm+/dOmSvvrqK3l5eeXyUwHuDWUncAsfffSRrly5oqCgIGtH\neSBERUXJx8dH/fr1k5+fn7XjAAAAACjMjHRJd7sU3fj//fPXhg0bVL78/wpVNzc3i9e7du1q8fzS\npUs6fPiwIiMjLSbkVKtWTU2aNNGnn35qMb5WrVrmolOSvL295enpqd9//z3XWffu3asrV64oJCRE\naWlp5u0VK1ZU9erVFR8fb1F2PvbYYxSdsArKTuAmsq7VGR0dLTs7rvhwJ9zd3TV16lSFh4dr7969\nfG4AAAAA8sedzKj8Pkb6eoyUkZL749s5STWHSbWG5n7fXKhbt+4tb1Dk7e1t8fyvv/7KcbsklSlT\nRocPH7bYVrJkyWzjnJyc9Pfff+c669mzmZcECAgIuKOsOWUE7gfKTuAmNm/erLS0tGw/ScOthYaG\navHixVq5cqX69Olj7TgAAAAACisPf8nO4S7LTnvJo1HeZ8olk8lk8TyrvLzx2pxZ23IqN/OKh4eH\nJGnlypXZlt9L2Wel3pgduF+YdgXkICMjg1mdd8nOzk4LFizQSy+9pEuXLlk7DgAAAIDCyrOp5HSX\ny6iLls7cv4ApXry4GjRooLVr1yojI8O8/eeff9a+fftuOuvyVpycnHTt2rXbjmvWrJlcXFx0/Phx\n+fn5ZXvUrFkz1+cG8gMtDpCDDRs2yN7eXp07d7Z2lAeSv7+/2rVrp5dfftnaUQAAAAAUViaTVHu0\nVMQ5d/sVcZZ8RmfuXwBNnjxZR48eVadOnbRlyxatXr1abdu2lYeHh4YPH57r49WuXVtnz57VkiVL\ntH//fn377bc5jnN3d9fMmTM1ZcoUDRw4UB988IF2796tt99+W3379tW77757r28NyBOUncANMjIy\nFBkZqZdffplp9/dg+vTpWrFihRITE60dBQAAAEBhVTVMKtkw8xqcd8LOSSr5qFT1hfzNdQ86duyo\nzZs369y5c+rWrZsGDhyoevXq6bPPPlOZMmVyfbz+/fsrKChIY8aMkb+/v55++umbjh00aJA2bNig\nxMREhYSEqH379oqKipJhGKpfv/69vC0gz5gMw7jbW5MBNundd9/V3LlzlZCQQNl5j+bNm6ctW7Zo\n+/btfJYAAAAA7kpiYqJ8fHzu/gCpV6Td7aULB6X0qzcfV8Q5s+gM+FBycL378wEPgHv+XhVgzOwE\n/iE9PV1RUVHM6swjL774ok6fPq0NGzZYOwoAAACAwsrBVWq1U2o4R3KpItm7/P9MT1PmP+1dJNcq\nma+32knRCTzguBs78A/vvPOOPD091aZNG2tHsQkODg5asGCBnn/+eT311FNyds7ltXIAAAAAIC/Y\nOUjVB0jV+kvnEqTz+6W0JMneLfOu7Z5NCuw1OgHkDsvYgf+XlpYmHx8fLVmyRC1btrR2HJsSFBSk\n2rVrKyowAiAkAAAgAElEQVQqytpRAAAAADxgbHm5LWAttvy9Yhk78P9Wrlyp8uXLU3Tmg1mzZmnh\nwoX69ddfrR0FAAAAAADYMMpOQFJqaqomT56sl19+2dpRbFKFChU0bNgwRUREWDsKAAAAAACwYZSd\ngKTY2FhVq1ZNzZs3t3YUmzVy5EgdPnxYO3bssHYUAAAAAABgoyg7Uehdv35dU6ZMUXR0tLWj2LSi\nRYtq7ty5GjJkiFJSUqwdBwAAAAAA2CDKThR6y5YtU506ddS0aVNrR7F5nTp1UqVKlbRgwQJrRwEA\nAAAAADbI3toBAGv6+++/NW3aNG3cuNHaUQoFk8mkefPm6bHHHlNwcLC8vb2tHQkAAABAYWIYUkKC\n9OWXUlKS5OYm+ftLTZtKJpO10wHIA5SdKNSWLFmiRx99VH5+ftaOUmjUqFFDYWFhGjt2rJYvX27t\nOAAAAAAKg9RUadky6ZVXpLNnM5+npkoODpkPLy9p9GgpLCzzOYAHFsvYUWhdvXpVM2bMUFRUlLWj\nFDoTJkzQzp079fnnn1s7CgAAAABbd+WK9OST0ogR0i+/SMnJUkpK5izPlJTM57/8kvl6q1aZ4++D\nhIQEBQUFqWzZsnJ0dJSHh4fatGmj5cuXKz09/b5kyGsbN27UnDlzsm3fvXu3TCaTdu/enSfnMZlM\nN33k18rNvH4P+XVMMLMThdiiRYvUtGlTPfLII9aOUui4ublp5syZCg8P15dffqkiRYpYOxIAAAAA\nW5SaKrVrJ+3fL12/fuuxV69mLm9v317auTNfZ3jGxMQoIiJCTz75pGbOnKmKFSvqr7/+0vbt2zVw\n4EC5u7urS5cu+Xb+/LJx40bFxcUpIiIi388VGhqqAQMGZNtes2bNfD93XmnYsKESEhJUu3Zta0ex\nKZSdKJSuXLmiV199VXFxcdaOUmgFBwfr9ddf17Jly9S/f39rxwEAAABgi5Ytkw4dun3RmeX6deng\nQenNN6UcirS8EB8fr4iICA0ePFjz58+3eK1Lly6KiIhQcnLyPZ8nNTVV9vb2MuVwLdLr16/Lycnp\nns9hTeXKlVOTJk2sHeOupKenyzAMFS9e/IF9DwUZy9hRKL322msKCAhQ3bp1rR2l0DKZTFqwYIEm\nTpyoCxcuWDsOAAAAAFtjGJnX6Lx6NXf7Xb2auZ9h5EusmTNnqmTJknrllVdyfL1q1ary9fWVJEVF\nReVYVoaGhqpSpUrm57/++qtMJpP+85//aPTo0SpbtqycnJx08eJFxcbGymQyKT4+Xt27d5e7u7sa\nN25s3vfTTz9Vq1at5ObmJhcXFwUGBurbb7+1OF9AQICaNWumuLg4NWzYUM7Ozqpbt642bNhgkWn5\n8uU6deqUeUn5PzP+U3h4uEqXLq3U1FSL7UlJSXJzc9PYsWNv+RneiWXLlmVb1p6enq4WLVqoatWq\nunz5sqT/fcZHjhxRy5Yt5ezsLG9vb02aNEkZGRm3PIdhGJo7d65q1qwpR0dHeXt7a/DgweZjZzGZ\nTBo/frxmzJihypUry9HRUUeOHMlxGfudfNZZ3nnnHdWqVUtFixZVvXr19MEHHyggIEABAQF3/8HZ\nAMpOFDqXL1/W7NmzFRkZae0ohV6DBg307LPPatKkSdaOAgAAYDUP6rX5gAIvISHzZkR348yZzP3z\nWHp6unbt2qW2bduqaNGieX78qVOn6scff9SSJUu0YcMGi3OEhISocuXKWrdunWbMmCFJ2rp1q1q1\naiVXV1etWrVKq1evVlJSkpo3b64TJ05YHPv48eMaOnSoIiIitH79enl7e6t79+766aefJEkTJ05U\n+/btVapUKSUkJCghISHHgk6SBg4cqLNnz2Z7ffXq1UpOTs5xefqNDMNQWlpatkeWsLAwde/eXX37\n9tWpU6ckSZMnT9bnn3+u1atXq3jx4hbHe/rpp9W6dWtt3LhRwcHBmjx5sl5++eVbZhg/frwiIiLU\npk0bbd68WaNHj1ZsbKw6dOiQrSiNjY3V1q1bNWvWLG3dulVly5a96XFv91lL0o4dOxQSEqJatWpp\n/fr1GjlypIYNG6Yff/zxtp+drWMZOwqd+fPnq23btvLx8bF2FCjzD5vatWurX79+ql+/vrXjAAAA\n3HdpaWnq06ePIiIi1LBhQ2vHAR4Mw4ZJX3996zEnT+Z+VmeWq1el556Type/+ZgGDaSYmFwd9ty5\nc7p27ZoqVqx4d7luo3Tp0tqwYUOOs0G7deuWbTbp0KFD1aJFC23atMm8rWXLlqpSpYpmz56tmH+8\nv3Pnzik+Pl7Vq1eXlHm9SW9vb7333nsaN26cqlatqlKlSsnR0fG2S7Nr166tFi1aaPHixQoKCjJv\nX7x4sdq2bavKlSvf9r1OmzZN06ZNy7b9zz//lKenpyRpyZIlql+/vnr37q3IyEhNmTJFkydPtpjZ\nmqVfv37mGaVt27Y1T5QaNmyY3N3ds42/cOGCZs+erT59+mjhwoWSpMDAQJUqVUq9e/fWli1b1Llz\nZ/N4wzC0fft2FStWzLwtMTExx/d2u89akiIjI1W7dm2LX++6devKz89PNWrUuO3nZ8uY2YlC5eLF\ni5o3bx6zOgsQDw8PRUdHKzw8XEY+LRMBAAAoyOzt7dW0aVN17NhR3bt3v+lffgHkUnr63S9FN4zM\n/R8wTz/9dI5FpyR17drV4vmxY8d0/PhxhYSEWMyMdHZ2VtOmTRUfH28xvnr16ubyTZK8vLzk5eWl\n33///a6yvvjii9q1a5eOHTsmSdq/f7+++uqrO5rVKUkvvPCC9u/fn+3xz2LS3d1dq1evVnx8vAID\nA/XEE09ozJgxOR7vn6WrJPXo0UNXrlzJtqQ/y759+5SSkqJevXpl28/e3l6ffvqpxfannnrKoui8\nldt91unp6Tpw4ICeffZZi1/vRx999I6KYlvHzE4UKjExMerYsaPFbxqwvn79+mnJkiVas2aNevbs\nae04AAAA91WRIkU0aNAgPf/881q4cKFatGihDh06KDIy8qbXuwMKvTuZURkTI40ZI6Wk5P74Tk6Z\ns0eHDs39vrfg4eGhYsWK6bfffsvT42bx9va+49fO/v8S/7CwMIWFhWUbX6FCBYvnJUuWzDbGyclJ\nf//9991EVdeuXVWmTBktXrxYs2bN0uuvv66yZcuqU6dOd7S/t7e3/Pz8bjuuSZMmqlmzpo4ePaoh\nQ4bIzi7neX+lS5fO8XnWEvgbZd174sbP1d7eXh4eHtnuTXGrX5sb3e6zPnfunFJTU+Xl5ZVt3I3v\nozBiZicKjZSUFB06dEgTJ060dhTcoEiRIlqwYIFGjRqlK1euWDsOAACAVTg7O2v06NE6duyYHn74\nYT366KMaPHiwTp8+be1owIPJ319ycLi7fe3tpUaN8jaPMouwgIAA7dixQ9fv4A7xWdfcTLmhsD1/\n/nyO4282qzOn1zw8PCRJ06dPz3GG5ObNm2+b7144ODiob9++io2N1dmzZ7VmzRqFhYXJ3j5v5+VF\nR0fr2LFj8vX11fDhw3Xp0qUcx505cybH5+XKlctxfFYh+ccff1hsT0tL0/nz57MVlrf6tcktT09P\nOTg4mAvrf7rxfRRGlJ0oNOzt7fXee++pSpUq1o6CHDz++ONq2bKlpk6dau0oAAAAVlWiRAm9/PLL\nSkxMlKOjo+rWrauxY8dmmyUE4DaaNpVymPl2R0qXztw/H4wdO1bnz5/X6NGjc3z9l19+0TfffCNJ\n5mt7/nMp9cWLF/X555/fc46aNWuqUqVK+u677+Tn55ftkXVH+NxwcnLStWvX7nj8gAEDdPHiRXXv\n3l3Xr19Xv379cn3OW9mzZ4+mTp2qqVOnavPmzbp48aIGDhyY49j33nvP4vmaNWvk6uqqevXq5Ti+\nSZMmcnR01Jo1ayy2v/vuu0pLS8vXO6IXKVJEfn5+ev/99y0uB3fw4EH98ssv+XbeBwXL2FFo2NnZ\n5cvd7pB3XnnlFdWrV08vvPAClxoAAACFnpeXl+bMmaOIiAhNnjxZNWrU0LBhwzR06FC5ublZOx5Q\n8JlM0ujR0ogRubtRkbNz5n55OBPvn5544gnzd/vo0aMKDQ1VhQoV9Ndff2nnzp1aunSpVq9eLV9f\nX7Vr104lSpRQv379FB0drevXr+uVV16Rq6vrPecwmUx67bXX1KVLF6WkpCgoKEienp46c+aMPv/8\nc1WoUEERERG5Ombt2rV14cIFLVq0SH5+fipatOhNy0Ipc9Zk586dtWHDBnXq1EkPP/zwHZ/r1KlT\n2rdvX7btFStWlLe3t/766y+FhISoVatWGjlypEwmk5YsWaKgoCAFBgaqT58+Fvu98cYbysjIUKNG\njfTxxx9r6dKlioqKUokSJXI8f8mSJTVixAhNnz5dLi4uat++vRITEzVhwgQ1a9ZMHTp0uOP3cjei\no6PVtm1bde3aVf3799e5c+cUFRWlMmXK3HSpfmFRuN89gALF29tbY8aM0bBhw6wdBQAAoMAoX768\nFi9erISEBCUmJqp69eqKiYm56+vkAYVKWJjUsGHmNTjvhJOT9Oij0gsv5GusYcOG6bPPPpO7u7tG\njhypJ598UqGhoUpMTNTixYvN1610d3fXli1bZGdnp6CgIL300ksKDw9Xy5Yt8yRH+/btFR8fr+Tk\nZPXt21eBgYEaPXq0/vjjDzW9i5mtffv2VY8ePTRu3Dj5+/vf0fU3u3fvLkl3fGOiLLGxsWratGm2\nx9tvvy1J6t+/v65du6bly5ebl5B3795dYWFhGjx4sH766SeL423atEk7duxQ586dtWrVKk2YMOG2\nl8GbOnWq5syZo48++kgdO3bUjBkz9Nxzz2nr1q35Xji2adNGb7/9thITE9W1a1fNnDlTs2fPVpky\nZW5a0BYWJoPbHwMoQFJSUuTr66tZs2apY8eO1o4DAABQ4HzzzTeaOHGiDh06pEmTJik0NFQOd3td\nQuABkJiYKB8fn7s/wJUrUvv20sGDt57h6eycWXR++KGUBzMncWdCQkK0d+9e/fzzz1aZkRgVFaXo\n6Gilpqbm+fVC77eTJ0+qWrVqGj9+/G2L2nv+XhVgzOwEUKA4Ojpq3rx5GjZsGLMVAAAAcuDr66tN\nmzZp7dq1WrNmjWrXrq133nlHGRkZ1o4GFEyurtLOndKcOVKVKpKLS+YMTpMp858uLpnb58zJHEfR\neV/s27dPr7/+ut59911FREQU+qXXuXXt2jUNHDhQ77//vj799FO99dZbatOmjZydndW3b19rx7Mq\nZnYCKJCefvpp+fv7a9y4cdaOAgAAUKDt3LlT48eP17Vr1zRlyhR17NgxT+/6C1hbns5AMwwpIUHa\nv19KSpLc3DLv2t6kSb5doxM5M5lMcnV1VVBQkBYvXmy1WZUP6szOlJQU/etf/9K+fft0/vx5ubi4\nqHnz5po2bZrq1q172/1teWYnZSeAAunnn3+Wv7+/vvrqq1xdpBoAAKAwMgxDmzdv1vjx4+Xq6qpp\n06bl2TX9AGuz5VIGsBZb/l4xRxhAgVSlShW9+OKLGjVqlLWjAAAAFHgmk0mdO3fWkSNHFB4ern79\n+ql169b64osvrB0NAID7irITQIE1duxYJSQkaPfu3daOAgAA8MAIDg5WYmKigoKC1K1bNz399NM6\ncuSItWMBAHBfUHYCKLCcnZ01e/ZsDRkyRGlpadaOAwAA8MBwcHBQ//79dezYMbVo0UKtW7dWr169\n9NNPP1k7GgAA+YqyE0CB9uyzz6pUqVJatGiRtaMAAAA8cIoWLarhw4frp59+Us2aNdWkSRMNGDBA\nJ0+etHY0AADyBWUngALNZDJp/vz5evnll/Xnn39aOw4AAMADyc3NTRMnTtQPP/wgd3d3+fr6asSI\nEfz/FQDA5lB2Aijw6tSpo169emncuHHWjgIAAPBA8/Dw0MyZM/Xtt9/q77//Vq1atRQZGalLly5Z\nOxpwXxiGoRMnTmjfvn369NNPtW/fPp04cUKGYVg7GoA8QtkJ4IEQFRWlLVu26MCBA9aOAgAAbFho\naKhMJpMmT55ssX337t0ymUw6d+6clZJlio2Nlaur6z0fp2zZsnrttdd04MAB/fbbb6pevbpeffVV\nXb16NQ9SAgVPenq6Dhw4oPnz52vlypWKi4vT7t27FRcXp5UrV2r+/Pk6cOCA0tPTrR0VwD2i7ATw\nQChRooSmTZumwYMHKyMjw9pxAACADStatKheffXVQrHEu3LlyoqNjdXu3bv1xRdfqHr16vrPf/6j\nlJQUa0cD8kxKSopWrFih7du36+LFi0pNTTWXmunp6UpNTdXFixe1fft2rVix4r789x8bGyuTyZTj\nw93dPV/OGRoaqkqVKuXLse+WyWRSVFSUtWPAxlB2wqZkZGTw02gb1qdPH0nSihUrrJwEAADYspYt\nW6pSpUrZZnf+09GjR9WhQwe5ubnJy8tLPXv21B9//GF+ff/+/Wrbtq08PT1VvHhxNWvWTAkJCRbH\nMJlMWrRokbp06SJnZ2fVqFFDu3bt0smTJxUYGCgXFxc1aNBAhw4dkpQ5u/T5559XcnKyuRTJq5Kg\ndu3aWrdunTZt2qQPPvhAtWrV0ooVK5jlhgdeenq63n77bZ06dUqpqam3HJuamqpTp07p7bffvm//\n7a9du1YJCQkWj7i4uPtybsBWUXbCpowfP17x8fHWjoF8YmdnpwULFmjcuHFcVwoAAOQbOzs7zZgx\nQ6+//rqOHz+e7fXTp0/riSeeUN26dfXll18qLi5OV65cUZcuXcwrUJKSktS7d2/t2bNHX375pRo0\naKD27dvr/PnzFseaMmWKevToocOHD8vPz089evRQWFiYXnzxRX311VcqW7asQkNDJUmPPfaYYmJi\n5OzsrNOnT+v06dMaOXJknr53Pz8/bdu2TbGxsVqyZInq1aun9evXcz1DPLC++uornT59+o7Ly/T0\ndJ0+fVpfffVVPifL1KBBAzVp0sTi4efnd1/OfS+uX79u7QjATVF2wmZcv35dS5cuVY0aNawdBfmo\nUaNGat++vaKjo60dBQAA2LD27dvr8ccf1/jx47O9tmjRItWvX18zZ86Uj4+PfH19tWLFCn355Zfm\n64s/+eST6t27t3x8fFSrVi0tWLBARYsW1UcffWRxrOeee049e/ZU9erVNW7cOJ09e1aBgYHq0qWL\natSoodGjR+vIkSM6d+6cHB0dVaJECZlMJpUpU0ZlypTJk+t35uSJJ57Qnj17NHv2bE2ZMkWNGjXS\nxx9/TOmJB4phGNq7d+9tZ3TeKDU1VXv37rXqf+8ZGRkKCAhQpUqVLCZ6HDlyRMWKFdOoUaPM2ypV\nqqRevXrpjTfeULVq1VS0aFE1bNhQu3btuu15Tp8+reeee06enp5ycnKSr6+vVq1aZTEma8l9fHy8\nunfvLnd3dzVu3Nj8+qeffqpWrVrJzc1NLi4uCgwM1LfffmtxjPT0dE2YMEHe3t5ydnZWQECAvvvu\nu7v9eIBbouyEzdi0aZN8fX1VpUoVa0dBPps2bZpWrlypo0ePWjsKAACwYTNnztTatWt18OBBi+0H\nDx5UfHy8XF1dzY+HH35YkswzQc+ePasBAwaoRo0aKlGihNzc3HT27Fn9/vvvFsfy9fU1/3vp0qUl\nSfXq1cu27ezZs3n/Bm/DZDKpXbt2OnDggMaMGaOhQ4cqICBAe/fuve9ZgLtx8uRJJScn39W+ycnJ\nOnnyZB4nyi49PV1paWkWj4yMDNnZ2WnVqlVKSkrSgAEDJEnXrl1Tjx49VKdOHU2dOtXiOLt379ac\nOXM0depUrVmzRk5OTmrXrp1++OGHm547OTlZLVq00EcffaRp06Zp48aNqlevnnr37q0lS5ZkGx8S\nEqLKlStr3bp1mjFjhiRp69atatWqlVxdXbVq1SqtXr1aSUlJat68uU6cOGHeNyoqStOmTVNISIg2\nbtyotm3bqnPnznnxEQLZ2Fs7AJBXli1bprCwMGvHwH3g5eWliRMnasiQIdqxY4dMJpO1IwEAABvk\n7++vZ599VqNHj9bEiRPN2zMyMtShQwfNmjUr2z5Z5WSfPn105swZzZ07V5UqVZKTk5NatWqV7cYn\nDg4O5n/P+n+anLZZ8waNdnZ26t69u7p27aqVK1cqODhYdevW1ZQpU/TII49YLRcKt23btllcJzcn\nly9fzvWsziypqanasGGDihcvftMxZcqU0VNPPXVXx89Sq1atbNs6dOigLVu2qHz58lq6dKmeeeYZ\nBQYGKiEhQb///rsOHTokR0dHi33Onj2rhIQE8w9eWrVqpYoVK2rKlClauXJljud+6623dOzYMe3a\ntUsBAQGSpHbt2unMmTOaMGGCwsLCVKRIEfP4bt266ZVXXrE4xtChQ9WiRQtt2rTJvK1ly5aqUqWK\nZs+erZiYGP3111+aO3eu+vfvb/59s23btipSpIjGjh2b+w8NuA1mdsIm/Pbbbzpw4IC6du1q7Si4\nT1588UWdOXNG69evt3YUAABgw6ZNm6Y9e/Zo27Zt5m0NGzbUd999p4oVK6patWoWDzc3N0nSZ599\npvDwcHXo0EF16tSRm5ubTp8+fc95HB0drXbTIHt7ez3//PP68ccf1a5dO7Vv317/+te/bjlzDLCm\ne/0hwf34IcOGDRu0f/9+i0dMTIz59a5du2rAgAEaOHCg3njjDc2fP1/Vq1fPdpwmTZqYi05JcnNz\nU4cOHbLdGO2f4uPjVa5cOXPRmaVXr176888/s62ku/Hv28eOHdPx48cVEhJiMTPV2dlZTZs2Nd9P\n48iRI0pOTlZQUJDF/j169Lj1hwPcJWZ2wiYsX75cPXr0ULFixawdBfeJvb29FixYoNDQULVr107O\nzs7WjgQAAGxQtWrV1L9/f82bN8+8bdCgQXrjjTf0r3/9S2PGjFGpUqX0888/67333tPs2bPl5uam\nGjVqaNWqVWrcuLGSk5M1evTobDOx7kalSpX0999/a8eOHXrkkUfk7Ox83/8/yMnJSYMHD9bzzz+v\nBQsWqFmzZurcubMmTZqkihUr3tcsKLzuZEblvn37FBcXd1c/IChSpIj5hkH5qW7duqpWrdotx/Tp\n00eLFy+Wl5eXgoODcxyTNav8xm2nTp266XEvXLggb2/vbNvLlCljfv2fbhybdXmNsLCwHFdZVqhQ\nQZLMP+i5MWNOmYG8wMxO2IRJkybptddes3YM3GcBAQFq3LixZs6cae0oAADAhk2aNEn29v+bJ1K2\nbFnt3btXdnZ2euqpp1SnTh0NGjRITk5OcnJykiS9+eabunLlih599FH16NFDL7zwgipVqnTPWR57\n7DH9+9//Vs+ePVWqVKlsS0rvJxcXF40dO1bHjh2Tt7e3GjZsqCFDhtx2aTFwv5QrV052dndXe9jZ\n2alcuXJ5nCj3rl69qhdeeEF169bVpUuXbrrs+8yZMzluu9V7KFmyZI7f16xtJUuWtNh+4+XDPDw8\nJEnTp0/PNjt1//792rx5s6T/laQ3ZswpM5AXmNkJ4IE2a9YsPfLIIwoNDVXlypWtHQcAADzgYmNj\ns23z8vJSUlKSxbbq1atr3bp1Nz1O/fr19cUXX1hs6927t8XzG+/07OnpmW1brVq1sm1btGiRFi1a\ndNNz32/u7u6aMmWKhgwZounTp6tOnToaMGCARo0apYceesja8VCIlS9fXi4uLrp48WKu93V1dVX5\n8uXzIVXuDB06VKdOndLXX3+tLVu2aNiwYXrqqacUGBhoMW7fvn06ceKEeSl7UlKStm7dqg4dOtz0\n2C1atNDatWu1d+9ePf744+btq1evlpeXl2rXrn3LbDVr1lSlSpX03Xff3fLam76+vnJx+T/27juu\nyvr///iDPQQnOREUEUEQRc2tKeZIQ81EcKSoqWWSI5w5cJWllaXWxz7uMkHLbSqGkzRz4EqN7Kup\nOHOU4GCd3x995BeZ5QAu4Dzvt9v541znGs/rCDeOr/N6v9+FWLZsGYGBgZnbo6Ki/vH8Io9LxU4R\nydfKly/PkCFDGDp0KCtXrjQ6joiIiIjZKlmyJB988AFDhgxh0qRJeHl5MWTIEF5//XWcnJz+9fh7\nK1CLZBcLCwsaNmxITEzMIy1UZGNjQ4MGDXJlIdSDBw/y66+/3re9du3arF69mrlz5/LZZ5/h4eHB\n66+/TkxMDD179uTw4cOULFkyc/9SpUrRsmVLIiMjsbOz45133iE5OTnL4mp/FRYWxocffkjHjh2Z\nMmUKrq6uLFmyhM2bNzNnzpwsixP9HQsLC2bPnk379u1JSUmhc+fOuLi4cOnSJXbt2oWbmxtDhw6l\naNGiDBkyhClTpuDs7EzLli3Zu3cv8+bNe/w3TuQfqNgpIvneG2+8gZ+fHzExMbRs2dLoOCIiIiJm\nzc3Njf/+978MGzaM8ePHU7lyZU6dOoWdnd3fFo8uXrzI0qVLiY+Pp0KFCowdOzbLivQiTyIgIIAj\nR46QmJj4UHN3WllZUaZMGQICAnIhHQQHB//t9jNnztC3b1+6detG9+7dM7cvWLAAf39/wsLCWL9+\nfebv1DPPPEPTpk0ZPXo0586do2rVqmzYsAEvL68HXrtQoUJs376d4cOHM3LkSG7evEmVKlX47LPP\nslzzn7Rp04YdO3YwZcoUXn75ZW7fvk3p0qWpV68eISEhmftFRkZiMpmYO3cus2bNom7duqxduxZf\nX9+Huo7Io7Aw/XVMhIhIPrR27VqGDRvG4cOHs2XyfxERERHJHmfPnsXV1fVvC50ZGRl06tSJ/fv3\nExISwq5du0hISGD27NkEBwdjMplypbtO8rbjx4/j4+Pz2MenpKSwZMkSLly48I8dnjY2NpQpU4Zu\n3brlq/9TVKhQgUaNGvH5558bHUXykSf9vcrLNEZAzEJYWBjPP//8E5/Hz8+PyMjIJw8k2e7555/H\nw8ODjz76yOgoIiIiIvIn5cuXf2DB8vz58xw7dowxY8bw7rvvEhcXxxtvvMGsWbO4deuWCp2SLWxt\nbVxlqfkAACAASURBVOnRowctW7akaNGi2NjYZA7RtrKywsbGhmLFitGyZUt69OiRrwqdInI/DWOX\nPGHbtm00a9bsga83bdqUrVu3Pvb5P/zww/smdpeCxcLCghkzZtCgQQO6deuWueKfiIiIiORdZcqU\noXbt2hQtWjRzm5ubGz///DOHDh2ifv36pKWlsWjRIvr06WNgUsnvrKysqF27NrVq1eLcuXMkJiaS\nkpKCra0t5cqVe2D3sYjkP+rslDyhQYMGXLhw4b7HnDlzsLCwYMCAAY913rS0NEwmE0WKFMnyAUoK\nJi8vL15++WVGjBhhdBQRERER+Rd79uyhe/fuHD9+nJCQEF5//XXi4uKYPXs2Hh4eFC9eHIAjR47w\nyiuv4O7urmG68sQsLCwoX7489erVo0mTJtSrV+8fu4/zg9OnT+t3Q+RPVOyUPMHW1pbSpUtneVy/\nfp2IiAhGjx6dOWlzYmIioaGhFCtWjGLFitG2bVt++umnzPNERkbi5+fHwoULqVSpEnZ2diQnJ983\njL1p06YMGDCA0aNH4+LiQsmSJYmIiCAjIyNzn8uXL9O+fXscHBxwd3dn/vz5ufeGyGMbM2YMW7Zs\n4dtvvzU6ioiIiIg8wO3btwkMDKRs2bLMmDGD1atXs2nTJiIiImjevDlvv/02VapUAf5YYCY1NZWI\niAiGDBmCp6cnGzduNPgOREQkr1KxU/KkGzdu0L59e5o2bcqkSZMAuHXrFs2aNcPe3p7t27eze/du\nypQpw7PPPsutW7cyjz116hRffPEFy5cv59ChQ9jb2//tNZYsWYK1tTW7du1i1qxZzJgxg+jo6MzX\nw8LCOHnyJN988w2rVq1i8eLFnD59OkfvW56ck5MT7777LgMHDnyo1RZFREREJPctXboUPz8/Ro8e\nTePGjQkKCmL27NmcP3+eV155hYYNGwJgMpkyH+Hh4SQmJvL888/Tpk0bhgwZkuX/ASIiIqBip+RB\nGRkZdO3aFWtra5YsWZI5nCAqKgqTycSCBQvw9/fH29ubOXPmkJSUxLp16zKPT0lJ4bPPPqNmzZr4\n+flhbf33U9NWrVqViRMn4uXlRefOnWnWrBmxsbEAJCQksGHDBj799FMaNmxIQEAAixYt4vbt2zn/\nBsgT69KlC87Ozvz3v/81OoqIiIiI/I3U1FQuXLjA77//nrmtXLlyFC1alP3792dus7CwwMLCInP+\n/djYWE6ePEmVKlVo1qwZjo6OuZ5dRETyNhU7Jc8ZPXo0u3fvZvXq1Tg7O2du379/P6dOncLZ2Rkn\nJyecnJwoUqQI169f5+eff87cz9XVlVKlSv3rdfz9/bM8L1u2LJcvXwbg+PHjWFpaUqdOnczX3d3d\nKVu27JPenuQCCwsLZs6cybhx47h69arRcURERETkL5555hlKly7NtGnTSExM5OjRoyxdupRz585R\nuXJl4I+uznvTTKWnpxMXF0ePHj347bff+Oqrr2jXrp2RtyAiInmUVmOXPCUqKorp06ezfv36zA85\n92RkZFCjRg2ioqLuO+7e5OUAhQoVeqhr2djYZHluYWGRZc7Oe9skf6pevTrBwcGMHTuWjz/+2Og4\nIiIiIvIn3t7eLFiwgFdffZXatWtTokQJ7ty5w/Dhw6lSpQoZGRlYWlpmfh7/4IMPmDVrFk2aNOGD\nDz7Azc0Nk8mkz+siInIfFTslzzh48CB9+vRh6tSptGrV6r7Xa9asydKlS3FxccnxldW9vb3JyMjg\n+++/p0GDBgCcOXOG8+fP5+h1JXtNmjQJX19fJk2aRIkSJYyOIyIiIiJ/4uvry44dO4iPj+fs2bPU\nqlWLkiVLApCWloatrS3Xrl1jwYIFTJw4kbCwMKZNm4aDgwOgxgR5PCaTid3ndvN94vfcvHsTZztn\n6pSrQ33X+vqZEikgVOyUPOHXX3+lQ4cONG3alO7du3Px4sX79unWrRvTp0+nffv2TJw4ETc3N86e\nPcvq1at55ZVX7usEfRJVqlShdevW9O/fn08//RQHBweGDh2a+cFK8ofixYtz9uxZrKysjI4iIiIi\nIg8QEBBAQEAAQOZIK1tbWwAGDRrEhg0bGDt2LOHh4Tg4OGR2fYo8itT0VObFz+Pdb9/lcvJlUjNS\nSU1PxcbKBhtLG0oWKsnwhsPpE9AHGyubfz+hiORZ+gshecL69ev55Zdf+PrrrylTpszfPhwdHdmx\nYwceHh4EBwfj7e1Nz549uX79OsWKFcv2TAsXLqRixYoEBgYSFBRE165dqVChQrZfR3KWlZWVvqEV\nERERySfuFTF/+eUXmjRpwqpVq5gwYQIjRozIXIzo7wqd9xYwEvk7SSlJBC4O5I2YNzh14xTJqcmk\npKdgwkRKegrJqcmcunGKN2LeoPni5iSlJOVonoULF2YuvvXXxzfffAPAN998g4WFBXFxcTmWo3v3\n7nh6ev7rfhcvXiQ8PBwvLy8cHBxwcXGhVq1aDBo0iNTU1Ee65smTJ7GwsODzzz9/5LxbtmwhMjIy\nW88pBZOFSX8VRES4e/cudnZ2RscQERERkf9ZunQpbm5uNGzYEOCBHZ0mk4n33nuP0qVL06VLF43q\nKYCOHz+Oj4/PYx2bmp5K4OJA9ibu5W763X/d387Kjjrl6hDbIzbHOjwXLlxIr169WL58Oa6urlle\nq1q1KoULF+b333/n2LFj+Pr6Zlm4Nzt1796d7777jpMnTz5wnxs3buDv74+trS0RERFUqVKFa9eu\nER8fz5IlSzhy5AhOTk4Pfc2TJ09SuXJlPvvsM7p37/5IeceMGcOUKVPu+3Lj7t27xMfH4+npiYuL\nyyOd05w9ye9VXqdh7CJi1jIyMti6dSsHDhygR48elCpVyuhIIiIiIgJ06dIly/MHDV23sLCgdu3a\nvPnmm0ydOpXJkyfTvn17je4RAObFz+PAhQMPVegEuJt+l/0X9jM/fj79a/fP0Ww1atR4YGdl4cKF\nqVevXo5e/2EsW7aMs2fPcvToUXx9fTO3v/jii0yaNClP/J7Z2dnlifdK8g4NYxcRs2ZpacmtW7fY\ntm0bgwYNMjqOiIiIiDyGpk2bEhcXxzvvvENkZCR169Zl8+bNGt5u5kwmE+9++y63Um890nG3Um/x\n7rfvGvrz83fD2Bs1akTTpk2JiYkhICAAR0dH/Pz8WLNmTZZjExIS6N69OxUqVMDBwYFKlSrx2muv\ncePGjUfOce3aNQBKly5932t/LXSmpKQwevRo3N3dsbW1pUKFCowbN+5fh7o3atSIZ5999r7trq6u\nvPzyy8D/7+q8d10LCwusrf/o33vQMPZFixbh7++PnZ0dTz31FD179uTSpUv3XSMsLIwlS5bg7e1N\noUKFePrpp9m1a9c/Zpa8TcVOETFbKSkpAAQFBfHiiy+ybNkyNm/ebHAqEREREXkcFhYWtG3blgMH\nDhAREcHAgQMJDAxU0cKM7T63m8vJlx/r2EvJl9h9bnc2J8oqPT2dtLS0zEd6evq/HpOQkMDQoUOJ\niIhgxYoVlCpVihdffJFTp05l7pOYmIi7uzsffvghmzZt4s0332TTpk08//zzj5yxTp06AHTu3JmY\nmBiSk5MfuG/37t2ZNm0avXr1Yt26dfTo0YO33nqLPn36PPJ1/+qVV14hLCwMgN27d7N7926+/fbb\nB+7/8ccfExYWRrVq1Vi1ahVTpkxh/fr1NG3alFu3sha/t27dykcffcSUKVOIiooiJSWF559/nt9/\n//2Jc4sxNIxdRMxOWloa1tbW2NrakpaWxogRI5g3bx4NGzZ85Am2RURERCRvsbS0pHPnznTs2JHF\nixfTpUsX/P39mTx5MtWrVzc6nmSTwRsHc/DiwX/c59zv5x65q/OeW6m36LGyB66FXR+4T43SNZjR\nesZjnR/A29s7y/OGDRv+64JEv/76K3FxcXh4eABQvXp1ypYty/Llyxk+fDgAzZo1o1mzZpnHNGjQ\nAA8PD5o1a8aRI0eoVq3aQ2cMDAxk3LhxvPXWW2zZsgUrKysCAgIICgpi8ODBFC5cGICDBw+yfPly\nJk2axJgxYwBo2bIllpaWTJgwgZEjR1K1atWHvu5fubq6Uq5cOYB/HbKelpbG+PHjad68OUuWLMnc\n7uXlRbNmzVi4cCEDBgzI3J6UlERMTAxFihQB4KmnnqJ+/fps3LiRzp07P3ZmMY46O0XELPz888/8\n9NNPAJnDHRYtWoS7uzurVq1i7NixzJ8/n9atWxsZU0RERESyibW1Nb179yYhIYEWLVrQqlUrunTp\nQkJCgtHRJJekZ6Rj4vGGopswkZ7x752WT2LlypXs3bs38zFv3rx/Pcbb2zuz0AlQpkwZXFxcOHPm\nTOa2u3fvMnnyZLy9vXFwcMDGxiaz+Pnjjz8+cs4JEybwyy+/8N///pfu3btz5coVxo8fj5+fH1eu\nXAFgx44dAPctOnTv+fbt2x/5uo/r2LFj/Prrr/dladq0KeXKlbsvS8OGDTMLnUBmMfjP76nkL+rs\nFBGzsGTJEpYuXcrx48eJj48nPDyco0eP0rVrV3r27En16tWxt7c3OqaIiIiIZDM7Oztef/11evfu\nzUcffUTDhg3p0KED48aNo3z58kbHk8f0MB2VM76bwYhvRpCSnvLI57ezsmNwvcEMqpdz8/r7+fk9\ncIGiBylevPh92+zs7Lhz507m8+HDh/PJJ58QGRlJvXr1cHZ25pdffiE4ODjLfo+ibNmyvPzyy5lz\naH744YcMHjyY9957j6lTp2bO7VmmTJksx92b6/Pe67nhQVnu5flrlr++p3Z2dgCP/V6J8dTZKXme\nyWTit99+MzqG5HOjRo3i/Pnz1KpVi2eeeQYnJycWL17M5MmTqVu3bpZC540bN3L1m0cRERERyXlO\nTk6MHj2ahIQESpYsSY0aNRg8eDCXLz/enI6S99UpVwcbS5vHOtba0pqnyz2dzYlyR1RUFL1792b0\n6NEEBgby9NNPZ+lczA6DBg3C2dmZY8eOAf+/YHjx4sUs+917/ndF2nvs7e0z11O4x2Qycf369cfK\n9qAs97b9UxYpGFTslDzPwsIicx4QkcdlY2PDxx9/THx8PCNGjGDOnDm0a9fuvj90GzduZMiQIXTs\n2JHY2FiD0oqIiIhITilWrBhTpkzh2LFjmEwmfHx8GDNmzGOtVC15W33X+pQsVPKxji3lVIr6rvWz\nOVHuuH37NjY2WYu8CxYseKxzXbp06W9XpT937hxJSUmZ3ZPPPPMM8Eeh9c/uzZl57/W/4+7uzo8/\n/khaWlrmtq1bt963kNC9jsvbt2//Y+aqVavi4uJyX5bt27eTmJhI06ZN//F4yf9U7JR8wcLCwugI\nUgB069aNqlWrkpCQgLu7O0DmH+6LFy8yceJE3nzzTa5evYqfnx89evQwMq6IiIiI5KBSpUrx4Ycf\ncuDAAS5cuEDlypWZOnXqP642LfmLhYUFwxsOx9HG8ZGOc7RxZHiD4fn2/6GtWrVi/vz5fPLJJ8TE\nxNC3b1++//77xzrXggUL8PHxYeLEiWzYsIFt27bx6aefEhgYiL29feZCP9WrVyc4OJixY8cyadIk\nNm/eTGRkJJMnT+all176x8WJQkNDuXz5Mr179+abb75hzpw5DBw4EGdn5yz73TvH9OnT2bNnD/v3\n7//b81lbWzNhwgQ2btxIz5492bhxI3PnziU4OBhvb2969uz5WO+F5B8qdoqIWZk/fz6HDx8mMTER\n+P+F9IyMDNLT00lISGDKlCls374dJycnIiMjDUwrIiIiIjnN3d2defPmERcXR3x8PJ6ensycOZO7\nd+8aHU2yQZ+APtQsUxM7K7uH2t/Oyo5aZWrRO6B3DifLOR9//DFt27Zl1KhRhISEcOfOnSyrkj+K\noKAgWrduzYoVK+jWrRstWrQgMjKSGjVqsGvXLqpXr5657+eff05ERARz586lTZs2LFy4kFGjRv3r\nwkstWrRg9uzZ7Nq1i6CgID777DOWLFly3wjP9u3b079/fz766CPq169P3bp1H3jOAQMGsHDhQuLj\n42nfvj0jR47kueeeY9u2bTg6PlrxW/IfC9Pf9SOLiBRgP//8MyVLliQ+Pp4mTZpkbr9y5QohISE0\naNCAyZMns3btWjp27Mjly5cpVqyYgYlFREREJLfEx8czduxYjh49yvjx43nppZewttbavkY6fvw4\nPj4+j318UkoSbZa0Yf+F/dxKvfXA/RxtHKlVphZfd/saJ1unx76eSH7wpL9XeZk6O0XE7Hh4eDB4\n8GDmz59PWlpa5lD2p556in79+rFp0yauXLlCUFAQ4eHhDxweISIiIiIFT0BAAOvWrWPJkiUsXLgQ\nPz8/li9fTkZGhtHR5DE52ToR2yOW91u+j0dRDwrZFMLOyg4LLLCzsqOQTSE8innwfsv3ie0Rq0Kn\nSD6nzk7JE+79GObXOVEk//nkk0+YOXMmBw4cwN7envT0dKysrPjoo49YvHgxO3fuxMHBAZPJpJ9L\nERERETNlMpnYvHkzo0ePJiMjgylTptC6dWt9Psxl2dmBZjKZ2H1uN3sT93Iz5SbOts7UKVeHeq71\n9O8qZqUgd3aq2Cl50r0CkwpNkpM8PT3p0aMHAwcOpHjx4iQmJhIUFETx4sXZuHGjhiuJiIiICPDH\n/09WrlzJ2LFjKV68OFOmTMkyHZLkrIJclBExSkH+vdIwdjHc22+/zYgRI7Jsu1fgVKFTctLChQv5\n8ssvadu2LZ07d6ZBgwbY2dkxe/bsLIXO9PR0du7cSUJCgoFpRURERMQoFhYWdOzYkcOHD9OvXz/C\nwsJo3bq1pjsSEcmDVOwUw82aNQtPT8/M5+vXr+eTTz7hgw8+YOvWraSlpRmYTgqyRo0aMXfuXOrX\nr8+VK1fo1asX77//Pl5eXvy56f3UqVMsWbKEkSNHkpKSYmBiERERETGSlZUVL730EidOnKB9+/a0\na9eOTp06cezYMaOjiYjI/2gYuxhq9+7dNG/enGvXrmFtbU1ERASLFy/GwcEBFxcXrK2tGT9+PO3a\ntTM6qpiBjIwMLC3//jugbdu2MXToUGrXrs2nn36ay8lEREREJC+6desWs2fPZtq0abRp04bx48dT\nsWJFo2MVOMePH8fb21sj/0Syiclk4sSJExrGLpITpk2bRmhoKPb29kRHR7N161Zmz55NYmIiS5Ys\noXLlynTr1o2LFy8aHVUKsHsra94rdP71O6D09HQuXrzIqVOnWLt2Lb///nuuZxQRERGRvMfR0ZFh\nw4bx008/4e7uTu3atXnttde4cOGC0dEKFBsbG27fvm10DJEC4/bt29jY2BgdI8eo2CmG2rVrF4cO\nHWLNmjXMnDmTHj160KVLFwD8/PyYOnUqFStW5MCBAwYnlYLsXpHz0qVLQNa5Yvfv309QUBDdunUj\nJCSEffv2UbhwYUNyioiIiEjeVKRIESZMmMCJEydwcHDAz8+PESNGcPXqVaOjFQglS5YkMTGRW7du\n3deYICIPz2QycevWLRITEylZsqTRcXKMlhoWwyQlJTF06FAOHjzI8OHDuXr1KjVq1Mh8PT09ndKl\nS2Npaal5OyXHnT59mjfeeIOpU6dSuXJlEhMTef/995k9eza1atUiLi6O+vXrGx1TRERERPKwp556\niunTpzN48GAmT55MlSpVGDRoEIMHD8bZ2dnoePnWvWaD8+fPk5qaanAakfzNxsaGUqVKFegmHs3Z\nKYY5duwYVatW5dy5c+zdu5fTp0/TokUL/Pz8MvfZsWMHbdq0ISkpycCkYi7q1KmDi4sLnTp1IjIy\nktTUVCZPnkyfPn2MjiYiIiIi+dDJkyeJjIxk8+bNjBgxgldffRUHBwejY4mIFGgqdoohzp49y9NP\nP83MmTMJDg4GyPyG7t68EQcPHiQyMpKiRYuycOFCo6KKGTl58iReXl4ADB06lDFjxlC0aFGDU4mI\niIhIfnf06FHGjh3Lvn37GDt2LL169SrQ8+WJiBhJc3aKIaZNm8bly5cJCwtj8uTJ3Lx5Exsbmywr\nYZ84cQILCwtGjRplYFIxJ56enowePRo3NzfeeustFTpFREREJFv4+fmxcuVKvvzyS5YvX46Pjw9f\nfPFF5kKZIiKSfdTZKYZwdnZmzZo17Nu3j5kzZzJy5EgGDBhw334ZGRlZCqAiucHa2pr//Oc/vPzy\ny0ZHEREREZECaMuWLbz55pskJyczefJkgoKCsiySKSIij09VJMl1K1asoFChQjRr1ow+ffrQuXNn\nwsPD6d+/P5cvXwYgLS2N9PR0FTrFENu2baNixYpa6VFEREREckRgYCC7du3irbfeYuzYsdSvX58t\nW7YYHUtEpEBQZ6fkukaNGtGoUSOmTp2auW3OnDm8/fbbBAcHM23aNAPTiYiIiIiI5J6MjAyWLVvG\n2LFjcXNzY8qUKdSrV8/oWCIi+ZaKnZKrfv/9d4oVK8ZPP/2Eh4cH6enpWFlZkZaWxqeffkpERATN\nmzdn5syZVKhQwei4IiIiIiIiuSI1NZVFixYxYcIEatasyaRJk/D39zc6lohIvqMxwpKrChcuzJUr\nV/Dw8ADAysoK+GOOxAEDBrB48WJ++OEHBg0axK1bt4yMKpKFyWQiPT3d6BgiIiIiUkDZ2Njw8ssv\n89NPP9GsWTNatmxJt27dOHnypNHRRETyFRU7JdcVL178ga916tSJ9957jytXruDo6JiLqUT+WXJy\nMuXLl+f8+fNGRxERERGRAsze3p7Bgwdz8uRJqlatSr169di2bZvmkxcReUgaxi550vXr1ylWrJjR\nMUSyGD16NGfOnOHzzz83OoqIiIiImIlr167h5OSEra2t0VFERPIFFTvFMCaTCQsLC6NjiDy0pKQk\nfHx8WLp0KY0aNTI6joiIiIiIiIj8hYaxi2FOnz5NWlqa0TFEHpqTkxPTpk0jPDxc83eKiIiIiIiI\n5EEqdophunTpwsaNG42OIfJIQkJCKFKkCJ9++qnRUURERERERETkLzSMXQzxww8/0LJlS3755Res\nra2NjiPySA4fPsyzzz7L8ePHKVGihNFxREREREREROR/1Nkphpg/fz49e/ZUoVPyJX9/f0JCQhgz\nZozRUURERERERETkT9TZKbkuJSUFV1dXdu3ahaenp9FxRB7L9evX8fHxYcOGDQQEBBgdR0RERERE\nRERQZ6cYYO3atfj4+KjQKflasWLFmDRpEuHh4eg7IxEREREREZG8QcVOyXXz58+nT58+RscQeWK9\ne/fmzp07LFmyxOgoIiIiIiIiIoKGsUsuS0xMpFq1apw7dw5HR0ej44g8se+++44XX3yREydO4Ozs\nbHQcEREREREREbOmzk7JVQsXLiQ4OFiFTikw6tWrR4sWLZg0aZLRUURERERERETMnjo7JddkZGRQ\nuXJlli5dSp06dYyOI5JtLl68iJ+fH99++y1VqlQxOo6IiIiImLH09HTS0tKws7MzOoqIiCHU2Sm5\nZseOHTg6OvL0008bHUUkW5UuXZrRo0czaNAgLVYkIiIiIoZr06YNO3bsMDqGiIghVOyUXDNv3jz6\n9OmDhYWF0VFEsl14eDhnzpxhzZo1RkcRERERETNmZWVFjx49GDNmjL6IFxGzpGHskitu3LhBhQoV\nOHnyJC4uLkbHEckR33zzDf369eOHH37AwcHB6DgiIiIiYqbS0tLw9fVl1qxZtGjRwug4IiK5Sp2d\nkiuWLl1KixYtVOiUAu3ZZ58lICCA6dOnGx1FRERERMyYtbU1EyZMYOzYseruFBGzo2Kn5Ir58+fT\np08fo2OI5Lj33nuPGTNm8MsvvxgdRURERETMWOfOnUlOTmb9+vVGRxERyVUqdkqOO3z4MBcvXtTw\nCTELFSpU4PXXXyciIsLoKCIiIiJixiwtLZk4cSLjxo0jIyPD6DgiIrlGxU7JcfPmzSMsLAwrKyuj\no4jkiuHDh7Nv3z5iY2ONjiIiIiIiZqxDhw5YWFiwcuVKo6OIiOQaLVAkOeru3bu4urqyZ88ePDw8\njI4jkmtWrlzJmDFjOHjwIDY2NkbHERERERERETEL6uyUHLV69Wr8/f1V6BSz06FDB8qVK8esWbOM\njiIiIiIiIiJiNtTZKTmqVatW9OzZk65duxodRSTXnThxgkaNGvHDDz9QqlQpo+OIiIiIiIiIFHgq\ndkqO+eWXX6hZsybnzp3DwcHB6DgihoiIiODq1assWLDA6CgiIiIiIiIiBZ6GsUuOWbhwIaGhoSp0\nilkbN24cmzZt4rvvvjM6ioiIiIiIiEiBp2Kn5IiMjAwWLFhAnz59jI4iYqjChQszdepUwsPDycjI\nMDqOiIiIiJipyMhI/Pz8jI4hIpLjVOyUHLFlyxaKFStGzZo1jY4iYrju3btjY2PD/PnzjY4iIiIi\nIvlIWFgYzz//fLacKyIigu3bt2fLuURE8jIVOyVHzJs3j969exsdQyRPsLS0ZNasWYwZM4br168b\nHUdEREREzJCTkxMlSpQwOoaISI5TsVOy3bVr19iwYQPdunUzOopInlGzZk3at2/P+PHjjY4iIiIi\nIvnQ3r17admyJS4uLhQuXJhGjRqxe/fuLPvMmTMHLy8v7O3tcXFxoVWrVqSlpQEaxi4i5kPFTsl2\nX3zxBc899xzFixc3OopInjJlyhSioqI4cuSI0VFEREREJJ+5efMmL730Ejt37uT777+nRo0atGnT\nhqtXrwKwb98+XnvtNcaPH8+PP/5IbGwsrVu3Nji1iEjuszY6gBQ88+bNY9q0aUbHEMlzXFxcGD9+\nPOHh4WzduhULCwujI4mIiIhIPhEYGJjl+cyZM/nqq6/YsGED3bt358yZMxQqVIh27drh7OyMu7s7\n1atXNyitiIhx1Nkp2erAgQNcv379vj/EIvKH/v37c/36dZYtW2Z0FBERERHJRy5fvkz//v3x8vKi\nSJEiODs7c/nyZc6cOQNAixYtcHd3p2LFinTr1o1FixZx8+ZNg1OLiOQ+FTslW926dYthw4ZhewDK\nkwAAIABJREFUaakfLZG/Y21tzcyZM4mIiCA5OdnoOCIiIiKST/Ts2ZO9e/fywQcfsGvXLg4ePIir\nqyspKSkAODs7c+DAAZYtW4abmxtvv/023t7enD9/3uDkIiK5SxUpyVZ169bl1VdfNTqGSJ7WpEkT\nGjduzFtvvWV0FBERERHJJ+Li4ggPD6dt27b4+vri7OzMhQsXsuxjbW1NYGAgb7/9NocPHyY5OZl1\n69YZlFhExBias1OylY2NjdERRPKFadOm4e/vT69evfD09DQ6joiIiIjkcV5eXnz++efUrVuX5ORk\nhg8fjq2tbebr69at4+eff6ZJkyYUL16crVu3cvPmTXx8fP713FeuXOGpp57KyfgiIrlGnZ0iIgYo\nV64cw4YNY8iQIUZHEREREZF8YP78+SQlJVGrVi1CQ0Pp3bs3FSpUyHy9aNGirFq1imeffRZvb2+m\nT5/O3Llzady48b+e+913383B5CIiucvCZDKZjA4hImKO7t69S7Vq1ZgxYwZt2rQxOo6IiIiImKni\nxYvzww8/UKZMGaOjiIg8MXV2iogYxM7OjhkzZjBo0CDu3r1rdBwRERERMVNhYWG8/fbbRscQEckW\n6uwUETFYUFAQDRs2ZOTIkUZHEREREREzdPnyZby9vTl48CBubm5GxxEReSIqdoqIGOzkyZPUrVuX\nw4cPU65cOaPjiIiIiIgZGjVqFNeuXWPOnDlGRxEReSIqdoqI5AFvvvkmp06d4osvvjA6ioiIiIiY\noWvXruHl5cX333+Ph4eH0XFERB6bip0iInlAcnIyPj4+fP755zRp0sToOCIiIiJihiIjIzl9+jQL\nFy40OoqIyGNTsVNEJI9YtmwZU6ZMYf/+/VhbWxsdR0RERETMzG+//Yanpyc7d+7E29vb6DgiIo9F\nq7FLjrt9+zaxsbGcOnXK6CgieVpwcDAlSpTQPEkiIiIiYogiRYowdOhQJkyYYHQUEZHHps5OyXHp\n6ekMGzaMzz77jIoVKxIaGkpwcDDly5c3OppInnP06FECAwM5duwYLi4uRscRERERETOTlJSEp6cn\nMTEx+Pv7Gx1HROSRqdgpuSYtLY0tW7YQFRXFqlWrqFq1KiEhIQQHB1O6dGmj44nkGYMGDeLOnTvq\n8BQRERERQ7z//vvs3LmTlStXGh1FROSRqdgphkhJSSEmJobo6GjWrl1LzZo1CQkJ4cUXX1Q3m5i9\nGzdu4O3tzfr166lVq5bRcURERETEzNy+fRtPT0/WrFmjz6Miku+o2CmGu337Nhs2bCA6OpqNGzdS\nv359QkJCeOGFFyhatKjR8UQMMW/ePObNm0dcXByWlppeWURERERy1+zZs1m/fj1ff/210VFERB6J\nip2SpyQlJbFu3Tqio6PZsmULzzzzDCEhIbRr1w5nZ2ej44nkmoyMDOrVq8fAgQPp0aOH0XFERERE\nxMzcvXsXLy8vli5dSoMGDYyOIyLy0FTslCd2+/ZtrKyssLW1zdbz/vbbb6xevZro6Gji4uJo0aIF\nISEhtG3bFkdHx2y9lkhetGfPHl544QVOnDhB4cKFjY4jIiIiImZm7ty5LF26lNjYWKOjiIg8NBU7\n5Yl99NFH2Nvb069fvxy7xrVr11i5ciVRUVHs3buX5557jtDQUFq3bo2dnV2OXVfEaL1796Z48eJM\nnz7d6CgiIiIiYmZSU1Px8fHhv//9L82aNTM6jojIQ9FEcPLErl27xvnz53P0GsWLF6dPnz5s3ryZ\nH3/8kcaNG/P+++9TunRpevbsyYYNG0hNTc3RDCJGePvtt1m0aBHHjx83OoqIiIiImBkbGxvGjx/P\n2LFjUZ+UiOQXKnbKE7O3t+f27du5dr1SpUoxYMAAtm/fztGjR6lZsyYTJ06kTJky9O3bl9jYWNLS\n0nItj0hOKlWqFG+++SaDBg3SB0wRERERyXVdu3bl6tWrxMTEGB1FROShqNgpT8ze3p47d+4Ycu1y\n5coxaNAgdu/ezf79+/Hy8mLEiBGUK1eO1157jR07dpCRkWFINpHs8tprr5GYmMiqVauMjiIiIiIi\nZsbKyooJEyYwZswYffkuIvmCip3yxBwcHAwrdv6Zu7s7w4YNY9++fXz77beULVuWgQMH4ubmxpAh\nQ/juu+/0x1nyJRsbG2bOnMnQoUNztYtaRERERASgU6dOpKSksHbtWqOjiIj8KxU75Ynl9jD2h+Hp\n6cmbb77J4cOHiYmJoXDhwoSFheHh4cGIESM4cOCACp+SrwQGBlK7dm3effddo6OIiIiIiJmxtLRk\n4sSJjB07ViPnRCTP02rsYjZMJhOHDh0iOjqa6OhorKysCA0NJSQkBD8/P6PjifyrM2fOEBAQwP79\n+6lQoYLRcURERETEjJhMJurUqcPw4cMJDg42Oo6IyAOp2ClmyWQysW/fPqKioli2bBmFCxfOLHx6\neXkZHU/kgSZNmsTBgwf56quvjI4iIiIiImZm06ZNDBkyhCNHjmBlZWV0HBGRv6Vip5i9jIwMdu/e\nTXR0NMuXL6d06dKEhobSuXNnKlasaHQ8kSzu3LlD1apV+fTTT3n22WeNjiMiIiIiZsRkMtG4cWNe\neeUVunfvbnQcEZG/pWKnyJ+kp6ezY8cOoqOj+eqrr/Dw8CAkJITOnTvj6upqdDwRAFavXs2oUaM4\ndOgQNjY2RscRERERETOybds2Xn75ZY4fP67PoiKSJ6nYKfIAqampbNmyhejoaFatWoWvry8hISF0\n6tSJ0qVLGx1PzJjJZOK5556jZcuWDB061Og4IiIiImJmmjdvTteuXenTp4/RUURE7qNipxji+eef\nx8XFhYULFxod5aHcvXuXmJgYoqOjWbduHbVq1SIkJISOHTvi4uJidDwxQz/++CMNGzbk6NGjKr6L\niIiISK7atWsXXbp0ISEhATs7O6PjiIhkYWl0AMlbDhw4gJWVFQ0bNjQ6Sp5iZ2dHUFAQn3/+ORcu\nXGDAgAF88803VKpUieeee46FCxdy48YNo2OKGalSpQq9e/dm5MiRRkcRERERETPToEEDfH19mTdv\nntFRRETuo85OyWLAgAFYWVmxePFivvvuO3x8fB64b2pq6mPP0ZLfOjsfJCkpiXXr1hEVFcWWLVto\n1qwZISEhBAUF4ezsbHQ8KeBu3ryJt7c3X375JfXr1zc6joiIiIiYkf3799OuXTtOnjyJg4OD0XFE\nRDKps1My3b59my+++IJ+/frRqVOnLN/SnT59GgsLC5YuXUpgYCAODg7MmTOHq1ev0qVLF1xdXXFw\ncMDX15cFCxZkOe+tW7cICwvDycmJUqVK8dZbb+X2reUYJycnQkNDWbVqFWfPnuXFF1/k888/x9XV\nleDgYL788ktu3bpldEwpoJydnXnnnXcIDw8nPT3d6DgiIiIiYkZq1apFnTp1+M9//mN0FBGRLFTs\nlExffvkl7u7uVKtWjZdeeonFixeTmpqaZZ9Ro0YxYMAAjh07RocOHbhz5w41a9Zk3bp1/PDDDwwa\nNIj+/fsTGxubeUxERASbN2/mq6++IjY2lvj4eHbs2JHbt5fjihQpQo8ePfj666/5v//7P1q1asV/\n/vMfypYtS9euXVmzZg137941OqYUMN26dcPe3p758+cbHUVEREREzMzEiRN55513SEpKMjqKiEgm\nDWOXTE2bNuX5558nIiICk8lExYoVmT59Op06deL06dOZz994441/PE9oaChOTk7MnTuXpKQkSpQo\nwfz58+nWrRvwx9BvV1dXOnTokO+HsT+MS5cu8dVXXxEdHc2RI0do164doaGhNG/e/LGnARD5s/j4\neJ577jmOHz9OsWLFjI4jIiIiImYkNDSU6tWrM2rUKKOjiIgA6uyU/zl58iRxcXF07doVAAsLC7p1\n63bfhNO1a9fO8jw9PZ0pU6bg7+9PiRIlcHJyYsWKFZw5cwaAn3/+mZSUlCzzCTo5OVGtWrUcvqO8\no1SpUgwYMIDt27dz5MgRatSowYQJEyhbtiz9+vUjNjZWQ5DliQQEBPDCCy8wbtw4o6OIiIiIiJmJ\njIzk/fff57fffjM6iogIoGKn/M/cuXNJT0/Hzc0Na2trrK2tmTp1KjExMZw9ezZzv0KFCmU5bvr0\n6bz33nsMGzaM2NhYDh48SIcOHUhJScntW8gXypUrx+DBg9m9ezd79+7F09OT4cOHU65cOQYOHMjO\nnTvJyMgwOqbkQ5MnTyY6OprDhw8bHUVEREREzIi3tzdt2rThgw8+MDqKiAigYqcAaWlpLFq0iLff\nfpuDBw9mPg4dOoS/v/99Cw79WVxcHEFBQbz00kvUqFGDSpUqkZCQkPl6pUqVsLGx4bvvvsvclpyc\nzNGjR3P0nvKDChUqMHz4cPbv38/OnTspXbo0AwYMwM3NjaFDh7Jnzx40y4Q8rBIlSjBhwgTCw8P1\ncyMiIiIiuWrcuHHMmjWLq1evGh1FRETFToH169fz66+/0rdvX/z8/LI8QkNDWbBgwQOLJ15eXsTG\nxhIXF8eJEycYOHAgp06dynzdycmJPn36MGLECDZv3swPP/xA7969NWz7LypXrsyYMWM4cuQImzZt\nwsnJiR49euDh4cHIkSOJj49XAUv+Vb9+/fj999+Jjo42OoqIiIiImJFKlSrRsWNHpk+fbnQUEREt\nUCTQrl077ty5Q0xMzH2v/d///R+VKlVizpw59O/fn71792aZt/P69ev06dOHzZs34+DgQFhYGElJ\nSRw7doxt27YBf3Ryvvrqq6xYsQJHR0fCw8PZs2cPLi4uZrFA0eMymUwcOnSIqKgooqOjsbGxITQ0\nlJCQEHx9fY2OJ3lUXFwcXbp04fjx4zg5ORkdR0RERETMxJkzZwgICOD48eOULFnS6DgiYsZU7BTJ\nB0wmE3v37iU6Opro6GiKFi2aWfisXLmy0fEkj+nevTtubm689dZbRkcRERERETPy1ltvERYWRtmy\nZY2OIiJmTMVOkXwmIyODXbt2ER0dzfLlyylbtiyhoaF07tyZChUqGB1P8oDz58/j7+/Pd999h6en\np9FxRERERMRM3CsvWFhYGJxERMyZip0i+Vh6ejrbt28nOjqaFStWUKlSJUJCQujcuTPlypUzOp4Y\n6N1332XHjh2sW7fO6CgiIiIiIiIiuUbFTpECIjU1ldjYWKKjo1m9ejV+fn6EhITQqVMnSpUqZXQ8\nyWUpKSlUq1aN999/n7Zt2xodR0RERERERCRXqNgpUgDdvXuXTZs2ER0dzfr166lduzYhISF07NiR\nEiVKPPZ5MzIySE1Nxc7OLhvTSk7ZuHEj4eHhHD16VP9mIiIiIiIiYhZU7BQp4G7fvs3XX39NVFQU\nMTExNGzYkJCQEDp06ECRIkUe6VwJCQl8+OGHXLx4kcDAQHr16oWjo2MOJZfs0L59e+rVq8eoUaOM\njiIiIiIiwv79+7G3t8fX19foKCJSQFkaHUAKhrCwMBYuXGh0DPkbDg4OvPjiiyxfvpzExEReeukl\nVq5cSfny5enQoQNLly4lKSnpoc51/fp1ihcvTrly5QgPD2fGjBmkpqbm8B3Ik/jggw+YPn06Z8+e\nNTqKiIiIiJixXbt24ePjQ5MmTWjXrh19+/bl6tWrRscSkQJIxU7JFvb29ty5c8foGPIvnJyc6NKl\nC6tWreLMmTO88MILfPbZZ5QrV47g4GC+++47/qnZu27dukyaNIlWrVrx1FNPUa9ePWxsbHLxDuRR\neXh4MGDAAIYNG2Z0FBERERExU7/99huvvPIKXl5e7Nmzh0mTJnHp0iVef/11o6OJSAFkbXQAKRjs\n7e25ffu20THkERQtWpSePXvSs2dPrl69yooVKyhatOg/HpOSkoKtrS1Lly6latWqVKlS5W/3u3Hj\nBgsWLMDd3Z0XXngBCwuLnLgFeUijRo3Cx8eHbdu20bRpU6PjiIiIiIgZuHXrFra2tlhbW7N//35+\n//13Ro4ciZ+fH35+flSvXp369etz9uxZypcvb3RcESlA1Nkp2UKdnflbiRIl6Nu3L97e3v9YmLS1\ntQX+WPimVatWlCxZEvhj4aKMjAwAvvnmG8aPH88bb7zBq6++yrfffpvzNyD/yNHRkenTp/P666+T\nlpZmdBwRERERKeAuXrzIZ599RkJCAgDu7u6cO3eOgICAzH0KFSqEv78/N27cMCqmiBRQKnZKtnBw\ncFCxs4BLT08HYP369WRkZNCgQYPMIeyWlpZYWlry4Ycf0rdvX5577jmefvppXnjhBTw8PLKc5/Ll\ny+zfvz/X85u7Tp064eLiwieffGJ0FBEREREp4GxsbJg+fTrnz58HoFKlStStW5eBAwdy9+5dkpKS\nmDJlCmfOnMHV1dXgtCJS0KjYKdlCw9jNx4IFC6hduzaenp6Z2w4cOEDfvn1ZsmQJ69evp06dOpw9\ne5Zq1apRtmzZzP0+/vhj2rZtS3BwMIUKFWLYsGEkJycbcRtmx8LCgpkzZzJx4kSuXLlidBwRERER\nKcBKlChBrVq1+OSTTzKbYlavXs3PP/9M48aNqVWrFvv27WPevHkUK1bM4LQiUtCo2CnZQsPYCzaT\nyYSVlRUAW7ZsoXXr1ri4uACwc+dOunfvTkBAAN9++y1Vq1Zl/vz5FC1aFH9//8xzxMTEMGzYMGrV\nqsXWrVtZvnw5a9asYcuWLYbckzny9fWlW7dujB492ugoIiIiIlLAffDBBxw+fJjg4GBWrlzJ6tWr\n8fb25ueffwagf//+NGnShPXr1/POO+9w6dIlgxOLSEGhBYokW2gYe8GVmprKO++8g5OTE9bW1tjZ\n2dGwYUNsbW1JS0vj0KFD/PTTTyxatAhra2v69etHTEwMjRs3xtfXF4ALFy4wYcIE2rZty3/+8x/g\nj3l7lixZwrRp0wgKCjLyFs1KZGQkPj4+7Nu3j9q1axsdR0REREQKqDJlyjB//ny++OILXnnlFUqU\nKMFTTz1Fr169GDZsGKVKlQLgzJkzbNq0iWPHjrFo0SKDU4tIQaBip2QLdXYWXJaWljg7OzN58mSu\nXr0KwIYNG3Bzc6N06dL069eP+vXrExUVxXvvvcdrr72GlZUVZcqUoUiRIsAfw9z37NnD999/D/xR\nQLWxsaFQoULY2tqSnp6e2TkqOato0aJMmTKFgQMHsmvXLiwt1eAvIiIiIjmjcePGNG7cmPfee48b\nN25ga2ubOUIsLS0Na2trXnnlFRo2bEjjxo3Zs2cPdevWNTi1iOR3+l+uZAvN2VlwWVlZMWjQIK5c\nucIvv/zC2LFjmTNnDr169eLq1avY2tpSq1Ytpk2bxo8//kj//v0pUqQIa9asITw8HIAdO3ZQtmxZ\natasiclkylzY6PTp03h4eOhnJ5eFhYVhMplYvHix0VFERERExAw4Ojpib29/X6EzPT0dCwsL/P39\neemll5g1a5bBSUWkIFCxU7KFOjvNQ/ny5ZkwYQIXLlxg8eLFmR9W/uzw4cN06NCBI0eO8M477wAQ\nFxdHq1atAEhJSQHg0KFDXLt2DTc3N5ycnHLvJgRLS0tmzpzJqFGj+O2334yOIyIiIiIFWHp6Os2b\nN6dGjRoMGzaM2NjYzGaHP4/uunnzJo6OjqSnpxsVVUQKCBU7JVtozk7zU7Jkyfu2nTp1in379uHr\n64urqyvOzs4AXLp0iSpVqgBgbf3H7BmrV6/G2tqaevXqAX8sgiS5p06dOrRp04YJEyYYHUVERERE\nCjArKytq167NuXPnuHr1Kl26dOHpp5+mX79+fPnll+zdu5e1a9eyYsUKKlWqpOmtROSJWZhUYZBs\nsHPnTkaPHs3OnTuNjiIGMZlMWFhY8NNPP2Fvb0/58uUxmUykpqYyYMAAjh07xs6dO7GysiI5OZnK\nlSvTtWtXxo8fn1kUldx1+fJlfH192b59O1WrVjU6joiIiIgUUHfu3KFw4cLs3r2batWq8cUXX7B9\n+3Z27tzJnTt3uHz5Mn379mX27NlGRxWRAkDFTskWe/fu5dVXX2Xfvn1GR5E8aM+ePYSFhVG/fn08\nPT354osvSEtLY8uWLZQtW/a+/a9du8aKFSvo2LEjxYsXNyCx+fjwww9Zu3YtmzdvxsLCwug4IiIi\nIlJADRkyhLi4OPbu3Ztl+759+6hcuXLm4qb3mihERB6XhrFLttAwdnkQk8lE3bp1WbBgAb///jtr\n166lZ8+erF69mrJly5KRkXHf/pcvX2bTpk1UrFiRNm3asHjxYs0tmUMGDBjAxYsXWbFihdFRRERE\nRKQAmz59OvHx8axduxb4Y5EigNq1a2cWOgEVOkXkiamzU7LFyZMnad26NSdPnjQ6ihQgN2/eZO3a\ntURHR7N161YCAwMJDQ0lKCiIQoUKGR2vwNi6dSu9evXi2LFjODo6Gh1HRERERAqocePG8euvv/Lx\nxx8bHUVECjAVOyVbnDt3jrp165KYmGh0FCmgbty4wapVq4iOjmbXrl20atWK0NBQnnvuORwcHIyO\nl+917twZHx8fLVgkIiIiIjnqxIkTVKlSRR2cIpJjVOyUbPHrr79SpUoVrl69anQUMQO//vorK1as\nIDo6mgMHDtC2bVtCQkJo2bIldnZ2RsfLl86cOUNAQAD79u2jYsWKRscREREREREReSwqdkq2SE5O\npmTJkiQnJxsdRczMxYsX+fLLL4mOjubYsWO0b9+ekJAQAgMDsbGxMTpevjJ58mT279/PypUrjY4i\nIiIiImbAZDKRmpqKlZUVVlZWRscRkQJCxU7JFmlpadjZ2ZGWlqbhCGKYc+fOsXz5cqKiojh16hQd\nO3YkJCSEJk2a6MPTQ7hz5w6+vr588skntGzZ0ug4IiIiImIGWrZsSadOnejXr5/RUUSkgFCxU7KN\njY0NycnJ2NraGh1FhFOnTrFs2TKioqK4ePEiwcHBhISEUL9+fSwtLY2Ol2etWbOG4cOHc/jwYf0u\ni4iIiEiO27NnD8HBwSQkJGBvb290HBEpAFTslGzj7OxMYmIihQsXNjqKSBYJCQlER0cTFRXFzZs3\n6dy5MyEhIdSuXVudyH9hMplo06YNzZs3JyIiwug4IiIiImIGgoKCaNmyJeHh4UZHEZECQMVOyTYl\nS5bk6NGjlCxZ0ugoIg909OhRoqOjiY6OJj09nZCQEEJCQvD391fh838SEhJo0KABR44coUyZMkbH\nEREREZECLj4+nrZt23Ly5EkcHR2NjiMi+ZyKnZJt3Nzc2LlzJ+7u7kZHEflXJpOJ+Pj4zMKnvb09\noaGhhISE4OPjY3Q8w40YMYILFy6wePFio6OIiIiIiBno1KkT9erV0+giEXliKnZKtvHy8mLt2rVU\nqVLF6Cgij8RkMvH9998TFRXFsmXLKFGiRGbHp6enp9HxDHHz5k18fHxY9v/Yu+/4ms/+j+Pvkx0Z\nZoyipYhRFI3ZofaqURRVW42qVaVGhITEKKUtOmyldmmb1uhNaYtatYnaO3YViQzJ9/dHb/k1N1rj\nnFwZr+fjcR7J+Z7veJ/cd7+Sz/lc17V4sapUqWI6DgAAANK5/fv3q3r16jpy5Ih8fHxMxwGQhrFK\nB+zG09NTMTExpmMAD81ms6lixYqaOHGiTp8+rcmTJ+vcuXN6/vnnFRAQoHHjxunkyZOmY6YoHx8f\njR07Vj179lRCQoLpOAAAAEjnnnnmGdWsWVMff/yx6SgA0jiKnbAbDw8Pip1I85ycnPTSSy9pypQp\nOnv2rMaOHatDhw7pueeeU5UqVfTRRx/p3LlzpmOmiNatW8vLy0vTp083HQUAAAAZwPDhw/Xhhx/q\n2rVrpqMASMModsJuPDw8dOvWLdMxALtxcXFRjRo1NG3aNEVGRiooKEg7d+7UM888o5dfflmffvqp\nLl68aDqmw9hsNk2aNEnDhg3T1atXTccBAABAOufv76+GDRtqwoQJpqMASMOYsxN2U6dOHb3zzjuq\nW7eu6SiAQ8XExGj16tVatGiRVqxYoQoVKqhly5Z69dVXlS1bNtPx7K5Hjx6y2WyaMmWK6SgAAABI\n506cOKGAgAAdPHhQOXLkMB0HQBpEZyfshjk7kVF4eHiocePGmj9/vs6dO6cuXbpo5cqVKliwoBo0\naKC5c+fq+vXrpmPazciRI7V06VLt3r3bdBQAAACkcwUKFNBrr72mcePGmY4CII2i2Am7YRg7MqJM\nmTLptdde09KlS3XmzBm1bt1aS5YsUf78+fXqq69q0aJFioqKMh3zsWTPnl0hISHq1auXGAwAAAAA\nRwsMDNT06dN1/vx501EApEEUO2E3LFCEjM7Hx0dvvPGGvv32W504cUKNGjXSrFmz9MQTT6hly5Za\nvnx5mv1vpEuXLrp586YWLFhgOgoAAADSuXz58qlt27YaM2aM6SgA0iDm7ITdvPXWWypdurTeeust\n01GAVOXy5ctatmyZFi5cqJ07d+qVV15Ry5YtVbt2bbm5uZmO98A2btyoli1b6uDBg/L29jYdBwAA\nAOnY+fPn9cwzz2j37t3Kly+f6TgA0hA6O2E3dHYC95YjRw517dpVP/74oyIiIlSxYkWNGTNGefLk\nUefOnfXDDz/o9u3bpmP+q+eff17VqlVTaGio6SgAAABI53Lnzq0333xTYWFhpqMASGPo7ITdDB48\nWD4+PhoyZIjpKECacPr0aS1ZskQLFy7UiRMn1KxZM7Vs2VIvvviinJ2dTce7p8jISJUqVUqbNm2S\nv7+/6TgAAABIx65cuSJ/f39t375dBQsWNB0HQBpBZyfshs5O4OHkz59f/fr109atW7V582Y99dRT\neuedd5Q/f3716dNHmzZtUmJioumYyeTJk0eDBg1S3759WawIAAAADpU9e3a9/fbbGjlypOkoANIQ\nip2wG09PT4qdwCN6+umnNWjQIO3cuVPr1q1T9uzZ9eabb6pAgQIaMGCAtm/fnmqKi71799axY8f0\n3XffmY4CAACAdK5fv34KDw/XoUOHTEcBkEZQ7ITdeHh46NatW6ZjAGle0aJFNWzYMO3PQE1aAAAg\nAElEQVTfv1/ff/+93N3d9frrr6tIkSIKDAzUnj17jBY+3dzc9PHHH6tv3758wAEAAACHypIli/r2\n7auQkBDTUQCkERQ7YTcMYwfsy2azqVSpUgoNDdWhQ4e0ePFixcfHq1GjRipRooSCg4MVERFhJFvt\n2rVVunRpffDBB0auDwAAgIyjd+/eWrNmjfbt22c6CoA0gGIn7IZh7IDj2Gw2lStXTu+//76OHz+u\nWbNm6dq1a6pZs6aeffZZjRo1SkePHk3RTBMmTNDEiRN1+vTpFL0uAAAAMhYfHx8NGDBAwcHBpqMA\nSAModsJu6OwEUobNZlOlSpX04Ycf6vTp05o0aZLOnDmjKlWqqHz58ho/frxOnTrl8BwFCxbU22+/\nrf79+zv8WgAAAMjYevTooU2bNmnnzp2mowBI5Sh2wm6YsxNIeU5OTnrppZf0ySef6OzZsxo9erR+\n//13lStXTs8//7w+/vhjRUZGOuz6AwcO1JYtW7Ru3TqHXQMAAADIlCmTBg8erGHDhpmOAiCVo9gJ\nu6GzEzDLxcVFNWvW1LRp03Tu3DkFBgbqt99+U4kSJVStWjV99tlnunTpkl2vmSlTJn3wwQfq3bu3\nbt++bddzAwAAAH/XtWtX7d69W5s3bzYdBUAqRrETdsOcnUDq4ebmpvr162vOnDmKjIxUnz599NNP\nP6lIkSKqU6eOZs6cqT/++MMu12ratKly5cqlTz75xC7nAwAAAO7F3d1dQ4cOpbsTwD+yWZZlmQ6B\n9GH79u3q1q2bfvvtN9NRANxHVFSUvv/+ey1atEhr1qzRSy+9pJYtW6pRo0by9fV95PMeOHBAVatW\n1cGDB5U9e3Y7JgYAAAD+X3x8vIoVK6ZZs2bppZdeMh0HQCpEZyfshmHsQOrn5eWlFi1a6KuvvtLp\n06fVsmVLLVq0SPnz51fTpk21ePFiRUVFPfR5S5Qooa1bt8rHx8cBqQEAAIC/uLq6avjw4Ro6dKjo\n3QJwLxQ7YTcMYwfSFl9fX7Vp00bh4eE6ceKEGjZsqBkzZihv3rxq1aqVli9f/lD/TRcoUEBubm4O\nTAwAAABIb7zxhi5evKg1a9aYjgIgFWIYO+zm7NmzqlChgs6ePWs6CoDHcOnSJS1btkyLFi3Szp07\n1bBhQ7Vs2VK1atWimAkAAIBUYdGiRZo4caJ+/fVX2Ww203EApCJ0dsJuPDw8dOvWLdMxADwmPz8/\ndevWTT/++KMOHDig8uXLa/To0XriiSf05ptv6j//+Q8rrwMAAMCo1157TdHR0fr+++9NRwGQytDZ\nCbuJioqSn5+foqOjTUcB4ACnTp3SkiVLtGjRIp08eVKvvfaaJk6cKFdXV9PRAAAAkAF9/fXXGjFi\nhLZv3y4nJ3q5APyFYifsxrIsHTlyRIULF2YYAZDOHT16VDt37lTdunXl7e1tOg4AAAAyIMuyVL58\neQ0ePFjNmjUzHQdAKkGxEwAAAAAApEkrV65U//79tWfPHjk7O5uOAyAVoM8bAAAAAACkSXXr1lXm\nzJm1aNEi01EApBJ0dgIAjFqzZo2+/vpr5cqVS7lz5076eud7d3d30xEBAACQiv3444/q3r27Dhw4\nIBcXF9NxABhGsRMAYIxlWYqIiNDatWt1/vx5XbhwQefPn0/6/sKFC/Ly8kpWBP3fYuidrzlz5mSx\nJAAAgAyqWrVqateunTp27Gg6CgDDKHYCAFIty7L0xx9/JCuA/u/3d75evnxZWbJkuW8x9O/bcuTI\nwZxOAAAA6ciGDRvUtm1b/f7773JzczMdB4BBFDuRYuLj4+Xk5ESBAYBDJCQk6MqVK/ctiv79+2vX\nril79ux3FUXvVSDNli2bbDab6bcHAACAf1G3bl01adJE3bt3Nx0FgEEUO2E3q1evVqVKlZQ5c+ak\nbXf+72Wz2TR9+nQlJiaqa9eupiICgKS/Pny5dOnSPTtE//f7qKgo5cyZ875F0b9/7+vrm2YLo9Om\nTdNPP/0kT09PVatWTa+//nqafS8AACBj2rZtm1599VUdOXJEHh4epuMAMIRiJ+zGyclJGzduVOXK\nle/5+tSpUzVt2jRt2LCBBUcApBmxsbFJ84febwj9ne/j4uL+dQj9na/e3t6m35okKSoqSn369NGm\nTZvUqFEjnT9/XocPH1arVq3Uq1cvSVJERIRGjBihzZs3y9nZWe3atdOwYcMMJwcAALhb48aNVb16\ndfXp08d0FACGUOyE3Xh5eWnBggWqXLmyoqOjFRMTo5iYGN26dUsxMTHasmWLBg8erKtXrypLliym\n4wKA3UVFRSUrjN6vQBoZGSlnZ+d/HUJ/53tHdib8+uuvql27tmbNmqXmzZtLkj777DMFBQXp6NGj\nunDhgqpXr66AgAD1799fhw8f1rRp0/Tyyy8rLCzMYbkAAAAexe7du1W3bl0dOXJEXl5epuMAMIBi\nJ+wmT548unDhgjw9PSX9NXT9zhydzs7O8vLykmVZ2r17t7JmzWo4LYCUdvv2bSUmJjJhvP6a4uPG\njRsP1C165776oCvSP+zPd+7cuRo4cKCOHj0qNzc3OTs76+TJk2rYsKF69uwpV1dXBQUF6eDBg0nd\nqDNnzlRISIh27typbNmyOeJHBAAA8MhatGihgIAAvffee6ajADDAxXQApB8JCQl69913Vb16dbm4\nuMjFxUWurq5JX52dnZWYmCgfHx/TUQEYYFmWnn/+ec2YMUOlS5c2Hccom80mX19f+fr6qkiRIv+4\nr2VZunbt2j3nEz18+HCybZcuXVLmzJnvKoYGBQXd90MmHx8fxcbG6ttvv1XLli0lSStXrlRERISu\nX78uV1dXZc2aVd7e3oqNjZW7u7uKFSum2NhY/fLLL2rcuLHdfz4AAACPIyQkRFWrVlX37t3l6+tr\nOg6AFEaxE3bj4uKi5557TvXq1TMdBUAq5OrqqhYtWigsLEyLFi0yHSfNsNlsypo1q7JmzarixYv/\n476JiYlJK9L/vQj6T/Mk161bV506dVLv3r01c+ZM5cyZU2fOnFFCQoL8/PyUN29enT59WvPnz1fr\n1q118+ZNTZo0SZcuXVJUVJS93y4AAMBjK168uOrWrauPPvpIQUFBpuMASGEMY4fdBAYGqmHDhqpU\nqdJdr1mWxaq+AHTz5k0VKlRI69ev/9fCHVLOtWvXtGHDBv3yyy/y9vaWzWbT119/rZ49e6pDhw4K\nCgrS+PHjZVmWihcvLh8fH50/f16jRo1KmudT+uteL4n7PQAAMO7IkSOqVKmSDh8+zDRqQAZDsRMp\n5o8//lB8fLxy5MghJycn03EAGDJq1CgdOHBA8+bNMx0F9zFy5Eh9++23mjp1qsqWLStJ+vPPP3Xg\nwAHlzp1bM2fO1Nq1a/X+++/rhRdeSDrOsiwtWLBAgwcPfqDFl1LLivQAACB96tKli3LlyqXQ0FDT\nUQCkIIqdsJslS5aoUKFCKleuXLLtiYmJcnJy0tKlS7V9+3b17NlT+fLlM5QSgGnXr19XoUKFtGnT\npn+drxKOt3PnTiUkJKhs2bKyLEvLly/XW2+9pf79+2vAgAFJXZp//5CqatWqypcvnyZNmnTXAkXx\n8fE6c+bMP65If+dhs9nuWxT93wLpncXvAAAAHtTJkydVrlw5HTx4UH5+fqbjAEghFDthN88995wa\nNmyo4ODge77+66+/qlevXvrggw9UtWrVlA0HIFUJDg7WqVOnNHPmTNNRMrxVq1YpKChIN27cUM6c\nOXX16lXVrFlTYWFh8vLy0ldffSVnZ2dVqFBB0dHRGjx4sH755Rd9/fXX95y25EFZlqWbN28+0Ir0\n58+fl4eHx7+uSJ87d+5HWpEeAACkXz179pSnp6fGjRtnOgqAFMICRbCbzJkz6+zZs/r999918+ZN\n3bp1SzExMYqOjlZsbKzOnTunXbt26dy5c6ajAjCsT58+Kly4sI4fP66CBQuajpOhVatWTTNmzNCh\nQ4d0+fJlFS5cWDVr1kx6/fbt2woMDNTx48fl5+ensmXLavHixY9V6JT+mtfTx8dHPj4+Kly48D/u\ne2dF+nsVQzdu3JisMHrx4kX5+vr+6xD6XLlyyc/PTy4u/CoEAEB6NmTIEJUqVUr9+vVTnjx5TMcB\nkALo7ITdtG3bVl9++aXc3NyUmJgoZ2dnubi4yMXFRa6urvL29lZ8fLxmz56tGjVqmI4LALiPey0q\nFx0drStXrihTpkzKnj27oWT/LjExUVevXn2gbtGrV68qW7Zs/9gteudr9uzZmW8aAIA06t1331V8\nfLw+/vhj01EApACKnbCbFi1aKDo6WuPGjZOzs3OyYqeLi4ucnJyUkJCgrFmzyt3d3XRcAEAGd/v2\nbV2+fPm+xdC/b7tx44Zy5MjxQHOMZsmShRXpAQBIRS5evKjixYtr586devLJJ03HAeBgFDthN+3a\ntZOTk5Nmz55tOgoAAHYVFxenixcv3nfBpb8XSG/dunVXZ+j9CqTe3t4URgEASAFDhgzRlStX9Pnn\nn5uOAsDBKHbCblatWqW4uDg1atRI0v8Pg7QsK+nh5OTEH3UAgHTt1q1bunDhwgOtSG9Z1gOvSJ8p\nUybTbw0AgDTr6tWr8vf315YtW1SoUCHTcQA4EMVOAAAAQx5mRXo3Nzflzp1ba9asYQgeAACPICQk\nRMeOHdOcOXNMRwHgQBQ7YVcJCQmKiIjQkSNHVKBAAZUpU0YxMTHasWOHbt26pZIlSypXrlymYwKw\no5dfflklS5bU5MmTJUkFChRQz5491b9///se8yD7APh/lmXpzz//1IULF1SgQAHmvgYA4BH8+eef\nKlKkiH7++WcVK1bMdBwADuJiOgDSl7Fjx2ro0KFyc3OTn5+fRo4cKZvNpj59+shms6lJkyYaM2YM\nBU8gDbl06ZKGDx+uFStWKDIyUlmyZFHJkiU1aNAg1apVS8uWLZOrq+tDnXPbtm3y8vJyUGIg/bHZ\nbMqSJYuyZMliOgoAAGlW5syZ1a9fPwUHB2vhwoWm4wBwECfTAZB+/PTTT/ryyy81ZswYxcTEaOLE\niRo/frymTZumTz75RLNnz9b+/fs1depU01EBPIRmzZpp69atmjFjhg4dOqTvvvtO9erV05UrVyRJ\n2bJlk4+Pz0Od08/Pj/kHAQAAkOJ69uyp9evXa8+ePaajAHAQip2wm9OnTytz5sx69913JUnNmzdX\nrVq15O7urtatW6tx48Zq0qSJtmzZYjgpgAd17do1/fLLLxozZoxq1Kihp556SuXLl1f//v3VqlUr\nSX8NY+/Zs2ey427evKk2bdrI29tbuXPn1vjx45O9XqBAgWTbbDabli5d+o/7AAAAAI/L29tbAwcO\n1PDhw01HAeAgFDthN66uroqOjpazs3OybVFRUUnPY2NjFR8fbyIegEfg7e0tb29vffvtt4qJiXng\n4yZMmKDixYtrx44dCgkJ0ZAhQ7Rs2TIHJgUAAAAeTPfu3bVt2zb99ttvpqMAcACKnbCb/Pnzy7Is\nffnll5KkzZs3a8uWLbLZbJo+fbqWLl2q1atX6+WXXzYbFMADc3Fx0ezZszVv3jxlyZJFlStXVv/+\n/f+1Q7tixYoKDAyUv7+/unXrpnbt2mnChAkplBoAAAC4P09PTy1atEgFChQwHQWAA1DshN2UKVNG\n9evXV8eOHVW7dm21bdtWuXLlUkhIiAYOHKg+ffooT5486tKli+moAB5Cs2bNdO7cOYWHh6tevXra\ntGmTKlWqpFGjRt33mMqVK9/1/MCBA46OCgAAADyQKlWqKHv27KZjAHAAVmOH3WTKlEkjRoxQxYoV\ntXbtWjVu3FjdunWTi4uLdu3apSNHjqhy5cry8PAwHRXAQ/Lw8FCtWrVUq1YtDRs2TG+++aaCg4PV\nv39/u5zfZrPJsqxk25jyArCfhIQExcfHy93dXTabzXQcAACM499DIP2i2Am7cnV1VZMmTdSkSZNk\n2/Pnz6/8+fMbSgXA3kqUKKHbt2/fdx7PzZs33/W8ePHi9z2fn5+fIiMjk55fuHAh2XMAj++NN95Q\n/fr11blzZ9NRAAAAAIeh2AmHuNOh9fdPyyzL4tMzII25cuWKXnvtNXXq1EmlS5eWj4+Ptm/frvff\nf181atSQr6/vPY/bvHmzRo8erebNm2v9+vX64osvkubzvZfq1atrypQpqlKlipydnTVkyBC6wAE7\ncnZ2VkhIiKpVq6bq1aurYMGCpiMBAAAADkGxEw5xr6ImhU4g7fH29lalSpX00Ucf6ciRI4qNjVXe\nvHnVunVrDR069L7H9evXT3v27FFYWJi8vLw0YsQINW/e/L77f/DBB+rcubNefvll5cqVS++//74i\nIiIc8ZaADKtkyZIaOHCg2rdvr3Xr1snZ2dl0JAAAAMDubNb/TpIGAACAdCkhIUHVq1dXw4YN7Tbn\nLgAAAJCaUOyE3d1rCDsAAEgdjh8/rgoVKmjdunUqWbKk6TgAAACAXTmZDoD0Z9WqVfrzzz9NxwAA\nAPdQsGBBjRkzRm3atFFcXJzpOAAAAIBdUeyE3Q0ePFjHjx83HQMAANxHp06d9OSTTyokJMR0FAAA\nAMCuWKAIdufp6amYmBjTMQAAwH3YbDZ9++23pmMAAAAAdkdnJ+zOw8ODYicAAAAAAABSHMVO2J2H\nh4du3bplOgaAdOTll1/WF198YToGAAAAACCVo9gJu6OzE4C9BQUFKSwsTAkJCaajAAAAAABSMYqd\nsDvm7ARgb9WrV1eOHDm0ZMkS01EAAAAAAKkYxU7YHcPYAdibzWZTUFCQQkNDlZiYaDoOAAAA0jjL\nsvi9EkinKHbC7hjGDsAR6tSpI09PTy1fvtx0FOCRdejQQTab7a7Hrl27TEcDACBDWbFihbZt22Y6\nBgAHoNgJu2MYOwBHsNlsGjZsmEaOHCnLskzHAR5ZzZo1FRkZmexRsmRJY3ni4uKMXRsAABPi4+PV\nq1cvxcfHm44CwAEodsLu6OwE4CivvPKKbDabwsPDTUcBHpm7u7ty586d7OHi4qIVK1bohRdeUJYs\nWZQtWzbVq1dPv//+e7JjN23apDJlysjDw0PlypXTd999J5vNpg0bNkj664+3Tp06qWDBgvL09JS/\nv7/Gjx+f7AOCNm3aqEmTJho1apTy5s2rp556SpI0Z84cBQQEyMfHR7ly5VLLli0VGRmZdFxcXJx6\n9uypPHnyyN3dXfnz51dgYGAK/MQAALCvuXPn6umnn9YLL7xgOgoAB3AxHQDpD3N2AnAUm82moUOH\nauTIkWrYsKFsNpvpSIDdREVF6d1331XJkiUVHR2tESNGqFGjRtq3b59cXV11/fp1NWzYUPXr19f8\n+fN1+vRp9e3bN9k5EhIS9OSTT2rx4sXy8/PT5s2b1bVrV/n5+al9+/ZJ+61du1a+vr764Ycfkgqh\n8fHxGjlypIoWLapLly7pvffeU+vWrbVu3TpJ0sSJExUeHq7FixfrySef1JkzZ3T48OGU+wEBAGAH\n8fHxCg0N1Zw5c0xHAeAgNouxgLCzcePG6cKFCxo/frzpKADSocTERJUuXVrjx49X3bp1TccBHkqH\nDh00b948eXh4JG178cUXtXLlyrv2vX79urJkyaJNmzapUqVKmjJlioYPH64zZ84kHf/FF1+offv2\n+uWXX+7bndK/f3/t27dPq1atkvRXZ+eaNWt06tQpubm53Tfrvn37VKpUKUVGRip37tzq0aOHjhw5\notWrV/NBAwAgzZo5c6bmz5+vNWvWmI4CwEEYxg67Y85OAI7k5OSkoUOHasSIEczdiTTppZde0q5d\nu5Ie06dPlyQdPnxYr7/+up5++mn5+vrqiSeekGVZOnXqlCTp4MGDKl26dLJCacWKFe86/5QpUxQQ\nECA/Pz95e3tr0qRJSee4o1SpUncVOrdv365GjRrpqaeeko+PT9K57xzbsWNHbd++XUWLFlWvXr20\ncuVKVrEFAKQp8fHxCgsL0/Dhw01HAeBAFDthdwxjB+Bor732mq5evaqff/7ZdBTgoWXKlEmFCxdO\neuTNm1eS1KBBA129elXTpk3Tli1b9Ntvv8nJyemhFhD68ssv1b9/f3Xq1EmrV6/Wrl271K1bt7vO\n4eXllez5jRs3VKdOHfn4+GjevHnatm2bVqxYIen/FzAqX768Tpw4odDQUMXHx6tNmzaqV68eHzoA\nANKMefPmqUCBAnrxxRdNRwHgQMzZCbtjgSIAjubs7Kwff/xRefLkMR0FsIsLFy7o8OHDmjFjRtIf\nYFu3bk3WOVmsWDEtXLhQsbGxcnd3T9rn7zZs2KAqVaqoR48eSduOHDnyr9c/cOCArl69qjFjxih/\n/vySpD179ty1n6+vr1q0aKEWLVqobdu2euGFF3T8+HE9/fTTD/+mAQBIYR07dlTHjh1NxwDgYHR2\nwu4Yxg4gJeTJk4d5A5Fu5MiRQ9myZdPUqVN15MgRrV+/Xm+//bacnP7/V7W2bdsqMTFRXbt2VURE\nhP7zn/9ozJgxkpT034K/v7+2b9+u1atX6/DhwwoODtbGjRv/9foFChSQm5ubJk2apOPHj+u77767\na4jf+PHjtXDhQh08eFCHDx/WggULlDlzZj3xxBN2/EkAAAAAj4diJ+yOzk4AKYFCJ9ITZ2dnLVq0\nSDt27FDJkiXVq1cvjR49Wq6urkn7+Pr6Kjw8XLt371aZMmU0cOBAhYSESFLSPJ49evRQ06ZN1bJl\nS1WoUEFnz569a8X2e8mVK5dmz56tpUuXqnjx4goNDdWECROS7ePt7a2xY8cqICBAAQEBSYse/X0O\nUQAAAMA0VmOH3a1du1ZhYWH68ccfTUcBkMElJiYm64wD0puvvvpKLVq00OXLl5U1a1bTcQAAAADj\nmLMTdkdnJwDTEhMTFR4ergULFqhw4cJq2LDhPVetBtKaWbNmqUiRIsqXL5/27t2rfv36qUmTJhQ6\nAQAAgP+i3QV2x5ydAEyJj4+XJO3atUv9+vVTQkKCfv75Z3Xu3FnXr183nA54fOfPn9cbb7yhokWL\nqlevXmrYsKHmzJljOhYAAOnS7du3ZbPZ9PXXXzv0GAD2RbETdufh4aFbt26ZjgEgA4mOjtaAAQNU\nunRpNWrUSEuXLlWVKlW0YMECrV+/Xrlz59aQIUNMxwQe2+DBg3Xy5EnFxsbqxIkTmjx5sry9vU3H\nAgAgxTVq1Eg1atS452sRERGy2Wz64YcfUjiV5OLiosjISNWrVy/Frw3gLxQ7YXcMYweQkizL0uuv\nv65NmzYpNDRUpUqVUnh4uOLj4+Xi4iInJyf16dNHP/30k+Li4kzHBQAAgB107txZ69at04kTJ+56\nbcaMGXrqqadUs2bNlA8mKXfu3HJ3dzdybQAUO+EADGMHkJJ+//13HTp0SG3btlWzZs0UFhamCRMm\naOnSpTp79qxiYmK0YsUK5ciRQ1FRUabjAgAAwA4aNGigXLlyadasWcm2x8fHa+7cuerUqZOcnJzU\nv39/+fv7y9PTUwULFtSgQYMUGxubtP/JkyfVqFEjZcuWTZkyZVLx4sW1ZMmSe17zyJEjstls2rVr\nV9K2/x22zjB2wDyKnbA7OjsBpCRvb2/dunVLL730UtK2ihUr6umnn1aHDh1UoUIFbdy4UfXq1WMR\nF8BOYmNjVapUKX3xxRemowAAMigXFxe1b99es2fPVmJiYtL28PBwXb58WR07dpQk+fr6avbs2YqI\niNDkyZM1b948jRkzJmn/7t27Ky4uTuvXr9f+/fs1YcIEZc6cOcXfDwD7odgJu2POTgApKV++fCpW\nrJg+/PDDpF90w8PDFRUVpdDQUHXt2lXt27dXhw4dJCnZL8MAHo27u7vmzZun/v3769SpU6bjAAAy\nqM6dO+vUqVNas2ZN0rYZM2aodu3ayp8/vyRp2LBhqlKligoUKKAGDRpo0KBBWrBgQdL+J0+e1Isv\nvqjSpUurYMGCqlevnmrXrp3i7wWA/biYDoD0x93dXbGxsbIsSzabzXQcABnAuHHj1KJFC9WoUUNl\ny5bVL7/8okaNGqlixYqqWLFi0n5xcXFyc3MzmBRIP5599ln169dPHTp00Jo1a+TkxGfoAICUVaRI\nEVWtWlUzZ85U7dq1de7cOa1evVoLFy5M2mfRokX6+OOPdfToUd28eVO3b99O9m9Wnz591LNnT33/\n/feqUaOGmjZtqrJly5p4OwDshN9KYXdOTk5JBU8ASAmlSpXSpEmTVLRoUe3YsUOlSpVScHCwJOnK\nlStatWqV2rRpo27duumTTz7R4cOHzQYG0okBAwYoNjZWkyZNMh0FAJBBde7cWV9//bWuXr2q2bNn\nK1u2bGrcuLEkacOGDXrjjTdUv359hYeHa+fOnRoxYkSyRSu7deumY8eOqX379jp48KAqVaqk0NDQ\ne17rTpHUsqykbfHx8Q58dwAeBcVOOARD2QGktJo1a+qzzz7Td999p5kzZypXrlyaPXu2qlatqlde\neUVnz57V1atXNXnyZLVu3dp0XCBdcHZ21pw5cxQaGqqIiAjTcQAAGVDz5s3l4eGhefPmaebMmWrX\nrp1cXV0lSRs3btRTTz2lwMBAlS9fXkWKFLnn6u358+dXt27dtGTJEg0bNkxTp06957X8/PwkSZGR\nkUnb/r5YEYDUgWInHIJFigCYkJCQIG9vb509e1a1atVSly5dVKlSJUVEROiHH37QsmXLtGXLFsXF\nxWns2LGm4wLpQuHChRUaGqq2bdvS3QIASHGenp5q3bq1goODdfToUXXu3DnpNX9/f506dUoLFizQ\n0aNHNXnyZC1evDjZ8b169dLq1at17Ngx7dy5U6tXr1aJEiXueS0fHx8FBARozJgxOnDggDZs2KD3\n3nvPoe8PwMOj2AmH8PT0pNgJIMU5OztLkiZMmKDLly9r7dq1mj59uooUKSInJyc5OzvLx8dH5cuX\n1969ew2nBdKPrl27KmfOnPcd9gcAgCO9+eab+uOPP1SlShUVL148afurr76qd0n+/PkAACAASURB\nVN55R71791aZMmW0fv16hYSEJDs2ISFBb7/9tkqUKKE6deoob968mjVr1n2vNXv2bN2+fVsBAQHq\n0aMH//YBqZDN+vtkE4CdFC9eXMuWLUv2Dw0ApIQzZ86oevXqat++vQIDA5NWX78zx9LNmzdVrFgx\nDR06VN27dzcZFUhXIiMjVaZMGYWHh6tChQqm4wAAACCDorMTDsGcnQBMiY6OVkxMjN544w1JfxU5\nnZycFBMTo6+++krVqlVTjhw59OqrrxpOCqQvefLk0aRJk9SuXTtFR0ebjgMAAIAMimInHII5OwGY\n4u/vr2zZsmnUqFE6efKk4uLiNH/+fPXp00fjxo1T3rx5NXnyZOXKlct0VCDdadGihcqVK6dBgwaZ\njgIAAIAMysV0AKRPzNkJwKRPP/1U7733nsqWLav4+HgVKVJEvr6+qlOnjjp27KgCBQqYjgikW1Om\nTFHp0qXVqFEj1axZ03QcAAAAZDAUO+EQDGMHYFLlypW1cuVKrV69Wu7u7pKkMmXKKF++fIaTAelf\n1qxZNWPGDHXq1El79uxRlixZTEcCAABABkKxEw7BMHYApnl7e6tZs2amYwAZUu3atdWoUSP16tVL\nc+fONR0HAAAAGQhzdsIhGMYOAEDGNnbsWG3ZskVLly41HQUAkE4lJCSoWLFiWrt2rekoAFIRip1w\nCDo7AaRGlmWZjgBkGF5eXvriiy/Us2dPRUZGmo4DAEiHFi1apBw5cqh69eqmowBIRSh2wiGYsxNA\nahMbG6sffvjBdAwgQ6lUqZK6dOmiLl268GEDAMCuEhISNGLECAUHB8tms5mOAyAVodgJh6CzE0Bq\nc/r0abVp00bXr183HQXIUIKCgnTu3DlNnz7ddBQAQDpyp6uzRo0apqMASGUodsIhmLMTQGpTuHBh\n1a1bV5MnTzYdBchQ3NzcNHfuXA0ZMkTHjh0zHQcAkA7c6eocPnw4XZ0A7kKxEw7BMHYAqVFgYKA+\n/PBD3bx503QUIEN55plnNHjwYLVv314JCQmm4wAA0rjFixcre/bsqlmzpukoAFIhip1wCIaxA0iN\nihUrpmrVqunTTz81HQXIcPr27StnZ2d98MEHpqMAANIw5uoE8G8odsIhGMYOILUaOnSoJkyYoOjo\naNNRgAzFyclJs2fP1rhx47Rnzx7TcQAAadTixYuVLVs2ujoB3BfFTjgEnZ0AUqtSpUqpcuXKmjp1\nqukoQIZToEABvf/++2rbtq1iY2NNxwEApDEJCQkaOXIkc3UC+EcUO+EQzNkJIDUbOnSoxo0bx4cy\ngAEdOnRQgQIFFBwcbDoKACCNWbJkibJkyaJatWqZjgIgFaPYCYegsxNAalauXDmVLVtWM2fONB0F\nyHBsNpumTZum2bNna+PGjabjAADSCObqBPCgKHbCIZizE0BqFxQUpDFjxiguLs50FCDDyZkzpz79\n9FO1b99eN2/eNB0HAJAGLFmyRJkzZ6arE8C/otgJh2AYO4DUrmLFiipevLjmzJljOgqQITVp0kQv\nvvii+vfvbzoKACCVuzNXJ12dAB4ExU44BMPYAaQFQUFBGj16tOLj401HATKkDz/8UKtWrdLKlStN\nRwEApGJLly6Vr6+vateubToKgDSAYiccgmHsANKCF154QQUKFND8+fNNRwEypMyZM2vWrFl68803\ndeXKFdNxAACpEHN1AnhYFDvhEHR2AkgrgoKCFBYWpoSEBNNRgAypWrVqatmypd566y1ZlmU6DgAg\nlVm6dKl8fHzo6gTwwCh2wiGYsxNAWvHyyy8rZ86cWrRokekoQIYVFhamffv2acGCBaajAABSkcTE\nRLo6ATw0ip1wCDo7AaQVNptNw4YNU2hoqBITE03HATIkT09PzZ07V3379tWZM2dMxwEApBJ3ujrr\n1KljOgqANIRiJxyCOTsBpCW1atWSj4+PvvrqK9NRgAzrueeeU69evdSpUyeGswMA6OoE8MgodsIh\nGMYOIC2x2WwKCgqiuxMwbPDgwfrzzz/1ySefmI4CADDsq6++kpeXF12dAB4axU44hLu7u+Li4iga\nAEgzGjRoIGdnZ4WHh5uOAmRYLi4u+uKLLzR8+HAdOnTIdBwAgCGJiYkKCQmhqxPAI6HYCYew2Wzy\n8PBQbGys6SgA8EDudHeOGDGCIbSAQUWLFlVwcLDatm2r27dvm44DADDgTldn3bp1TUcBkAZR7ITD\nsEgRgLSmcePGiouL08qVK01HATK0Hj16KHPmzBozZozpKACAFHanq3P48OF0dQJ4JBQ74TDM2wkg\nrXFyclJQUJBGjhxJdydgkJOTk2bOnKmPP/5YO3bsMB0HAJCCli1bpkyZMqlevXqmowBIoyh2wmHo\n7ASQFjVr1kzXrl3T2rVrTUcBMrR8+fJp4sSJatu2Lb9PAEAGwVydAOyBYiccxtPTkz9OAKQ5zs7O\nCgwM1IgRI0xHATK81q1b65lnnlFgYKDpKACAFLBs2TJ5enrS1QngsVDshMMwjB1AWtWqVSudO3dO\nP/30k+koQIZms9n06aefauHChVq/fr3pOAAAB0pMTNSIESOYqxPAY6PYCYdhGDuAtMrFxUWBgYEa\nOXKk6ShAhpc9e3ZNmzZNHTp00PXr103HAQA4yPLly+Xu7q769eubjgIgjaPYCYdhGDuAtKxNmzY6\nevSoNm3aZDoKkOHVr19fderUUd++fU1HAQA4AHN1ArAnip1wGDo7AaRlrq6uGjRoEN2dQCrxwQcf\n6KefftI333xjOgoAwM7o6gRgTxQ74TDM2QkgrevQoYP27dunbdu2mY4CZHje3t764osv1L17d128\neNF0HACAnTBXJwB7o9gJh6GzE0Ba5+7uroEDB9LdCaQSzz//vNq3b6+uXbvKsizTcQAAdvD111/L\n1dVVDRo0MB0FQDpBsRMOw5ydANKDzp07a/v27dq1a5fpKAAkhYSE6Pjx45ozZ47pKACAx8RcnQAc\ngWInHIZh7ADSA09PTw0YMEChoaGmowDQXx3Xc+fO1YABA3Ty5EnTcQAAj+Gbb76hqxOA3VHshMMw\njB1AetGtWzdt2LBB+/btMx0FgKTSpUurf//+6tChgxITE03HAQA8gjtdnczVCcDeKHbCYRjGDiC9\nyJQpk9555x2FhYWZjgLgv/r376/4+Hh99NFHpqMAAB7BN998I2dnZ73yyiumowBIZyh2wmHo7ASQ\nnvTo0UNr167VwYMHTUcBIMnZ2Vlz5sxRWFiY9u/fbzoOAOAh0NUJwJEodsJhmLMTQHri4+Oj3r17\na9SoUaajAPivQoUKadSoUWrbtq3i4uJMxwEAPKBvv/1WTk5OatiwoekoANIhip1wGDo7AaQ3vXr1\n0ooVK3T06FHTUQD8V5cuXZQnTx4WEQOANMKyLFZgB+BQFDvhMMzZCSC9yZw5s95++22NHj3adBQA\n/2Wz2TR9+nRNnTpVW7ZsMR0HAPAvvvnmG9lsNro6ATgMxU44DMPYAaRHffr00fLly3Xy5EnTUQD8\nV548eTR58mS1bdtW0dHRpuMAAO7jTlcnc3UCcCSKnXCYp59+WhUrVjQdAwDsKlu2bOratavGjBlj\nOgqAv2nevLkqVKig9957z3QUAMB9fPvtt5KkRo0aGU4CID2zWZZlmQ6B9Ck+Pl7x8fHKlCmT6SgA\nYFeXLl1S//79NW3aNLm5uZmOA+C//vjjDz377LOaPn26ateubToOAOBvLMtSuXLlFBwcrMaNG5uO\nAyAdo9gJAMAjiImJkYeHh+kYAP7Hf/7zH3Xq1El79uxR1qxZTccBAPzXN998o+DgYO3YsYMh7AAc\nimInAAAA0pVevXrp6tWr+vLLL01HAQDor67O5557TsOGDVOTJk1MxwGQzjFnJwAAANKVsWPHavv2\n7Vq8eLHpKAAASeHh4bIsi+HrAFIEnZ0AAABId7Zu3aqGDRtq165dypMnj+k4AJBh0dUJIKXR2QkA\nAIB0p0KFCurWrZs6d+4sPtsHAHPCw8OVmJhIVyeAFEOxEwAAAOlSUFCQLly4oGnTppmOAgAZkmVZ\nCgkJ0fDhw1mUCECKodgJAACAdMnV1VVz585VYGCgjh49ajoOAGQ43333nRISEujqBJCiKHYCAAAg\n3SpRooQCAwPVrl07JSQkmI4DABmGZVkKDg7W8OHD5eRE6QFAyuGOAwAAgHStd+/ecnNz0/jx401H\nAYAM4/vvv9ft27fp6gSQ4liNHQAAAOneyZMnFRAQoDVr1ujZZ581HQcA0jXLslS+fHkNGTJETZs2\nNR0HQAZDZyeMotYOAABSwlNPPaXx48erbdu2io2NNR0HANK177//XvHx8WrSpInpKAAyIIqdMGrf\nvn1aunSpEhMTTUcBAIf6888/devWLdMxgAytXbt2KlSokIYNG2Y6CgCkW3fm6hw2bBhzdQIwgjsP\njLEsS7GxsRo7dqxKly6tRYsWsXAAgHQpMTFRS5YsUdGiRTV79mzudYAhNptNn3/+ub744gtt2LDB\ndBwASJdWrFihuLg4vfrqq6ajAMigmLMTxlmWpVWrVikkJETXr1/X0KFD1bJlSzk7O5uOBgB2tWnT\nJg0YMEA3btzQ2LFjVbduXdlsNtOxgAznm2++Ub9+/bRr1y75+PiYjgMA6YZlWapQoYIGDRqkZs2a\nmY4DIIOi2IlUw7IsrVmzRiEhIbp06ZICAwPVunVrubi4mI4GAHZjWZa++eYbDRo0SHnz5tX777+v\n5557znQsIMPp1KmTXFxcNHXqVNNRACDd+P777zV48GDt2rWLIewAjKHYiVTHsiytW7dOISEhOnv2\nrAIDA9WmTRu5urqajgYAdnP79m3NmDFDISEhqlatmkJDQ1WwYEHTsYAM4/r163r22Wc1efJkNWjQ\nwHQcAEjz7nR1Dhw4UM2bNzcdB0AGxkctSHVsNpuqV6+un376STNmzNC8efPk7++vadOmKS4uznQ8\nALivGzdu6I8//nigfV1cXNStWzcdOnRI/v7+CggIUL9+/XTlyhUHpwQgSb6+vpo9e7a6dOmiy5cv\nm44DAGneypUrFRMTo6ZNm5qOAiCDo9iJVK1q1apau3at5s6dqyVLlqhIkSL67LPPFBsbazoaANxl\n9OjRmjx58kMd4+3treHDh2v//v2KiYlRsWLFNHbsWFZuB1JA1apV9frrr6t79+5isBMAPLo7K7AP\nHz6c4esAjOMuhDThhRde0A8//KCFCxfq22+/VeHChTVlyhTFxMSYjgYASYoUKaJDhw490rG5c+fW\nJ598og0bNmjLli2s3A6kkLCwMEVERGj+/PmmowBAmrVy5UrdunWLrk4AqQLFTqQplStX1ooVK7Rs\n2TKtWrVKhQoV0kcffUQHFIBUoUiRIjp8+PBjnaNo0aJatmyZFi5cqGnTpqls2bJatWoVXWeAg3h4\neGjevHl65513dPr0adNxACDNsSxLISEhGjZsGF2dAFIF7kRIk8qXL6/w8HCFh4dr/fr1KlSokCZM\nmKCoqCjT0QBkYP7+/o9d7LyjSpUq2rBhg0aMGKE+ffqoVq1a2rFjh13ODSC5smXLqk+fPurYsaMS\nExNNxwGANGXVqlWKiopSs2bNTEcBAEkUO5HGlStXTsuXL9eKFSu0adMmFSpUSOPGjdPNmzdNRwOQ\nAfn5+en27du6evWqXc5ns9nUpEkT7du3T82bN1eDBg30xhtv6Pjx43Y5P4D/N3DgQN28eVNTpkwx\nHQUA0gzm6gSQGtksxsUBAAAAOnToUFJXdbFixUzHAYBUb+XKlRowYID27NlDsRNAqsHdCAAAANBf\nU1GMGDFC7dq10+3bt03HAYBUjbk6AaRW3JEAAEgnWLkdeHxvvfWWsmbNqlGjRpmOAgCp2s6dO3Xj\nxg01b97cdBQASIZh7AAApBPPPvusxo4dqzp16shms5mOA6RZZ8+eVdmyZbVixQoFBASYjgMAqc6d\nMkJsbKw8PDwMpwGA5OjsRIY1ZMgQXb582XQMALCb4OBgVm4H7CBv3rz66KOP1LZtW926dct0HABI\ndWw2m2w2m9zd3U1HAYC7UOzM4Gw2m5YuXfpY55g9e7a8vb3tlCjlXL16Vf7+/nrvvfd08eJF03EA\nGFSgQAGNHz/e4ddx9P3y1VdfZeV2wE5atWql0qVLa8iQIaajAECqxUgSAKkRxc506s4nbfd7dOjQ\nQZIUGRmphg0bPta1WrZsqWPHjtkhdcr67LPPtHv3bkVFRalYsWJ69913df78edOxANhZhw4dku59\nLi4uevLJJ/XWW2/pjz/+SNpn27Zt6tGjh8OzpMT90tXVVd27d9fhw4fl7++vgIAAvfvuu7py5YpD\nrwukNzabTZ988omWLFmidevWmY4DAACAB0SxM52KjIxMekybNu2ubR999JEkKXfu3I899MDT01M5\nc+Z87MyPIy4u7pGOy58/v6ZMmaK9e/fq9u3bKlGihPr27atz587ZOSEAk2rWrKnIyEidOHFC06dP\nV3h4eLLipp+fnzJlyuTwHCl5v/T29tbw4cO1f/9+RUdHq1ixYnr//fcZkgs8hOzZs2vatGnq0KGD\n/vzzT9NxAAAA8AAodqZTuXPnTnpkyZLlrm2ZM2eWlHwY+4kTJ2Sz2bRw4UJVrVpVnp6eKlu2rPbs\n2aN9+/apSpUq8vLy0gsvvJBsWOT/Dss8ffq0GjdurGzZsilTpkwqVqyYFi5cmPT63r17VbNmTXl6\neipbtmx3/QGxbds21a5dWzly5JCvr69eeOEF/frrr8nen81m05QpU9S0aVN5eXlpyJAhSkhIUOfO\nnVWwYEF5enqqSJEiev/995WYmPivP687c3Pt379fTk5OKlmypHr27KkzZ848wk8fQGrj7u6u3Llz\nK1++fKpdu7ZatmypH374Ien1/x3GbrPZ9Omnn6px48bKlCmT/P39tW7dOp05c0Z16tSRl5eXypQp\nk2xezDv3wrVr16pkyZLy8vJStWrV/vF+KUkrVqxQxYoV5enpqezZs6thw4aKiYm5Zy5Jevnll9Wz\nZ88Hfu+5c+fWp59+qg0bNmjz5s0qWrSo5syZw8rtwAOqV6+e6tevrz59+piOAgBGsKYxgLSGYifu\nMnz4cA0cOFA7d+5UlixZ9Prrr6tXr14KCwvT1q1bFRMTo969e9/3+B49eig6Olrr1q3T/v379eGH\nHyYVXKOiolSnTh15e3tr69atWr58uTZt2qROnTolHX/jxg21bdtWv/zyi7Zu3aoyZcqofv36dw3B\nDAkJUf369bV37169/fbbSkxMVN68ebV48WJFREQoLCxMo0aN0qxZsx74vefJk0cTJkxQRESEPD09\nVbp0ab311ls6efLkQ/4UAaRWx44d06pVq+Tq6vqP+4WGhqpVq1bavXu3AgIC1KpVK3Xu3Fk9evTQ\nzp079cQTTyRNCXJHbGysRo8erZkzZ+rXX3/VtWvX1L179/teY9WqVWrUqJFq1aql3377TevWrVPV\nqlUf6EOah1W0aFEtW7ZMCxYs0Oeff65y5cpp9erV/AEDPIBx48Zpw4YNWr58uekoAJAi/v77wZ15\nOR3x+wkAOISFdG/JkiXW/f6nlmQtWbLEsizLOn78uCXJ+uyzz5JeDw8PtyRZX331VdK2WbNmWV5e\nXvd9XqpUKSs4OPie15s6darl6+trXb9+PWnbunXrLEnW4cOH73lMYmKilTt3bmvu3LnJcvfs2fOf\n3rZlWZY1cOBAq0aNGv+63/1cvHjRGjRokJUtWzarS5cu1rFjxx75XADMaN++veXs7Gx5eXlZHh4e\nliRLkjVhwoSkfZ566ilr3LhxSc8lWYMGDUp6vnfvXkuS9cEHHyRtu3PvunTpkmVZf90LJVkHDx5M\n2mfevHmWm5ublZiYmLTP3++XVapUsVq2bHnf7P+by7Isq2rVqtbbb7/9sD+GZBITE61ly5ZZ/v7+\nVo0aNazffvvtsc4HZAQbN260cuXKZZ0/f950FABwuJiYGOuXX36x3nzzTWvo0KFWdHS06UgA8MDo\n7MRdSpcunfR9rly5JEmlSpVKti0qKkrR0dH3PL5Pnz4KDQ1V5cqVNXToUP32229Jr0VERKh06dLy\n8fFJ2lalShU5OTnpwIEDkqSLFy+qW7du8vf3V+bMmeXj46OLFy/q1KlTya4TEBBw17U/++wzBQQE\nyM/PT97e3po4ceJdxz0MPz8/jR49WocOHVLOnDkVEBCgzp076+jRo498TgAp76WXXtKuXbu0detW\n9erVS/Xr1//HDnXpwe6F0l/3rDvc3d1VtGjRpOdPPPGE4uLiki2G9Hc7d+5UjRo1Hv4NPSabzXbX\nyu1t2rTRiRMnUjwLkFZUqVJFnTp1UpcuXeiIBpDuhYWFqUePHtq7d6/mz5+vokWLJvu7DgBSM4qd\nuMvfh3beGbJwr233G8bQuXNnHT9+XB07dtShQ4dUpUoVBQcH/+t175y3ffv22rZtmyZOnKhNmzZp\n165dypcv312LEHl5eSV7vmjRIvXt21cdOnTQ6tWrtWvXLvXo0eORFy/6u+zZsys0NFRHjhxR/vz5\nVbFiRbVv316HDh167HMDcLxMmTKpcOHCKlWqlD7++GNFR0dr5MiR/3jMo9wLXVxckp3jcYd9OTk5\n3VVUiY+Pf6Rz3cudldsPHTqkwoUL67nnntO7776rq1ev2u0aQHoSHBysU6dOPdQUOQCQ1kRGRmrC\nhAmaOHGiVq9erU2bNil//vxasGCBJOn27duSmMsTQOpFsRMOkS9fPnXt2lWLFy/WiBEjNHXqVElS\n8eLFtXfvXt24cSNp302bNikxMVHFixeXJG3YsEG9evVSgwYN9Mwzz8jHx0eRkZH/es0NGzaoYsWK\n6tmzp8qVK6fChQvbvQMza9asCg4O1pEjR1S4cGE9//zzatOmjSIiIux6HQCONXz4cI0dO1bnzp0z\nmqNs2bJau3btfV/38/NLdv+LiYnRwYMH7Z7Dx8dHwcHBSSu3Fy1aVOPGjUtaKAnAX9zc3DR37lwN\nHDgw2eJjAJCeTJw4UTVq1FCNGjWUOXNm5cqVSwMGDNDSpUt148aNpA93P//8c+3Zs8dwWgC4G8VO\n2F2fPn20atUqHTt2TLt27dKqVatUokQJSdIbb7yhTJkyqV27dtq7d69+/vlndevWTU2bNlXhwoUl\nSf7+/po3b54OHDigbdu2qVWrVnJzc/vX6/r7+2vHjh1auXKlDh8+rJEjR+qnn35yyHvMkiWLgoKC\ndPToUT3zzDOqWrWqWrVqpX379jnkevg/9u48rOa8fwP4fU6bEtGQyhLSymSJTMPYZRk7I8uUEMma\nVMquxJRQjLGNNcbMGEs8gwwSSsKQFi0iDOYxSKlEy/n9Mb/OwwzGUH3O6dyv6+qP6ZxT93kuT3Xu\n8/5+3kTlq0uXLrC2tsaSJUuE5pg7dy727NmDefPmISUlBcnJyVi1apX8mJBu3bph165dOHXqFJKT\nkzFu3Dj5NEVFeHlz+7lz52BhYYEdO3ZwczvRSz7++GP4+PjAxcWFyzqIqMp58eIFfvvtN5iZmcl/\nxpWUlKBr167Q1NTEgQMHAADp6emYPHnyK8eTEREpCpadVO5KS0sxbdo0WFtbo2fPnqhXrx62b98O\n4M9LSSMjI5Gbmws7OzsMHDgQ9vb22LJli/zxW7ZsQV5eHmxtbTFixAiMGzcOjRs3/sfv6+bmhuHD\nh2PUqFFo164dsrKyMGvWrIp6mgCAmjVrws/PD5mZmWjTpg26d++OL7744l+9w1lSUoLExETk5ORU\nYFIi+qtZs2Zh8+bNuHXrlrAMffv2xf79+3HkyBG0bt0anTt3RlRUFKTSP389+/n5oVu3bhg4cCAc\nHBzQsWNHtG7dusJzlW1u/+6777B+/XrY2tpyczvRSzw9PSGTybBq1SrRUYiIypWmpiZGjhyJZs2a\nyf8eUVNTg56eHjp27IiDBw8C+PMN2wEDBqBJkyYi4xIRvZZExlcuROUmPz8f69evR0hICOzt7TF/\n/vx/LCYSExOxfPlyXLlyBe3bt0dQUBD09fUrKTER0dvJZDLs378ffn5+aNSoEYKDgyulcCVSdDdu\n3ED79u0RFRWFFi1aiI5DRFRuys4H19DQgEwmk59BHhUVBTc3N+zZswe2trZIS0uDqampyKhERK/F\nyU6iclS9enXMmjULmZmZ6NSpEwYPHvyPl7g1aNAAI0aMwNSpU7F582aEhobynDwiUhgSiQRDhgxB\nUlIShgwZgr59+3JzOxGApk2bYtmyZXByciqXZYhERKI9efIEwJ8l51+LzhcvXsDe3h76+vqws7PD\nkCFDWHQSkcJi2UlUAXR0dODh4YHr16/L/0B4k9q1a6Nv37549OgRTE1N0bt3b1SrVk1+e3luXiYi\nel8aGhpwd3d/ZXO7l5cXN7eTShs/fjwaNGgAf39/0VGIiD7I48ePMWnSJOzYsUP+hubLr2M0NTVR\nrVo1WFtbo6ioCMuXLxeUlIjon6ktWrRokegQRFWVVCp9a9n58rulw4cPh6OjI4YPHy5fyHT79m1s\n3boVJ06cgImJCWrVqlUpuYmI3kRLSwtdunTBmDFj8Msvv2Dy5MmQSCSwtbWVb2clUhUSiQTdunXD\nxIkT0bFjRzRo0EB0JCKi9/LNN98gNDQUWVlZuHjxIoqKilC7dm3o6elhw4YNaN26NaRSKezt7dGp\nUyfY2dmJjkxE9Eac7CQSqGzD8fLly6GmpobBgwdDV1dXfvvjx4/x4MEDnDt3Dk2bNsXKlSu5+ZWI\nFELZ5vYzZ84gNjaWm9tJZRkaGmLt2rVwcnJCfn6+6DhERO/l008/ha2tLcaOHYvs7GzMnj0b8+bN\nw7hx4+Dj44OCggIAgIGBAfr16yc4LRHR27HsJBKobAoqNDQUjo6Of1tw0KpVKwQGBqJsALtmzZqV\nHZGI6K0sLS2xf//+Vza3Hzt2THQsoko1dOhQ2Nvbw8fHR3QUIqL3Ym9vDW6M4AAAIABJREFUj08+\n+QTPnj3D8ePHERYWhtu3b2Pnzp1o2rQpjhw5gszMTNExiYjeCctOIkHKJjRXrVoFmUyGIUOGoEaN\nGq/cp6SkBOrq6ti0aRNsbGwwcOBASKWv/t/22bNnlZaZiOhNOnTogJiYGCxYsADTpk1Dz549cfny\nZdGxiCrN6tWrcejQIURGRoqOQkT0XmbOnImjR4/izp07GDp0KMaMGYMaNWpAR0cHM2fOxKxZs+QT\nnkREioxlJ1Elk8lkOH78OM6fPw/gz6nO4cOHw8bGRn57GTU1Ndy+fRvbt2/H9OnTUbdu3Vfuc/Pm\nTQQGBsLHxwdJSUmV/EyI6J8EBwdj1qxZomNUmtdtbndycsKtW7dERyOqcLVq1cLWrVsxfvx4Lu4i\nIqVTUlKCpk2bwtjYWH5V2Zw5c7B06VLExMRg5cqV+OSTT6CjoyM2KBHRO2DZSVTJZDIZTpw4gQ4d\nOsDU1BS5ubkYOnSofKqzbGFR2eRnYGAgzM3NXzkbp+w+jx8/hkQiwbVr12BjY4PAwMBKfjZE9DZm\nZmbIyMgQHaPSvby53dTUFG3atOHmdlIJ3bt3x9ChQzF16lTRUYiI3plMJoOamhoAYP78+fj9998x\nYcIEyGQyDB48GADg6OgIX19fkTGJiN4Zy06iSiaVSrFs2TKkp6ejS5cuyMnJgZ+fHy5fvvzK8iGp\nVIq7d+9i27ZtmDFjBgwMDP72tWxtbbFgwQLMmDEDANC8efNKex5E9M9UtewsU6NGDSxatAhJSUnI\ny8uDhYUFli9fjsLCQtHRiCrMsmXL8Ouvv+KHH34QHYWI6K3KjsN6edjCwsICn3zyCbZt24Y5c+bI\nX4NwSSoRKROJ7OVrZomo0mVlZcHHxwfVq1fHpk2bUFBQAG1tbWhoaGDy5MmIiopCVFQUDA0NX3mc\nTCaT/2Hy5ZdfIi0tDRcuXBDxFIjoDZ49e4batWsjLy9PvpBMlaWmpsLPzw+//vorlixZgtGjR//t\nHGKiquDChQvo168fLl++DGNjY9FxiIj+JicnB0uXLkWfPn3QunVr6OnpyW+7d+8ejh8/jkGDBqFm\nzZqvvO4gIlIGLDuJFERhYSG0tLQwe/ZsxMbGYtq0aXB1dcXKlSsxYcKENz7u0qVLsLe3xw8//CC/\nzISIFIeJiQmioqLQtGlT0VEURkxMDLy9vVFQUIDg4GA4ODiIjkRU7rZv344RI0ZAU1OTJQERKRx3\nd3ds2LABjRo1Qv/+/eU7BF4uPQHg+fPn0NLSEpSSiOj9cJyCSEFUq1YNEokEXl5eqFu3Lr788kvk\n5+dDW1sbJSUlr31MaWkpwsLC0Lx5cxadRApK1S9lf52XN7dPnToVDg4O3NxOVY6zszOLTiJSSE+f\nPkVcXBzWr1+PWbNmISIiAl988QXmzZuH6OhoZGdnAwCSkpIwceJE5OfnC05MRPTvsOwkUjAGBgbY\nv38/fv/9d0ycOBHOzs6YOXMmcnJy/nbfq1ev4ocffsDcuXMFJCWid8Gy8/XKNrcnJydj0KBB3NxO\nVY5EImHRSUQK6c6dO2jTpg0MDQ0xbdo03L59G/Pnz8fBgwcxfPhwLFiwAKdPn8aMGTOQnZ2N6tWr\ni45MRPSv8DJ2IgX38OFDxMfHo1evXlBTU8O9e/dgYGAAdXV1jB07FpcuXUJCQgJfUBEpqJUrV+LW\nrVsICwsTHUWhPX36FCEhIfj6668xduxYzJkzB/r6+qJjEVWYFy9eICwsDE2bNsXQoUNFxyEiFVJa\nWoqMjAzUq1cPtWrVeuW2tWvXIiQkBE+ePEFOTg7S0tJgZmYmKCkR0fvhZCeRgqtTpw769u0LNTU1\n5OTkYNGiRbCzs8OKFSvw008/YcGCBSw6iRQYJzvfTY0aNbB48eJXNreHhIS88+Z2vndLyubOnTvI\nyMjA/Pnz8fPPP4uOQ0QqRCqVwsLC4pWis7i4GAAwZcoU3Lx5EwYGBnBycmLRSURKiWUnkRLR09PD\nypUr0aZNGyxYsAD5+fkoKirCs2fP3vgYFgBEYrHs/HeMjIywfv16nDlzBjExMbCwsMDhw4f/8WdZ\nUVERsrOzER8fX0lJid6fTCaDqakpwsLC4OLiggkTJuD58+eiYxGRClNXVwfw59Tn+fPnkZGRgTlz\n5ghORUT0fngZO5GSKigowKJFixASEoLp06djyZIl0NXVfeU+MpkMhw4dwt27dzFu3DhuUiQS4MWL\nF6hRowby8vKgoaEhOo7SOXv2LMzMzGBgYPDWKXZXV1fExcVBQ0MD2dnZWLhwIcaOHVuJSYn+mUwm\nQ0lJCdTU1CCRSOQl/meffYZhw4bBw8NDcEIiIuDEiRM4fvw4li1bJjoKEdF74WQnkZLS0dFBcHAw\n8vPzMWrUKGhra//tPhKJBEZGRvjPf/4DU1NTrFmz5p0vCSWi8qGpqYn69evj5s2boqMopY4dO/5j\n0fnNN99g9+7dmDx5Mn788UcsWLAAgYGBOHLkCABOuJNYpaWluHfvHkpKSiCRSKCuri7/91y2xKig\noAA1atQQnJSIVI1MJnvt78hu3bohMDBQQCIiovLBspNIyWlra8POzg5qamqvvb1du3b4+eefceDA\nARw/fhympqYIDQ1FQUFBJSclUl3m5ua8lP0D/NO5xOvXr4erqysmT54MMzMzjBs3Dg4ODti0aRNk\nMhkkEgnS0tIqKS3R/xQVFaFBgwZo2LAhunfvjn79+mHhwoWIiIjAhQsXkJmZicWLF+PKlSswNjYW\nHZeIVMyMGTOQl5f3t89LJBJIpawKiEh58ScYkYpo27YtIiIi8J///AenT5+GqakpQkJCkJ+fLzoa\nUZXHczsrzosXL2Bqair/WVY2oSKTyeQTdImJibCyskK/fv1w584dkXFJxWhoaMDT0xMymQzTpk1D\n8+bNcfr0afj7+6Nfv36ws7PDpk2bsGbNGvTp00d0XCJSIdHR0Th8+PBrrw4jIlJ2LDuJVEzr1q2x\nb98+REZG4vz582jatCmCgoJe+64uEZUPlp0VR1NTE507d8ZPP/2EvXv3QiKR4Oeff0ZMTAz09PRQ\nUlKCjz/+GJmZmahZsyZMTEwwfvz4ty52IypPXl5eaNGiBU6cOIGgoCCcPHkSly5dQlpaGo4fP47M\nzEy4ubnJ73/37l3cvXtXYGIiUgWLFy/GvHnz5IuJiIiqEpadRCrKxsYGe/bswYkTJ3DlyhU0bdoU\nS5cuRW5uruhoRFUOy86KUTbF6eHhga+++gpubm5o3749ZsyYgaSkJHTr1g1qamooLi5GkyZN8N13\n3+HixYvIyMhArVq1EB4eLvgZkKo4ePAgNm/ejIiICEgkEpSUlKBWrVpo3bo1tLS05GXDw4cPsX37\ndvj6+rLwJKIKEx0djdu3b+PLL78UHYWIqEKw7CRScS1atMDu3bsRHR2NlJQUmJqaIiAgAE+ePBEd\njajKYNlZ/oqLi3HixAncv38fADBp0iQ8fPgQ7u7uaNGiBezt7TFy5EgAkBeeAGBkZITu3bujqKgI\niYmJeP78ubDnQKqjcePGWLp0KVxcXJCXl/fGc7br1KmDdu3aoaCgAI6OjpWckohUxeLFizF37lxO\ndRJRlcWyk4gAAFZWVti5cydiYmKQmZmJZs2aYeHChXj8+LHoaERKr3Hjxrh//z4KCwtFR6kyHj16\nhN27d8Pf3x+5ubnIyclBSUkJ9u/fjzt37mD27NkA/jzTs2wDdnZ2NoYMGYItW7Zgy5YtCA4OhpaW\nluBnQqpi1qxZmDlzJlJTU197e0lJCQCgZ8+eqFGjBmJjY3H8+PHKjEhEKuD06dO4desWpzqJqEpj\n2UlErzA3N8e2bdsQFxeH3377DWZmZpg3bx4ePXokOhqR0lJXV0ejRo1w48YN0VGqjHr16sHd3R0x\nMTGwtrbGoEGDYGxsjJs3b2LBggUYMGAAAMinViIiItC7d288fvwYGzZsgIuLi8D0pKrmzZuHtm3b\nvvK5suMY1NTUcOXKFbRu3RpHjx7F+vXr0aZNGxExiagKKzurU0NDQ3QUIqIKw7KTiF6rWbNm2Lx5\nMy5evIgHDx7AzMwMvr6++OOPP0RHI1JK5ubmvJS9nLVt2xZXr17Fhg0bMHjwYOzcuROnTp3CwIED\n5fcpLi7GoUOHMGHCBOjq6uLnn39G7969AfyvZCKqLFLpn396Z2Rk4MGDBwAAiUQCAAgKCoKdnR0M\nDQ1x9OhRuLq6Ql9fX1hWIqp6Tp8+jaysLE51ElGVx7KTiN6qSZMm2LhxIy5fvoycnBxYWFjA29sb\n//3vf0VHI1IqPLez4nz++eeYPn06evbsiVq1ar1ym7+/P8aPH4/PP/8cW7ZsQbNmzVBaWgrgfyUT\nUWU7cuQIhgwZAgDIyspCp06dEBAQgMDAQOzatQutWrWSF6Nl/16JiD5U2VmdnOokoqqOZScRvRMT\nExOsW7cOCQkJKCwshJWVFTw9PeXLQYjo7Vh2Vo6ygujOnTsYNmwYwsLC4OzsjK1bt8LExOSV+xCJ\nMnnyZFy5cgU9e/ZEq1atUFJSgmPHjsHT0/Nv05xl/16fPXsmIioRVRFnzpzBzZs34eTkJDoKEVGF\n41/7RPSvNGzYEGvWrEFSUhJKS0vRvHlzTJ8+HXfv3hUdjUihseysXAYGBjA0NMS3336LZcuWAfjf\nApi/4uXsVNnU1dVx6NAhnDhxAv3790dERAQ+/fTT125pz8vLw7p16xAWFiYgKRFVFTyrk4hUCctO\nInovxsbGCA0NRUpKCjQ1NfHxxx9jypQpuH37tuhoRAqJZWfl0tLSwtdffw1HR0f5C7vXFUkymQy7\ndu1Cr169cOXKlcqOSSqsa9eumDhxIs6cOSNfpPU6urq60NLSwqFDhzB9+vRKTEhEVcXZs2dx48YN\nTnUSkcpg2UlEH8TQ0BAhISFITU2Frq4uWrVqBTc3N2RlZYmORqRQGjZsiIcPH6KgoEB0FHqJRCKB\no6MjBgwYgD59+sDZ2Rm3bt0SHYtUxPr161G/fn2cOnXqrfcbOXIk+vfvj6+//vof70tE9Fc8q5OI\nVA3LTiIqFwYGBggKCkJ6ejo++ugj2NrawtXVFTdu3BAdjUghqKmpoUmTJrh+/broKPQXGhoamDJl\nCtLT09G4cWO0adMG3t7eyM7OFh2NVMCBAwfw6aefvvH2nJwchIWFITAwED179oSpqWklpiMiZXf2\n7Flcv34dzs7OoqMQEVUalp1EVK7q1KmDpUuXIiMjA8bGxrCzs8PYsWN5+S4ReCm7oqtRowb8/f2R\nlJSE3NxcWFhYYMWKFSgsLBQdjaqwunXrwsDAAAUFBX/7t5aQkIBBgwbB398fS5YsQWRkJBo2bCgo\nKREpI57VSUSqiGUnEVUIfX19+Pv7IyMjA40bN4a9vT2cnZ2RlpYmOhqRMObm5iw7lYCRkRE2bNiA\n6OhonDlzBpaWlti5cydKS0tFR6MqLDw8HEuWLIFMJkNhYSG+/vprdOrUCc+fP0d8fDxmzJghOiIR\nKZmYmBhOdRKRSmLZSUQVqnbt2li4cCEyMzNhYWGBzz77DKNGjUJKSoroaESVjpOdysXKygoHDhxA\neHg4vv76a7Rt2xbHjx8XHYuqqK5du2Lp0qUICQnB6NGjMXPmTHh6euLMmTNo0aKF6HhEpIR4VicR\nqSqWnURUKfT09DB37lxkZmbCxsYGXbt2haOjIxITE0VHI6o0LDuV02effYZz585hzpw5cHd3R69e\nvZCQkCA6FlUx5ubmCAkJwezZs5GSkoKzZ89i4cKFUFNTEx2NiJRQTEwMMjIyONVJRCqJZScRVaoa\nNWrA19cXmZmZaNu2LXr27ImhQ4eyOCCVwLJTeUkkEgwbNgwpKSkYMGAAevXqhTFjxuD27duio1EV\n4unpiR49eqBRo0Zo37696DhEpMTKpjo1NTVFRyEiqnQsO4lICF1dXXh7eyMzMxMdOnRA7969MWjQ\nIPz666+ioxFVGGNjY+Tm5uLp06eio9B7enlzu4mJCVq3bg0fHx9ubqdys3XrVpw4cQKHDx8WHYWI\nlFRsbCzS09M51UlEKotlJxEJVb16dXh6euLGjRvo1q0b+vfvj/79+yM+Pl50NKJyJ5VKYWpqyunO\nKqBmzZrw9/dHYmIinjx5ws3tVG7q16+Pc+fOoVGjRqKjEJGS4lQnEak6lp1EpBC0tbUxffp0ZGZm\nonfv3hg6dCj69OmDc+fOiY5GVK54KXvVYmxsjI0bN+LUqVM4ffo0LC0tsWvXLm5upw/Srl27vy0l\nkslk8g8iojeJjY1FWloaxowZIzoKEZEwLDuJSKFUq1YNU6ZMwfXr1zFo0CCMHDkSDg4OOHv2rOho\nROXC3NycZWcVZG1tjYiICISHh2PNmjXc3E4VYv78+diyZYvoGESkwBYvXow5c+ZwqpOIVBrLTiJS\nSFpaWnBzc0N6ejqGDx8OZ2dndOvWDdHR0aKjEX0QTnZWbX/d3N67d28uYKNyIZFIMGLECPj6+uLG\njRui4xCRAjp37hxSU1Ph4uIiOgoRkVAsO4lIoWlqasLV1RVpaWlwcnLC+PHj0blzZ5w8eZKX8pFS\nYtlZ9b28ub1///7c3E7lpkWLFvD19YWLiwtKSkpExyEiBcOzOomI/sSyk4iUgoaGBsaOHYvU1FS4\nurrC3d0dn332GY4dO8bSk5QKy07V8fLm9kaNGnFzO5ULDw8PSCQSrFy5UnQUIlIg586dw7Vr1zjV\nSUQEQCJjS0BESqikpAQ//PADDh48iK1bt0JbW1t0JKJ3IpPJULNmTdy5cwe1atUSHYcq0b1797Bo\n0SIcOHAAvr6+mDJlCrS0tETHIiV08+ZN2NnZ4eTJk/j4449FxyEiBdC7d28MHjwYbm5uoqMQEQnH\nspOIlFrZxmOplIPqpDzatGmDDRs2oF27dqKjkAApKSnw8/PD1atXsWTJEowcOZI/w+hf27JlC1av\nXo34+Hheskqk4uLi4uDo6IiMjAz+PCAiAi9jJyIlJ5VKWRKQ0jEzM0N6erroGCRI2eb27du3Y/Xq\n1dzcTu9l7NixaNSoERYtWiQ6ChEJxg3sRESvYkNARERUyXhuJwFAp06dEBcXx83t9F4kEgk2bdqE\nLVu2IDY2VnQcIhLk/PnzSElJwdixY0VHISJSGCw7iYiIKpm5uTnLTgLAze30YerVq4d169bB2dkZ\neXl5ouMQkQCLFy+Gn58fpzqJiF7CspOIiKiScbKT/up1m9tnz56NJ0+eiI5GCm7w4MHo0KEDvL29\nRUchokp2/vx5JCUlcaqTiOgvWHYSERFVsrKykzsC6a9q1qyJgIAAJCYmIjs7G+bm5li5ciWeP38u\nOhopsNWrV+Pw4cM4cuSI6ChEVInKzurU0tISHYWISKGw7CQiIqpkH330EQDg0aNHgpOQojI2NsbG\njRtx6tQpnDp1CpaWlti1axdKS0tFRyMFpKenh61bt2LChAn8uUKkIuLj4znVSUT0Biw7iYiIKplE\nIuGl7PROrK2tcfDgwVc2t584cUJ0LFJA3bp1w7BhwzBlyhTRUYioEpSd1cmpTiKiv2PZSUREJICZ\nmRnS09NFxyAl8fLm9kmTJqFPnz64evWq6FikYJYtW4aEhATs3r1bdBQiqkDx8fFITEzEuHHjREch\nIlJILDuJiIgE4GQn/Vtlm9uTk5Px+eefw8HBAS4uLrhz547oaKQgtLW1ER4ejhkzZuDu3bui4xBR\nBeFUJxHR27HsJCIiEsDc3JxlJ70XTU1NTJ06Fenp6WjYsCFatWrFze0k17ZtW0ydOhXjxo3jEjSi\nKujChQu4evUqpzqJiN6CZScRqQS+4CNFw8lO+lDc3E5v4ufnh+zsbKxbt050FCIqZ5zqJCL6Zyw7\niajK27p1K4qKikTHIHpFWdnJIp4+1Os2t3/33Xfc3K7CNDQ0sGPHDixYsIBvqhBVIRcuXEBCQgLG\njx8vOgoRkUKTyPgqi4iqOGNjY8THx6NBgwaioxC9om7dukhMTIShoaHoKFSFnD59Gt7e3iguLkZw\ncDC6d+8uOhIJsmbNGuzatQtnz56Furq66DhE9IH69euHPn36YMqUKaKjEBEpNE52ElGVV7t2bWRn\nZ4uOQfQ3vJSdKkLZ5nZfX1+4ublxc7sKmzJlCnR1dREUFCQ6ChF9oIsXL+LKlSuc6iQiegcsO4mo\nymPZSYqKZSdVFIlEgi+++AIpKSnc3K7CpFIptm7dirCwMFy+fFl0HCL6AGVndVarVk10FCIihcey\nk4iqPJadpKjMzMyQnp4uOgZVYdzcTg0bNsTKlSvx5ZdforCwUHQcInoPFy9exOXLlznVSUT0jlh2\nElGVx7KTFJW5uTknO6lSvLy5/fHjxzA3N8eqVau4uV1FjB49GlZWVpg3b57oKET0Hvz9/eHr68up\nTiKid8QFRURERIJcvnwZY8aM4XmKVOlSUlLg6+uLxMREBAYGYsSIEZBK+R54Vfbw4UPY2Nhg9+7d\n6Ny5s+g4RPSOLl26hIEDB+L69essO4mI3hHLTiIiIkGePn0KQ0NDPH36lEUTCfHy5vbly5ejW7du\noiNRBfr5558xdepUJCQkoGbNmqLjENE7GDBgABwcHDB16lTRUYiIlAbLTiIiIoGMjIxw4cIFNGjQ\nQHQUUlEymQw//fQT/Pz8YGZmhqCgINjY2IiORRVk4sSJKCkpwebNm0VHIaJ/wKlOIqL3wzESIiIi\ngbiRnUR73eb2sWPHcnN7FbVixQpERUUhIiJCdBQi+gf+/v6YPXs2i04ion+JZScREZFALDtJUby8\nub1+/fpo1aoVfH19ubm9iqlRowa2b9+OSZMm4cGDB6LjENEb/Prrr7h48SImTJggOgoRkdJh2UlE\n9BaLFi1CixYtRMegKszMzAzp6emiYxDJ1axZE0uWLMHVq1fx6NEjWFhYcHN7FfPZZ5/B2dkZkyZN\nAk+0IlJMixcv5gZ2IqL3xLKTiBSWi4sL+vXrJzSDl5cXoqOjhWagqo2TnaSo6tevj02bNuHkyZOI\nioqClZUVdu/ejdLSUtHRqBz4+/sjIyMDO3bsEB2FiP6CU51ERB+GZScR0Vvo6urio48+Eh2DqjBz\nc3OWnaTQmjdvjoMHD2Lr1q1YtWoV7OzscPLkSdGx6ANpaWlh586d8PLywq1bt0THIaKX8KxOIqIP\nw7KTiJSSRCLBTz/99MrnGjdujJCQEPl/p6eno3PnzqhWrRosLCxw+PBh6OrqYtu2bfL7JCYmokeP\nHtDW1oa+vj5cXFyQk5Mjv52XsVNFMzU1xc2bN1FSUiI6CtFbde7cGefPn8fs2bMxceJE9O3bl0cw\nKLmWLVti1qxZGDt2LCd2iRTE5cuXceHCBU51EhF9AJadRFQllZaWYvDgwVBXV0dcXBy2bduGxYsX\nv3LmXH5+Pnr16gVdXV3Ex8dj//79iI2Nxbhx4wQmJ1Wjo6ODOnXqcPM1KYWXN7f36dMHqampLOqV\nnLe3N54/f47Vq1eLjkJE+POsztmzZ0NbW1t0FCIipaUuOgARUUX45ZdfkJaWhmPHjqF+/foAgFWr\nVqFDhw7y+3z33XfIz89HeHg4atSoAQDYuHEjunbtiuvXr6NZs2ZCspPqKTu3s3HjxqKjEL0TTU1N\nTJs2DTKZDBKJRHQc+gBqamrYsWMH2rdvDwcHB1hbW4uORKSyyqY6d+/eLToKEZFS42QnEVVJqamp\nMDY2lhedANCuXTtIpf/7sXft2jXY2NjIi04A+PTTTyGVSpGSklKpeUm1cUkRKSsWnVWDqakpAgMD\n4ezsjKKiItFxiFSWv78/fHx8ONVJRPSBWHYSkVKSSCSQyWSvfK48X6DxBTxVJjMzM559SERCTZw4\nEQYGBliyZInoKEQq6fLlyzh//jwmTpwoOgoRkdJj2UlESqlu3bq4f/++/L//+9//vvLflpaWuHfv\nHu7duyf/3MWLF19ZwGBlZYXExEQ8ffpU/rnY2FiUlpbCysqqgp8B0f9wspOIRJNIJNi8eTPWr1+P\n+Ph40XGIVA6nOomIyg/LTiJSaLm5ubhy5corH1lZWejWrRvWrl2Lixcv4vLly3BxcUG1atXkj+vZ\nsycsLCwwZswYJCQkIC4uDp6enlBXV5dPbY4ePRo6OjpwdnZGYmIiTp8+DTc3NwwZMoTndVKlMjc3\nZ9lJRMIZGRlhzZo1cHJyQkFBgeg4RCrjypUrOH/+PNzc3ERHISKqElh2EpFCO3PmDFq3bv3Kh5eX\nF1asWIGmTZuiS5cuGDZsGFxdXWFgYCB/nFQqxf79+/H8+XPY2dlhzJgxmDt3LiQSibwU1dHRQWRk\nJHJzc2FnZ4eBAwfC3t4eW7ZsEfV0SUU1bdoUt2/fRnFxsegoRKTihg8fjrZt28LX11d0FCKVwalO\nIqLyJZH99dA7IqIqKiEhAa1atcLFixdha2v7To/x8/NDVFQU4uLiKjgdqbomTZrgl19+4VQxEQmX\nnZ0NGxsbbNmyBT179hQdh6hKS0hIQJ8+fZCZmcmyk4ionHCyk4iqrP379+PYsWO4efMmoqKi4OLi\ngpYtW6JNmzb/+FiZTIbMzEycOHECLVq0qIS0pOp4biepmpKSEjx58kR0DHqN2rVrY/PmzRg3bhyy\ns7NFxyGq0vz9/eHt7c2ik4ioHLHsJKIq6+nTp5g6dSqsra0xevRoWFlZITIy8p02refk5MDa2hqa\nmpqYP39+JaQlVceyk1RNaWkpvvzyS7i5ueGPP/4QHYf+wsHBAQMHDsS0adNERyGqshISEhAbG8uz\nOomIyhnLTiKqspydnZGeno5nz57h3r17+O6771CvXr13emytWrXw/PlznD17FiYmJhWclIhlJ6ke\nDQ0NhIeHQ1tbG9bW1ggNDUVRUZHoWPSSoKAgxMfHY8+ePaKjEFVJZWd16ujoiI5CRFSlsOwkIiJS\nAGZmZkhPTxcdg+i9PH78+L22d9euXRuhoaGIjo7GkSNHYGNjg6PekGmFAAAgAElEQVRHj1ZAQnof\n1atXR3h4OKZOnYr79++LjkNUpVy9epVTnUREFYRlJxERkQLgZCcpqz/++AOtW7fGnTt33vtrWFtb\n4+jRowgODsa0adPQr18/lv8Kon379pg4cSJcXV3BvaZE5afsrE5OdRIRlT+WnUSkEu7evQsjIyPR\nMYjeqEmTJrh37x5evHghOgrROystLcWYMWMwYsQIWFhYfNDXkkgk6N+/P5KSktC5c2d8+umn8Pb2\nRk5OTjmlpfc1f/583L9/H99++63oKERVwtWrVxETE4NJkyaJjkJEVCWx7CQilWBkZITU1FTRMYje\nSENDAw0bNsSNGzdERyF6ZytXrkR2djaWLFlSbl9TS0sL3t7eSEpKwqNHj2BpaYnNmzejtLS03L4H\n/TuampoIDw+Hn58fMjMzRcchUnqc6iQiqlgSGa9HISIiUgh9+/aFu7s7+vfvLzoK0T+Ki4vDwIED\nER8fX6GL3C5cuIAZM2bgxYsXCAsLQ4cOHSrse9HbrVy5Evv27UN0dDTU1NRExyFSSomJiXBwcEBm\nZibLTiKiCsLJTiIiIgXBcztJWWRnZ2PkyJHYsGFDhRadANCuXTvExMRg5syZcHR0xKhRo/Dbb79V\n6Pek1/Pw8IC6ujpWrFghOgqR0vL394eXlxeLTiKiCsSyk4iISEGw7CRlIJPJ4Orqiv79+2PQoEGV\n8j0lEglGjx6N1NRUmJqaomXLlggICMCzZ88q5fvTn6RSKbZt24bly5fj6tWrouMQKZ3ExEScOXOG\nZ3USEVUwlp1EREQKwszMjBuoSeF98803yMrKwvLlyyv9e+vq6iIgIAAXL15EQkICrKyssGfPHm4J\nr0SNGzdGcHAwnJyc8Pz5c9FxiJRK2VRn9erVRUchIqrSeGYnERGRgrhx4wa6dOmC27dvi45CpFS6\ndOmCsLAwtGzZUnQUlSCTyTB48GBYWlriq6++Eh2HSCkkJSWhR48eyMzMZNlJRFTBONlJRASgsLAQ\noaGhomOQijMxMcGDBw94aS7RvzRixAg4ODhg0qRJ+OOPP0THqfIkEgk2btyIbdu24ezZs6LjECkF\nTnUSEVUelp1EpJL+OtReVFQET09P5OXlCUpEBKipqaFJkybIzMwUHYVIqUyaNAnXrl2DlpYWrK2t\nERYWhqKiItGxqjQDAwOsX78eY8aM4e9Oon+QlJSE06dPw93dXXQUIiKVwLKTiFTCvn37kJaWhpyc\nHAB/TqUAQElJCUpKSqCtrQ0tLS08efJEZEwiLikiek/6+voICwtDdHQ0fv75Z9jY2CAyMlJ0rCpt\n0KBB6NSpE2bNmiU6CpFC8/f3x6xZszjVSURUSVh2EpFKmDt3Ltq0aQNnZ2esW7cOZ86cQXZ2NtTU\n1KCmpgZ1dXVoaWnh0aNHoqOSimPZSfRhrK2tERkZiaCgIEyZMgUDBgzg/6cqUGhoKCIjI3H48GHR\nUYgUUtlU5+TJk0VHISJSGSw7iUglREdHY/Xq1cjPz8fChQvh7OyMESNGYN68efIXaPr6+njw4IHg\npKTqWHaSosrKyoJEIsHFixcV/ntLJBIMGDAAycnJ6NixI+zt7eHj44Pc3NwKTqp69PT0sG3bNkyY\nMIFvGBK9RkBAAKc6iYgqGctOIlIJBgYGGD9+PI4fP46EhAT4+PhAT08PERERmDBhAjp27IisrCwu\nhiHhWHaSSC4uLpBIJJBIJNDQ0EDTpk3h5eWF/Px8NGzYEPfv30erVq0AAKdOnYJEIsHDhw/LNUOX\nLl0wderUVz731+/9rrS0tODj44PExET88ccfsLS0xNatW1FaWlqekVVely5d4OjoCHd397+diU2k\nypKTkxEdHc2pTiKiSsayk4hUSnFxMYyMjODu7o4ff/wRe/fuRWBgIGxtbWFsbIzi4mLREUnFmZmZ\nIT09XXQMUmE9evTA/fv3cePGDSxZsgTffPMNvLy8oKamBkNDQ6irq1d6pg/93kZGRti6dSsiIiKw\nceNG2NnZITY2tpxTqrbAwEAkJSVh9+7doqMQKYyAgAB4enpyqpOIqJKx7CQilfLXF8rm5uZwcXFB\nWFgYTp48iS5duogJRvT/GjRogCdPnnC7MQmjpaUFQ0NDNGzYEKNGjcLo0aNx4MCBVy4lz8rKQteu\nXQEAdevWhUQigYuLCwBAJpMhODgYpqam0NbWxscff4ydO3e+8j38/f1hYmIi/17Ozs4A/pwsjY6O\nxtq1a+UTpllZWeV2CX27du0QExMDDw8PDB8+HKNHj8Zvv/32QV+T/qStrY3w8HB4eHjwf1Mi/DnV\nGRUVxalOIiIBKv+teSIigR4+fIjExEQkJyfj9u3bePr0KTQ0NNC5c2cMHToUwJ8v1Mu2tRNVNqlU\nClNTU1y/fv1fX7JLVBG0tbVRVFT0yucaNmyIvXv3YujQoUhOToa+vj60tbUBAPPmzcNPP/2EtWvX\nwsLCAufOncOECRNQu3ZtfP7559i7dy9CQkKwe/dufPzxx3jw4AHi4uIAAGFhYUhPT4elpSWWLl0K\n4M8y9c6dO+X2fKRSKb788ksMGjQIX331FVq2bImZM2di1qxZ8udA78fW1hbTpk3D2LFjERkZCamU\ncxWkusrO6tTV1RUdhYhI5fAvECJSGYmJiZg4cSJGjRqFkJAQnDp1CsnJyfj111/h7e0NR0dH3L9/\nn0UnCcdzO0lRxMfH47vvvkP37t1f+byamhr09fUB/HkmsqGhIfT09JCfn4+VK1fi22+/Re/evdGk\nSROMGjUKEyZMwNq1awEAt27dgpGRERwcHNCoUSO0bdtWfkannp4eNDU1oaOjA0NDQxgaGkJNTa1C\nnpuuri6WLFmCCxcu4PLly7C2tsbevXt55uQH8vPzQ25uLtatWyc6CpEwKSkpnOokIhKIZScRqYS7\nd+9i1qxZuH79OrZv3464uDicOnUKR48exb59+xAYGIg7d+4gNDRUdFQilp0k1NGjR6Grq4tq1arB\n3t4enTp1wpo1a97psSkpKSgsLETv3r2hq6sr/1i3bh0yMzMBAF988QUKCwvRpEkTjB8/Hnv27MHz\n588r8im9VdOmTbF3715s3rwZixYtQrdu3XD16lVheZSduro6duzYgYULFyItLU10HCIhys7q5FQn\nEZEYLDuJSCVcu3YNmZmZiIyMhIODAwwNDaGjowMdHR0YGBhg5MiR+PLLL3Hs2DHRUYlYdpJQnTp1\nwpUrV5CWlobCwkLs27cPBgYG7/TYsi3nhw4dwpUrV+QfycnJ8p+vDRs2RFpaGjZs2ICaNWti1qxZ\nsLW1RX5+foU9p3fRrVs3XL58GV988QV69OgBd3f3ct80ryosLCywaNEiODs7c/EfqZyUlBScPHkS\nU6ZMER2FiEhlsewkIpVQvXp15OXlQUdH5433uX79OmrUqFGJqYhej2UniaSjo4NmzZrBxMQEGhoa\nb7yfpqYmAKCkpET+OWtra2hpaeHWrVto1qzZKx8mJiby+1WrVg2ff/45Vq1ahQsXLiA5ORkxMTHy\nr/vy16xM6urqmDx5MlJTU6GhoQErKyusXr36b2eW0j+bPHky9PT0sGzZMtFRiCoVpzqJiMTjgiIi\nUglNmjSBiYkJZsyYgdmzZ0NNTQ1SqRQFBQW4c+cOfvrpJxw6dAjh4eGioxLBzMwM6enpomMQvZWJ\niQkkEgl+/vln9O/fH9ra2qhRowa8vLzg5eUFmUyGTp06IS8vD3FxcZBKpZg4cSK2bduG4uJitG/f\nHrq6uvjhhx+goaEBMzMzAEDjxo0RHx+PrKws6Orqys8GrUz6+vpYvXo13Nzc4OHhgfXr1yM0NBQO\nDg6VnkVZSaVSbNmyBW3atEHfvn1ha2srOhJRhbt27RpOnjyJTZs2iY5CRKTSWHYSkUowNDTEqlWr\nMHr0aERHR8PU1BTFxcUoLCzEixcvoKuri1WrVqFXr16ioxLByMgIBQUFyMnJgZ6enug4RK9Vv359\nLF68GHPnzoWrqyucnZ2xbds2BAQEoF69eggJCYG7uztq1qyJVq1awcfHBwBQq1YtBAUFwcvLC0VF\nRbC2tsa+ffvQpEkTAICXlxfGjBkDa2trPHv2DDdv3hT2HJs3b45jx47h4MGDcHd3R4sWLbBixQo0\na9ZMWCZl0qBBA4SGhsLJyQmXLl3itnuq8gICAjBz5kxOdRIRCSaRceUkEamQFy9eYM+ePUhOTkZR\nURFq166Npk2bok2bNjA3Nxcdj0guODgY48aNQ506dURHISIAz58/x6pVq7B8+XK4urpi3rx5PPrk\nHchkMjg6OqJBgwZYuXKl6DhEFebatWvo3LkzMjMz+bOBiEgwlp1EREQKqOzXs0QiEZyEiF527949\nzJkzB8eOHcPSpUvh7OwMqZTH4L/No0ePYGNjg507d6Jr166i4xBViFGjRuHjjz+Gn5+f6ChERCqP\nZScRqZyyH3svl0kslIiI6N+Ij4/H9OnTUVJSgtWrV8Pe3l50JIV2+PBhTJ48GQkJCTyeg6qc1NRU\ndOrUiVOdREQKgm9DE5HKKSs3pVIppFIpi04iUjlRUVGiIyg9Ozs7xMbGYvr06Rg2bBicnJxw9+5d\n0bEUVt++fdGrVy94eHiIjkJU7srO6mTRSUSkGFh2EhEREamQBw8ewMnJSXSMKkEqlcLJyQlpaWlo\n1KgRbGxsEBgYiMLCQtHRFNKKFStw+vRpHDhwQHQUonKTmpqKX375BVOnThUdhYiI/h/LTiJSKTKZ\nDDy9g4hUVWlpKcaMGcOys5zp6uoiMDAQFy5cwKVLl2BlZYV9+/bx981f6OrqYseOHXB3d8eDBw9E\nxyEqFwEBAfDw8OBUJxGRAuGZnUSkUh4+fIi4uDj069dPdBSiD1JYWIjS0lLo6OiIjkJKJDg4GBER\nETh16hQ0NDREx6myTpw4AQ8PD9StWxehoaGwsbERHUmh+Pr6IjU1Ffv37+dRMqTUys7qvH79OmrW\nrCk6DhER/T9OdhKRSrl37x63ZFKVsGXLFoSEhKCkpER0FFISsbGxWLFiBXbv3s2is4J1794dly9f\nxtChQ9GjRw9MmTIFjx49Eh1LYSxevBg3b97Etm3bREch+iB79uyBh4cHi04iIgXDspOIVErt2rWR\nnZ0tOgbRP9q8eTPS0tJQWlqK4uLiv5WaDRs2xJ49e3Djxg1BCUmZPH78GKNGjcKmTZvQqFEj0XFU\ngrq6OqZMmYJr165BKpXCysoKa9asQVFRkehowmlpaSE8PBw+Pj7IysoSHYfovchkMnh6emL27Nmi\noxAR0V+w7CQilcKyk5SFr68voqKiIJVKoa6uDjU1NQDA06dPkZKSgtu3byM5ORkJCQmCk5Kik8lk\nGD9+PAYNGoQBAwaIjqNyPvroI6xZswYnT57EgQMH0KpVKxw/flx0LOFsbGzg7e0NFxcXlJaWio5D\n9K9JJBJUr15d/vuZiIgUB8/sJCKVIpPJoKWlhby8PGhqaoqOQ/RGAwcORF5eHrp27YqrV68iIyMD\n9+7dQ15eHqRSKQwMDKCjo4OvvvoKn3/+uei4pMDWrFmD7du3IyYmBlpaWqLjqDSZTIaIiAh4enrC\nxsYGK1asgKmpqehYwpSUlKBz584YMmQIPD09RcchIiKiKoKTnUSkUiQSCWrVqsXpTlJ4n376KaKi\nohAREYFnz56hY8eO8PHxwdatW3Ho0CFEREQgIiICnTp1Eh2VFNivv/6KgIAA/PDDDyw6FYBEIsGg\nQYOQkpKC9u3bw87ODr6+vnj69Ok7Pb64uLiCE1YuNTU1bN++HUuXLkVycrLoOERUSZ4+fQoPDw+Y\nmJhAW1sbn376KS5cuCC/PS8vD9OmTUODBg2gra0NCwsLrFq1SmBiIlI26qIDEBFVtrJL2evVqyc6\nCtEbNWrUCLVr18Z3330HfX19aGlpQVtbm5fL0TvLzc2Fo6Mj1qxZo9LTg4qoWrVq8PPzw5gxY+Dn\n5wdLS0ssXboUzs7Ob9xOLpPJcPToURw+fBidOnXCiBEjKjl1xTA1NcWyZcvg5OSEuLg4XnVBpAJc\nXV1x9epVbN++HQ0aNMDOnTvRo0cPpKSkoH79+vD09MTx48cRHh6OJk2a4PTp05gwYQLq1KkDJycn\n0fGJSAlwspOIVA7P7SRl0KJFC1SrVg3Gxsb46KOPoKurKy86ZTKZ/IPodWQyGdzc3NCtWzc4OjqK\njkNvYGxsjO3bt2Pv3r24c+fOW+9bXFyM3NxcqKmpwc3NDV26dMHDhw8rKWnFcnV1hZGREQICAkRH\nIaIK9uzZM+zduxdfffUVunTpgmbNmmHRokVo1qwZ1q1bBwCIjY2Fk5MTunbtisaNG8PZ2RmffPIJ\nzp8/Lzg9ESkLlp1EpHJYdpIysLKywpw5c1BSUoK8vDz89NNPSEpKAvDnpbBlH0Svs3nzZiQlJSE0\nNFR0FHoHn3zyCebOnfvW+2hoaGDUqFFYs2YNGjduDE1NTeTk5FRSwoolkUjw7bffYuPGjYiLixMd\nh4gqUHFxMUpKSlCtWrVXPq+trY2zZ88CADp27IhDhw7J3wSKjY3FlStX0Lt370rPS0TKiWUnEakc\nlp2kDNTV1TFlyhTUrFkTz549Q0BAAD777DO4u7sjMTFRfj9uMaa/SkpKgp+fH3788Udoa2uLjkPv\n6J/ewHjx4gUAYNeuXbh16xamT58uP56gKvwcMDIywtq1a+Hs7Iz8/HzRcYiogtSoUQP29vZYsmQJ\n7t69i5KSEuzcuRPnzp3D/fv3AQCrV69Gy5Yt0ahRI2hoaKBz584ICgpCv379BKcnImXBspOIVA7L\nTlIWZQWGrq4usrOzERQUBAsLCwwZMgQ+Pj6Ii4uDVMpf5fQ/+fn5cHR0xPLly2FlZSU6DpUTmUwm\nP8vS19cXI0eOhL29vfz2Fy9eICMjA7t27UJkZKSomB9s2LBhsLOzw+zZs0VHIXpvN2/efOUKDFX9\nGD169BuP2wkPD4dUKkWDBg2gpaWF1atXY+TIkfK/adasWYPY2FgcPHgQly5dwqpVq+Dl5YWjR4++\n9uvJZDLhz1cRPmrXro3nz59X2L9tImUikfHALyJSMfPmzYOWlhbmz58vOgrRW718Ludnn32Gfv36\nwc/PDw8ePEBwcDB+//13WFtbY9iwYTA3NxeclhTB+PHjUVRUhO3bt0Mi4TEHVUVxcTHU1dXh6+uL\n77//Hrt3736l7HR3d8d//vMf6Onp4eHDhzA1NcX333+Phg0bCkz9fp48eQIbGxt8++23cHBwEB2H\niCpQfn4+cnNzYWRkBEdHR/mxPXp6etizZw8GDhwov6+rqyuysrJw/PhxgYmJSFlwHISIVA4nO0lZ\nSCQSSKVSSKVS2Nrays/sLCkpgZubGwwMDDBv3jwu9SAAf17efPbsWXzzzTcsOquQ0tJSqKur4/bt\n21i7di3c3NxgY2Mjv33ZsmUIDw/HwoUL8csvvyA5ORlSqRTh4eECU7+/WrVqYfPmzRg/fjx/V1Ol\n4xxQ5apevTqMjIyQnZ2NyMhIDBw4EEVFRSgqKpIvZSyjpqZWJY7sIKLKoS46ABFRZatdu7a8NCJS\nZLm5udi7dy/u37+PmJgYpKenw8rKCrm5uZDJZKhXrx66du0KAwMD0VFJsPT0dHh4eOD48ePQ1dUV\nHYfKSWJiIrS0tGBubo4ZM2agefPmGDRoEKpXrw4AOH/+PAICArBs2TK4urrKH9e1a1eEh4fD29sb\nGhoaouK/t549e2LQoEGYOnUqdu3aJToOqYDS0lIcOnQI+vr66NChA4+IqWCRkZEoLS2FpaUlrl+/\nDm9vb1haWmLs2LHyMzp9fX2hq6sLExMTREdHY8eOHQgODhYdnYiUBMtOIlI5nOwkZZGdnQ1fX1+Y\nm5tDU1MTpaWlmDBhAmrWrIl69eqhTp060NPTQ926dUVHJYEKCwvh6OgIf39/tGzZUnQcKielpaUI\nDw9HSEgIRo0ahRMnTmDDhg2wsLCQ32f58uVo3rw5ZsyYAeB/59b99ttvMDIykhed+fn5+PHHH2Fj\nYwNbW1shz+ffCgoKQuvWrfHjjz9i+PDhouNQFfX8+XPs2rULy5cvR/Xq1bF8+XJOxleCnJwc+Pn5\n4bfffoO+vj6GDh2KwMBA+c+s77//Hn5+fhg9ejQeP34MExMTBAQEYOrUqYKTE5GyYNlJRCqHZScp\nCxMTE+zbtw8fffQR7t+/DwcHB0ydOlW+qIQIALy8vNCsWTNMmjRJdBQqR1KpFMHBwbC1tcWCBQuQ\nl5eHBw8eyIuYW7du4cCBA9i/fz+AP4+3UFNTQ2pqKrKystC6dWv5WZ/R0dE4fPgwvvrqKzRq1Ahb\ntmxR+PM8dXR0EB4ejv79+6Njx44wNjYWHYmqkNzcXGzcuBGhoaFo3rw51q5di65du7LorCTDhw9/\n65sYhoaG2Lp1ayUmIqKqhvP5RKRyWHaSMunQoQMsLS3RqVMnJCUlvbbo5BlWqmvv3r04fPgwNm3a\nxBfpVZSjoyPS0tKwaNEieHt7Y+7cuQCAI0eOwNzcHG3atAEA+fl2e/fuxZMnT9CpUyeoq/8519C3\nb18EBARg0qRJOHHixBs3GisaOzs7TJo0Ca6urjxLkcrF77//jjlz5qBp06a4dOkSDh06hMjISHTr\n1o0/Q4mIqhCWnUSkclh2kjIpKzLV1NRgYWGB9PR0HDt2DAcOHMCPP/6Imzdv8mwxFXXz5k24u7vj\n+++/R61atUTHoQq2YMECPHjwAL169QIAGBkZ4ffff0dhYaH8PkeOHMGxY8fQsmVL+Rbj4uJiAECD\nBg0QFxcHKysrTJgwofKfwHuaN28e/vvf/2Ljxo2io5ASy8jIgJubG6ytrZGbm4v4+Hjs3r0brVu3\nFh2NSKi8vDy+mURVEi9jJyKVw7KTlIlUKsWzZ8/wzTffYP369bhz5w5evHgBADA3N0e9evXwxRdf\n8BwrFfPixQuMGDECvr6+sLOzEx2HKkmtWrXQuXNnAIClpSVMTExw5MgRDBs2DDdu3MC0adPQokUL\neHh4AID8MvbS0lJERkZiz549OHbs2Cu3KToNDQ2Eh4ejU6dO6N69O5o1ayY6EimRixcvIigoCKdO\nnYK7uzvS0tJ4zjXRS4KDg9G2bVsMGDBAdBSiciWRscYnIhUjk8mgqamJgoICpdxSS6onLCwMK1as\nQN++fWFmZoaTJ0+iqKgIHh4eyMzMxO7du+Hi4oKJEyeKjkqVxNvbG6mpqTh48CAvvVRhP/zwA6ZM\nmQI9PT0UFBTA1tYWQUFBaN68OYD/LSy6ffs2vvjiC+jr6+PIkSPyzyuT0NBQ7NmzB6dPn5Zfsk/0\nOjKZDMeOHUNQUBCuX78OT09PuLq6QldXV3Q0IoWze/dubNy4EVFRUaKjEJUrlp1EpJLq1q2L5ORk\nGBgYiI5C9FYZGRkYOXIkhg4dipkzZ6JatWooKCjAihUrEBsbiyNHjiAsLAzffvstEhMTRcelSnD4\n8GG4ubnh8uXLqFOnjug4pAAOHz4MS0tLNG7cWH6sRWlpKaRSKV68eIG1a9fCy8sLWVlZaNiwoXyZ\nkTIpLS1Fjx494ODgAF9fX9FxSAEVFxdjz549CA4ORnFxMXx8fDBixAi+sU30FkX/x959RzV1P+4D\nfwKCslwIDoaCBFDqAid1a91U6wJRlCXUGfdERaufFkUFV51AVVAcrbYObF24J4IoW4YLFXEhoIzk\n94c/8y111CpwSfK8zsk5Ztx7n1gPJU/eo7AQDRo0wMGDB9G8eXOh4xCVGi7yRUQqiVPZSVGoqakh\nNTUVEokEVapUAfBml+JWrVohPj4eANCtWzfcvn1byJhUTu7evQt3d3eEhYWx6CS5Pn36wNzcXH4/\nLy8POTk5AIDExET4+/tDIpEobNEJvPlZGBISguXLlyMmJkboOFSB5OXlYe3atbC0tMTPP/+MxYsX\n4/r163BxcWHRSfQvNDQ0MG7cOKxatUroKESlimUnEakklp2kKMzMzKCmpobz58+XeHzv3r2wt7dH\ncXExcnJyUK1aNTx//lyglFQeioqK4OzsjAkTJqBDhw5Cx6EK6O2ozv3796Nr165YuXIlNm7ciMLC\nQqxYsQIAFG76+t+ZmprC398fLi4ueP36tdBxSGDZ2dlYtGgRzMzM8NdffyE0NBSnTp1C3759Ffrf\nOVF58/Lywm+//YasrCyhoxCVmoq/KjkRURlg2UmKQk1NDRKJBB4eHmjfvj1MTU0RFRWFkydP4o8/\n/oC6ujrq1KmDrVu3ykd+knJatGgRNDU1OYWX/tWwYcNw9+5d+Pj4ID8/H1OnTgUAhR3V+XcjR47E\nvn37MH/+fPj5+QkdhwRw+/ZtrFixAlu3bsV3332HyMhIWFtbCx2LSGHVqlULgwYNwoYNG+Dj4yN0\nHKJSwTU7iUglDRs2DA4ODnB2dhY6CtG/Kioqws8//4zIyEhkZWWhdu3amDx5Mtq1ayd0NConx48f\nx4gRIxAVFYU6deoIHYcUxOvXrzF79mwEBATAyckJGzZsgJ6e3juvk8lkkMlk8pGhFV1WVhaaNm2K\nXbt2cZSzComNjcWyZctw8OBBuLu7Y9KkSTAyMhI6FpFSiI2NRc+ePZGeng5NTU2h4xB9MZadRKSS\nxo4dCxsbG4wbN07oKESf7NmzZygsLEStWrU4RU+FPHz4ELa2tvjll1/QvXt3oeOQAoqOjsa+ffsw\nYcIE6Ovrv/N8cXEx2rZtCz8/P3Tt2lWAhP/d77//jkmTJiEmJua9BS4pB5lMhtOnT8PPzw9RUVHI\nzMwUOhIRESkAxfj6loiolHEaOymi6tWrw8DAgEWnCpFKpRg5ciTc3NxYdNJna968OXx9fd9bdAJv\nlsuYPXs2PDw8MHDgQKSmppZzwv/u22+/RZcuXeRT9Em5SKVS7Nu3D/b29vDw8ED//v2RlpYmdCwi\nIlIQLDuJSCWx7CQiRbB06VLk5eXB19dX6CikxEQiEQYOHIG+X5oAACAASURBVIi4uDjY2dmhVatW\nmDt3Ll6+fCl0tI9auXIl/vrrLxw4cEDoKFRKXr9+jS1btqBx48ZYsmQJpk6dioSEBHh5eXFdaiIi\n+mQsO4lIJbHsJKKK7uzZs1i5ciXCwsJQqRL3lKSyp6Wlhblz5+L69evIyMiAtbU1tm3bBqlUKnS0\n96patSpCQkLg5eWFx48fCx2HvsCLFy+wbNkymJubY/fu3fj5559x6dIlDB48WOE31SIiovLHNTuJ\nSCXl5eVBKpVCV1dX6ChEn+zt/7I5jV35ZWdnw9bWFmvWrIGDg4PQcUhFnTt3DhKJBJUqVUJgYCBa\nt24tdKT3mjZtGtLT07F7927+fFQwmZmZWLVqFTZt2oQePXpgxowZaN68udCxiIhIwXFkJxGpJG1t\nbRadpHCio6Nx8eJFoWNQGZPJZHB3d8egQYNYdJKg7O3tcfHiRXh7e2PAgAFwdXWtkBvELF68GPHx\n8QgNDRU6Cn2i5ORkeHl5wcbGBi9fvsTly5cRFhZW4YrOkJCQcv998eTJkxCJRBytTB+Unp4OkUiE\nK1euCB2FqMJi2UlERKQgTp48ibCwMKFjUBlbtWoV7t+/j59++knoKERQU1ODq6srEhISULt2bTRp\n0gR+fn54/fq10NHkqlSpgu3bt2PKlCm4c+eO0HFUzn+ZKHj58mUMHjwY9vb2qFu3LhITE7F69WqY\nmZl9UYbOnTtj/Pjx7zz+pWWlo6NjuW/YZW9vj8zMzA9uKEbKzdXVFf369Xvn8StXrkAkEiE9PR0m\nJibIzMyscF8OEFUkLDuJiIgUhFgsRnJystAxqAxduXIFS5YsQXh4ODQ1NYWOQyRXtWpV+Pn54fz5\n8zh37hxsbGywf//+/1R0laUWLVpAIpHAzc2twq4xqoyePn36r0sHyGQyREREoEuXLhg8eDA6dOiA\ntLQ0LFy4EAYGBuWU9F0FBQX/+hotLS0YGhqWQ5r/o6mpiTp16nBJBvogdXV11KlT56PreRcWFpZj\nIqKKh2UnERGRgmDZqdyeP38OR0dHrF27Fubm5kLHIXovsViM/fv3Y+3atZg9ezZ69uyJmzdvCh0L\nADBz5kzk5uZi7dq1QkdRejdu3EDfvn3RuHHjj/73l8lkmDFjBqZPnw4PDw+kpKRAIpEIspTQ2xFz\nfn5+MDY2hrGxMUJCQiASid65ubq6Anj/yNBDhw6hTZs20NLSgr6+PhwcHPDq1SsAbwrUmTNnwtjY\nGNra2mjVqhWOHDkiP/btFPVjx46hTZs20NbWRsuWLREVFfXOaziNnT7kn9PY3/6bOXToEFq3bg1N\nTU0cOXIEd+7cQf/+/VGzZk1oa2vD2toaO3fulJ8nNjYW3bt3h5aWFmrWrAlXV1c8f/4cAPDnn39C\nU1MT2dnZJa49Z84cNG3aFMCb9cWHDRsGY2NjaGlpwcbGBsHBweX0t0D0cSw7iYiIFISZmRnu3r3L\nb+uVkEwmg5eXF3r06IEhQ4YIHYfoX/Xs2RMxMTHo168fOnfujIkTJ+LJkyeCZqpUqRK2bt2KhQsX\nIiEhQdAsyurq1av4+uuv0bJlS+jo6CAyMhI2NjYfPeaHH37A9evXMWLECGhoaJRT0veLjIzE9evX\nERERgWPHjsHR0RGZmZny25EjR6CpqYlOnTq99/iIiAh8++23+Oabb3D16lWcOHECnTp1ko8mdnNz\nQ2RkJMLCwnDjxg2MGjUKDg4OiImJKXGe2bNn46effkJUVBT09fUxfPjwCjNKmhTXzJkzsXjxYiQk\nJKBNmzYYO3Ys8vLycOLECdy8eRMBAQGoXr06ACA3Nxc9e/aErq4uLl26hN9++w3nzp2Du7s7AKBb\nt26oVasWdu/eLT+/TCZDWFgYRowYAQB49eoVbG1tceDAAdy8eRMSiQTe3t44duxY+b95on/48Lhn\nIiIiqlA0NTVhZGSEtLQ0WFpaCh2HStGmTZuQkJCACxcuCB2F6JNpaGhg4sSJGDZsGObPn49GjRrB\n19cXo0eP/uj0yrIkFouxaNEiuLi44Ny5c4KXa8okNTUVbm5uePLkCR48eCAvTT5GJBKhSpUq5ZDu\n01SpUgVBQUGoXLmy/DEtLS0AwKNHj+Dl5YUxY8bAzc3tvcf/8MMPGDx4MBYvXix/7O0ot1u3bmHH\njh1IT0+HqakpAGD8+PE4evQoNmzYgHXr1pU4T5cuXQAA8+fPR/v27XHv3j0YGxuX7hsmhRQREfHO\niOJPWZ7D19cXPXr0kN/PyMjAoEGD0KxZMwAosTZuWFgYcnNzsW3bNujp6QEANm7ciC5duiAlJQUW\nFhZwcnJCaGgovv/+ewDA2bNncefOHTg7OwMAjIyMMH36dPk5vby8cPz4cezYsQPdunX7zHdPVDo4\nspOIiEiBcCq78rl+/Trmzp2L8PBw+YduIkViYGCAn3/+GX/++SfCw8Nha2uLEydOCJZnzJgxqFmz\nJn788UfBMiiLhw8fyv9sbm6Ovn37olGjRnjw4AGOHj0KNzc3zJs3r8TU2Irsq6++KlF0vlVQUICB\nAweiUaNGWL58+QePv3bt2gdLnKioKMhkMjRu3Bi6urry28GDB3Hr1q0Sr31bkAJAvXr1ALwpW4kA\noGPHjoiOji5x+5QNKlu2bFnivkQiweLFi9GuXTv4+Pjg6tWr8ufi4+PRtGlTedEJvNkcS01NDXFx\ncQCAESNG4OzZs8jIyAAAhIaGolOnTvJSvri4GEuWLEHTpk2hr68PXV1d/Prrr7h9+/YX/x0QfSmW\nnURERApELBYjKSlJ6BhUSnJzc+Ho6Ijly5fD2tpa6DhEX6RZs2Y4ceIE5s+fDzc3NwwaNAhpaWnl\nnkMkEiEoKAhr1qyRr2lHn04qlWLx4sWwsbHBkCFDMHPmTPm6nL169cKzZ8/Qtm1bjB07Ftra2oiM\njISzszN++OEH+Xp/5a1q1arvvfazZ89QrVo1+X0dHZ33Hu/t7Y2nT58iPDwc6urqn5VBKpVCJBLh\n8uXLJUqq+Ph4BAUFlXjt30ccv92IiBtr0Vva2tqwsLAocfuUUb///Pft4eGBtLQ0uLm5ISkpCfb2\n9vD19f3X87z9N2lrawtra2uEhYWhsLAQu3fvlk9hBwB/f38sX74c06dPx7FjxxAdHY0BAwZ80uZf\nRGWNZScREZEC4chO5TJ+/Hi0adMGI0eOFDoKUakQiUQYPHgw4uPj0aJFC7Rs2RI+Pj54+fJlueYw\nMjJCYGAgXFxckJ+fX67XVmTp6eno3r079u/fDx8fH/Tq1QuHDx+Wb/rUqVMn9OjRA+PHj8exY8ew\ndu1anDp1CitXrkRISAhOnTolSG4rKyv5yMq/i4qKgpWV1UeP9ff3x4EDB3DgwAFUrVr1o69t0aLF\nB9cjbNGiBWQyGR48ePBOUWVkZPTf3hBRKTE2NoaXlxd27dqFRYsWYePGjQCARo0aITY2Fjk5OfLX\nnjt3DlKpFI0aNZI/NmLECISGhiIiIgK5ubkYPHiw/LkzZ87AwcEBLi4uaN68ORo2bMgv5KnCYNlJ\nRESkQCwtLVl2KomtW7fiwoULWLNmjdBRiEqdlpYWfHx8EBMTg7S0NFhbW2P79u3lugnLsGHD0KxZ\nM8yePbvcrqnoTp8+jYyMDBw8eBDDhg3DnDlzYG5ujqKiIrx+/RoA4OnpifHjx8PExER+nEQiQV5e\nHhITEwXJPWbMGKSmpmLChAmIiYlBYmIiVq5ciR07dpRYU/Cfjh49ijlz5mDdunXQ0tLCgwcP8ODB\ngw+OUJ07dy52794NHx8fxMXF4ebNm1i5ciXy8vJgaWmJ4cOHw9XVFXv27EFqaiquXLkCf39//Prr\nr2X11ok+SCKRICIiAqmpqYiOjkZERAQaN24MABg+fDi0tbUxcuRIxMbG4tSpU/D29sbAgQNhYWEh\nP8fw4cMRFxeHefPmwcHBocQXApaWljh27BjOnDmDhIQEjB8/XpDR/ETvw7KTiIhIgXBkp3JITEzE\n1KlTER4e/s4mBETKxNjYGKGhoQgPD0dAQAC+/vprXL58udyuv3btWuzevRvHjx8vt2sqsrS0NBgb\nGyMvLw/Am92XpVIpevfuLV/r0szMDHXq1CnxfH5+PmQyGZ4+fSpIbnNzc5w6dQrJycno0aMHWrdu\njZ07d2L37t3o3bv3B487c+YMCgsLMXToUNStW1d+k0gk7319nz598Ntvv+Hw4cNo0aIFOnXqhBMn\nTkBN7c3H6uDgYLi5uWHGjBmwtrZGv379cOrUKdSvX79M3jfRx0ilUkyYMAGNGzfGN998g9q1a+OX\nX34B8Gaq/JEjR/DixQu0bt0a/fv3R7t27d5ZcqF+/fpo3749YmJiSkxhBwAfHx+0bt0avXv3RseO\nHaGjo4Phw4eX2/sj+hiRrDy/XiUiIqIvUlRUBF1dXTx79qxC7XBLny4/P1++3p23t7fQcYjKjVQq\nRUhICObOnYtevXrhxx9/lJdmZenw4cP4/vvvcf369RLrN9K7EhIS4OjoCAMDAzRo0AA7d+6Erq4u\ntLW10aNHD0ydOhVisfid49atW4fNmzdj7969JXZ8JiIiEgJHdhIRESmQSpUqoX79+khNTRU6Cn2m\nqVOnwtraGl5eXkJHISpXampqcHd3R2JiIgwMDPDVV19h6dKl8unRZaV3797o06cPJk6cWKbXUQbW\n1tb47bff5CMSg4KCkJCQgB9++AFJSUmYOnUqACAvLw8bNmzApk2b0L59e/zwww/w9PRE/fr1y3Wp\nAiIiovdh2UlERKRgOJVdce3evRtHjhzBxo0b5budEqmaqlWrYunSpTh//jxOnz4NGxsb/P7772Va\nki1btgxnz57l2omfwNzcHHFxcfj6668xdOhQVK9eHcOHD0fv3r2RkZGBrKwsaGtr486dOwgICECH\nDh2QnJyMsWPHQk1NjT/biIhIcCw7iYiIFIxYLOZulwooNTUV48aNQ3h4OKfSEuHNz7I//vgDa9as\nwcyZM9GrVy/ExcWVybV0dXWxdetWjB07Fg8fPiyTayiigoKCd0pmmUyGqKgotGvXrsTjly5dgqmp\nKfT09AAAM2fOxM2bN/Hjjz9y7WEiIqpQWHYSEREpGI7sVDwFBQVwcnLCnDlz0LJlS6HjEFUovXr1\nwvXr19GnTx906tQJEomkTDa6sbe3h7u7O0aPHq3SU61lMhkiIiLQpUsXTJky5Z3nRSIRXF1dsX79\neqxatQq3bt2Cj48PYmNjMXz4cPl60W9LTyIiooqGZScRqaTCwkLk5+cLHYPos1haWrLsVDCzZ8/+\n6A6/RKpOQ0MDEokEcXFxeP36NaytrbF+/XoUFxeX6nV8fX1x+/ZtBAcHl+p5FUFRURFCQ0PRvHlz\nzJgxA56enli5cuV7p517e3vD3Nwc69atwzfffIMjR45g1apVcHJyEiA5ERHRf8Pd2IlIJZ06dQoJ\nCQncIIQUUkZGBr7++mvcvXtX6Cj0CQ4cOICxY8fi2rVr0NfXFzoOkUKIjo6GRCLBs2fPEBgYiM6d\nO5fauWNjY9G1a1dcunRJJXYOz83NRVBQEJYvX44GDRrIlwz4lLU1ExMToa6uDgsLi3JISkQVXWxs\nLHr16oW0tDRoamoKHYfogziyk4hU0vXr1xETEyN0DKLPYmJiguzsbOTl5Qkdhf7F3bt34enpibCw\nMBadRP9B8+bNcfLkSfj4+MDV1RVDhgxBenp6qZy7SZMmmDFjBkaNGlXqI0crkuzsbCxcuBBmZmY4\nceIEwsPDcfLkSfTu3fuTNxGysrJi0UlEck2aNIGVlRX27NkjdBSij2LZSUQq6enTp6hevbrQMYg+\ni5qaGszNzZGSkiJ0FPqIoqIiDBs2DBKJBO3btxc6DpHCEYlEGDJkCOLj49G0aVPY2dlh3rx5yM3N\n/eJzv12rMiAg4IvPVdFkZGRg4sSJEIvFuHv3Lk6fPo1ff/0Vbdq0EToaESkBiUSCgIAAlV77mCo+\nlp1EpJKePn2KGjVqCB2D6LNxk6KKz9fXF1paWpg5c6bQUYgUmpaWFubNm4fo6GjcunUL1tbWCAsL\n+6IP2urq6ggJCcFPP/2EGzdulGJa4Vy/fh0jRoyAra0ttLS0cOPGDWzatAlWVlZCRyMiJdKvXz9k\nZ2fjwoULQkch+iCWnUSkklh2kqJj2VmxpaamIjg4GNu2bYOaGn/dIioNJiYmCAsLw44dO7B8+XK0\nb98eV65c+ezzmZub48cff4SLiwsKCgpKMWn5kclkiIyMRJ8+fdCrVy80adIEqamp8PPzQ7169YSO\nR0RKSF1dHRMmTEBgYKDQUYg+iL99E5FKYtlJik4sFiMpKUnoGPQBZmZmSEhIQO3atYWOQqR02rdv\nj0uXLsHd3R0ODg5wd3fHgwcPPutcHh4eMDY2xsKFC0s5ZdkqLi7Gr7/+irZt28LLywsDBw5EWloa\nZs6ciWrVqgkdj4iUnJubG/78809ulkkVFstOIlJJ+/btw8CBA4WOQfTZLC0tObKzAhOJRNDT0xM6\nBpHSUldXh4eHBxISEqCvr4+vvvoKy5Ytw+vXr//TeUQiETZt2oQtW7bg/PnzZZS29Lx+/RqbN29G\n48aN4efnh5kzZyIuLg6enp6oXLmy0PGISEVUq1YNI0aMwNq1a4WOQvReIhlXlSUiIlI49+7dg52d\n3WePZiIiUiZJSUmYMmUKEhMTsWLFCvTr1++TdxwHgL1792LWrFmIjo6Gjo5OGSb9PM+fP8f69esR\nGBiI5s2bY+bMmejYseN/eo9ERKUpOTkZ9vb2yMjIgLa2ttBxiEpg2UlERKSAZDIZdHV1kZmZiapV\nqwodh4ioQjh8+DAmT56MBg0aYOXKlWjUqNEnHzty5Ejo6upi3bp1ZZjwv8nMzERAQAA2b96M3r17\nY8aMGWjatKnQsYiIAAAODg749ttvMXr0aKGjEJXAaexEREQKSCQSwcLCAikpKUJHUTnx8fHYs2cP\nTp06hczMTKHjENHf9O7dG7GxsejZsyc6duyISZMm4enTp5907KpVq3DgwAEcOXKkjFP+u8TERIwe\nPRo2NjZ49eoVrl69iu3bt7PoJKIKRSKRIDAwEBxDRxUNy04iIiIFxR3Zy99vv/2GoUOHYuzYsRgy\nZAh++eWXEs/zl30i4WloaGDy5Mm4efMm8vPzYW1tjQ0bNqC4uPijx1WvXh3BwcHw8PDAkydPyilt\nSRcvXsTAgQPRoUMHGBsbIykpCYGBgWjQoIEgeYiIPqZbt24AgGPHjgmchKgklp1EpLREIhH27NlT\n6uf19/cv8aHD19cXX331Valfh+jfsOwsX48ePYKbmxs8PT2RnJyM6dOnY+PGjXjx4gVkMhlevXrF\n9fOIKhBDQ0Ns2LABERERCA0NhZ2dHSIjIz96TLdu3TBo0CCMGzeunFK++ZLk8OHD6Ny5MxwdHdGl\nSxekpaVhwYIFqFWrVrnlICL6r0QikXx0J1FFwrKTiCoMV1dXiEQieHh4vPPczJkzIRKJ0K9fPwGS\nfdy0adP+9cMTUVkQi8VISkoSOobKWLp0Kbp06QKJRIJq1arBw8MDhoaGcHNzQ9u2bTFmzBhcvXpV\n6JhE9A8tWrRAZGQk5syZg5EjR2Lo0KHIyMj44Ot//PFHXLt2DTt37izTXIWFhdi+fTuaNWuGWbNm\nYfTo0UhOTsaECRMq5CZJRETvM3z4cFy4cIFLK1GFwrKTiCoUExMT7Nq1C7m5ufLHioqKsHXrVpia\nmgqY7MN0dXWhr68vdAxSQRzZWb60tLSQn58vX//Px8cH6enp6NSpE3r16oWUlBRs3rwZBQUFAicl\non8SiUQYOnQo4uPj8dVXX8HW1hbz588v8fvGW9ra2ti2bRskEgnu3btX6llyc3OxatUqiMVibNmy\nBUuXLkV0dDSGDx8ODQ2NUr8eEVFZ0tbWhqenJ1avXi10FCI5lp1EVKE0bdoUYrEYu3btkj928OBB\nVKlSBZ07dy7x2uDgYDRu3BhVqlSBpaUlVq5cCalUWuI1T548wZAhQ6CjowNzc3Ns3769xPOzZs2C\nlZUVtLS00KBBA8yYMQOvXr0q8ZqlS5eiTp060NXVxciRI/Hy5csSz/9zGvvly5fRo0cP1KpVC1Wr\nVkX79u1x/vz5L/lrIXovS0tLlp3lyNDQEOfOncOUKVPg4eGBDRs24MCBA5g4cSIWLlyIQYMGITQ0\nlJsWEVVg2tramD9/Pq5du4bk5GRYW1tjx44d76y326pVK0ybNg0PHz4stbV4Hz9+DF9fX5iZmSEy\nMhK7du3CiRMn0KtXLy6BQUQKbdy4cdi2bRueP38udBQiACw7iagC8vDwQFBQkPx+UFAQ3NzcSnwQ\n2LRpE+bMmYNFixYhPj4ey5cvh5+fH9atW1fiXIsWLUL//v0RExMDR0dHuLu74/bt2/LndXR0EBQU\nhPj4eKxbtw47d+7EkiVL5M/v2rULPj4+WLhwIaKiomBlZYUVK1Z8NH9OTg5cXFxw+vRpXLp0Cc2b\nN0efPn2QnZ39pX81RCUYGhqioKDgk3capi8zYcIEzJs3D3l5eRCLxWjWrBlMTU3lm57Y29tDLBYj\nPz9f4KRE9G9MTU2xY8cOhIWFYdmyZejQocM7y1BMmzYNTZo0+eIiMj09HRMnToSlpSXu37+P06dP\nY+/evWjduvUXnZeIqKIwNjZGjx49EBwcLHQUIgCASMZtQ4mognB1dcXjx4+xbds21KtXD9evX4ee\nnh7q16+P5ORkzJ8/H48fP8aBAwdgamqKJUuWwMXFRX58QEAANm7ciLi4OABvpqzNmjULP/74I4A3\n0+GrVq2KjRs3YsSIEe/NsH79evj7+8vXnLG3t4eNjQ02bdokf0337t2RkpKC9PR0AG9Gdu7Zswc3\nbtx47zllMhnq1auHZcuWffC6RJ/Lzs4OP//8Mz80l5HCwkK8ePGixFIVMpkMaWlpGDBgAA4fPgwj\nIyPIZDI4OTnh2bNnOHLkiICJiei/Ki4uRnBwMHx8fNCvXz/873//g6Gh4RefNyYmBkuXLkVERARG\njx4NiUSCunXrlkJiIqKK5/z58xgxYgSSkpKgrq4udBxScRzZSUQVTo0aNfDdd98hKCgIv/zyCzp3\n7lxivc6srCzcuXMH3t7e0NXVld9mzZqFW7dulThX06ZN5X+uVKkSDAwM8OjRI/lje/bsQfv27eXT\n1CdPnlxi5Gd8fDzatWtX4pz/vP9Pjx49gre3NywtLVGtWjXo6enh0aNHJc5LVFq4bmfZCQ4OhrOz\nM8zMzODt7S0fsSkSiWBqaoqqVavCzs4Oo0ePRr9+/XD58mWEh4cLnJqI/it1dXV4enoiMTER1atX\nx++//46ioqLPOpdMJsO1a9fQu3dv9OnTB82aNUNqaip++uknFp1EpNTatm0LfX19HDhwQOgoRKgk\ndAAiovdxd3fHqFGjoKuri0WLFpV47u26nOvXr4e9vf1Hz/PPhf5FIpH8+AsXLsDJyQkLFizAypUr\n5R9wpk2b9kXZR40ahYcPH2LlypVo0KABKleujG7dunHTEioTLDvLxtGjRzFt2jSMHTsW3bt3x5gx\nY9C0aVOMGzcOwJsvTw4dOgRfX19ERkaiV69eWLJkCapXry5wciL6XNWqVYO/vz+kUinU1D5vTIhU\nKsWTJ08wePBg7Nu3D5UrVy7llEREFZNIJMKkSZMQGBiI/v37Cx2HVBzLTiKqkLp16wZNTU08fvwY\nAwYMKPFc7dq1Ua9ePdy6dQsjR4787GucPXsWRkZGmDdvnvyxjIyMEq9p1KgRLly4AHd3d/ljFy5c\n+Oh5z5w5g1WrVqFv374AgIcPH3LDEiozYrGY06ZLWX5+Pjw8PODj44PJkycDeLPmXm5uLhYtWoRa\ntWpBLBbjm2++wYoVK/Dq1StUqVJF4NREVFo+t+gE3owS7dq1KzccIiKVNHjwYEyfPh3Xr18vMcOO\nqLyx7CSiCkkkEuH69euQyWTvHRWxcOFCTJgwAdWrV0efPn1QWFiIqKgo3Lt3D7Nnz/6ka1haWuLe\nvXsIDQ1Fu3btcOTIEezYsaPEayQSCUaOHIlWrVqhc+fO2LNnDy5evIiaNWt+9Lzbt29HmzZtkJub\nixkzZkBTU/O//QUQfSKxWIzVq1cLHUOprF+/Hra2tiW+5Pjrr7/w7NkzmJiY4N69e6hVqxaMjY3R\nqFEjjtwiohJYdBKRqtLU1MSYMWOwatUqbN68Weg4pMK4ZicRVVh6enqoWrXqe5/z9PREUFAQtm3b\nhmbNmqFDhw7YuHEjzMzMPvn8Dg4OmD59OiZNmoSmTZvir7/+emfKvKOjI3x9fTF37ly0aNECsbGx\nmDJlykfPGxQUhJcvX8LOzg5OTk5wd3dHgwYNPjkX0X9haWmJ5ORkcL/B0tOuXTs4OTlBR0cHAPDT\nTz8hNTUV+/btw4kTJ3DhwgXEx8dj27ZtAFhsEBEREb3l7e2NvXv3IisrS+gopMK4GzsREZGCq1mz\nJhITE2FgYCB0FKVRWFgIDQ0NFBYW4sCBAzA1NYWdnZ18LT9HR0c0a9YMc+bMEToqERERUYXi4eEB\nc3NzzJ07V+gopKI4spOIiEjBcZOi0vHixQv5nytVerPSj4aGBvr37w87OzsAb9byy8nJQWpqKmrU\nqCFITiIiIqKKTCKR4OXLl5x5RILhmp1EREQK7m3ZaW9vL3QUhTV58mRoa2vDy8sL9evXh0gkgkwm\ng0gkKrFZiVQqxZQpU1BUVIQxY8YImJiIiIioYmratCmaNGkidAxSYSw7iYiIFBxHdn6ZLVu2IDAw\nENra2khJScGUKVNgZ2cnH935VkxMDFauXIkTJ07g9OnTAqUlIiIiqvi4pjkJidPYiYiIFBzLzs/3\n5MkT7NmzBz/99BP279+PS5cuwcPDA3v37sWzZ89KvNbMzAytW7dGcHAwTE1NBUpMREREREQfw7KT\niIhIwYnFYiQlJQkdQyGpqamhR48esLGxQbdu3RAfByECrAAAIABJREFUHw+xWAxvb2+sWLECqamp\nAICcnBzs2bMHbm5u6Nq1q8CpiYiIiIjoQ7gbOxGplIsXL2L8+PG4fPmy0FGISs2zZ89gYmKCFy9e\ncMrQZ8jPz4eWllaJx1auXIl58+ahe/fumDp1KtasWYP09HRcvHhRoJREREREyiE3Nxfnz59HjRo1\nYG1tDR0dHaEjkZJh2UlEKuXtjzwWQqRsDA0NERMTg7p16wodRaEVFxdDXV0dAHD16lW4uLjg3r17\nyMvLQ2xsLKytrQVOSETlTSqVltiojIiIPl92djacnJyQlZWFhw8fom/fvti8ebPQsUjJ8P/aRKRS\nRCIRi05SSly3s3Soq6tDJpNBKpXCzs4Ov/zyC3JycrB161YWnUQq6tdff0ViYqLQMYiIFJJUKsWB\nAwfw7bffYvHixfjrr79w7949LF26FOHh4Th9+jRCQkKEjklKhmUnERGREmDZWXpEIhHU1NTw5MkT\nDB8+HH379sWwYcOEjkVEApDJZJg7dy6ys7OFjkJEpJBcXV0xdepU2NnZ4dSpU5g/fz569OiBHj16\noGPHjvDy8sLq1auFjklKhmUnERGREmDZWfpkMhmcnZ3xxx9/CB2FiARy5swZqKuro127dkJHISJS\nOImJibh48SJGjx6NBQsW4MiRIxgzZgx27dolf02dOnVQuXJlZGVlCZiUlA3LTiIiIiXAsvPzFBcX\nQyaT4X1LmOvr62PBggUCpCKiimLLli3w8PDgEjhERJ+hoKAAUqkUTk5OAN7Mnhk2bBiys7MhkUiw\nZMkSLFu2DDY2NjAwMHjv72NEn4NlJxERkRIQi8VISkoSOobC+d///gc3N7cPPs+Cg0h1PX/+HPv2\n7YOLi4vQUYiIFFKTJk0gk8lw4MAB+WOnTp2CWCyGoaEhDh48iHr16mHUqFEA+HsXlR7uxk5ERKQE\ncnJyULt2bbx8+ZK7Bn+iyMhIODo6IioqCvXq1RM6DhFVMBs2bMBff/2FPXv2CB2FiEhhbdq0CWvW\nrEG3bt3QsmVLhIWFoU6dOti8eTPu3buHqlWrQk9PT+iYpGQqCR2AiIiIvpyenh6qV6+Oe/fuwcTE\nROg4FV5WVhZGjBiB4OBgFp1E9F5btmzBwoULhY5BRKTQRo8ejZycHGzfvh379++Hvr4+fH19AQBG\nRkYA3vxeZmBgIGBKUjYc2UlESqu4uBjq6ury+zKZjFMjSKl16tQJCxYsQNeuXYWOUqFJpVL069cP\nTZo0gZ+fn9BxiIiIiJTew4cP8fz5c1haWgJ4s1TI/v37sXbtWlSuXBkGBgYYOHAgvv32W470pC/G\neW5EpLT+XnQCb9aAycrKwp07d5CTkyNQKqKyw02KPs2KFSvw9OlTLF68WOgoRERERCrB0NAQlpaW\nKCgowOLFiyEWi+Hq6oqsrCwMGjQIZmZmCA4Ohqenp9BRSQlwGjsRKaVXr15h4sSJWLt2LTQ0NFBQ\nUIDNmzcjIiICBQUFMDIywoQJE9C8eXOhoxKVGpad/+7ChQtYunQpLl26BA0NDaHjEBEREakEkUgE\nqVSKRYsWITg4GO3bt0f16tWRnZ2N06dPY8+ePUhKSkL79u0RERGBXr16CR2ZFBhHdhKRUnr48CE2\nb94sLzrXrFmDSZMmQUdHB2KxGBcuXED37t2RkZEhdFSiUsOy8+OePn2KYcOGYcOGDWjQoIHQcYiI\niIhUypUrV7B8+XJMmzYNGzZsQFBQENatW4eMjAz4+/vD0tISTk5OWLFihdBRScFxZCcRKaUnT56g\nWrVqAIC0tDRs2rQJAQEBGDt2LIA3Iz/79+8PPz8/rFu3TsioRKWGZeeHyWQyeHp6wsHBAd99953Q\ncYiIiIhUzsWLF9G1a1dIJBKoqb0Ze2dkZISuXbsiLi4OANCrVy+oqanh1atXqFKlipBxSYFxZCcR\nKaVHjx6hRo0aAICioiJoampi5MiRkEqlKC4uRpUqVTBkyBDExMQInJSo9DRs2BCpqakoLi4WOkqF\ns27dOqSlpWHZsmVCRyGiCszX1xdfffWV0DGIiJSSvr4+4uPjUVRUJH8sKSkJW7duhY2NDQCgbdu2\n8PX1ZdFJX4RlJxEppefPnyM9PR2BgYFYsmQJZDIZXr9+DTU1NfnGRTk5OSyFSKloa2vDwMAAt2/f\nFjpKhRIdHQ1fX1+Eh4ejcuXKQschos/k6uoKkUgkv9WqVQv9+vVDQkKC0NHKxcmTJyESifD48WOh\noxARfRZnZ2eoq6tj1qxZCAoKQlBQEHx8fCAWizFw4EAAQM2aNVG9enWBk5KiY9lJREqpVq1aaN68\nOf744w/Ex8fDysoKmZmZ8udzcnIQHx8PS0tLAVMSlT5LS0tOZf+bnJwcDB06FKtWrYJYLBY6DhF9\noe7duyMzMxOZmZn4888/kZ+frxBLUxQUFAgdgYioQggJCcH9+/excOFCBAQE4PHjx5g1axbMzMyE\njkZKhGUnESmlzp0746+//sK6deuwYcMGTJ8+HbVr15Y/n5ycjJcvX3KXP1I6XLfz/8hkMnz//ffo\n2LEjhg0bJnQcIioFlStXRp06dVCnTh3Y2tpi8uTJSEhIQH5+PtLT0yESiXDlypUSx4hEIuzZs0d+\n//79+xg+fDj09fWhra2N5s2b48SJEyWO2blzJxo2bAg9PT0MGDCgxGjKy5cvo0ePHqhVqxaqVq2K\n9u3b4/z58+9cc+3atRg4cCB0dHQwZ84cAEBcXBz69u0LPT09GBoaYtiwYXjw4IH8uNjYWHTr1g1V\nq1aFrq4umjVrhhMnTiA9PR1dunQBABgYGEAkEsHV1bVU/k6JiMrT119/je3bt+Ps2bMIDQ3F8ePH\n0adPH6FjkZLhBkVEpJSOHTuGnJwc+XSIt2QyGUQiEWxtbREWFiZQOqKyw7Lz/wQHByM6OhqXL18W\nOgoRlYGcnByEh4ejSZMm0NLS+qRjcnNz0alTJxgaGmLfvn2oV6/eO+t3p6enIzw8HL/99htyc3Ph\n5OSEuXPnYsOGDfLruri4IDAwECKRCGvWrEGfPn2QkpICfX19+XkWLlyI//3vf/D394dIJEJmZiY6\nduwIDw8P+Pv7o7CwEHPnzkX//v1x/vx5qKmpwdnZGc2aNcOlS5dQqVIlxMbGokqVKjAxMcHevXsx\naNAg3Lx5EzVr1vzk90xEVNFUqlQJxsbGMDY2FjoKKSmWnUSklH799Vds2LABvXv3xtChQ+Hg4ICa\nNWtCJBIBeFN6ApDfJ1IWYrEYx48fFzqG4OLi4jBz5kycPHkS2traQscholISEREBXV1dAG+KSxMT\nExw6dOiTjw8LC8ODBw9w/vx51KpVC8Cbzd3+rqioCCEhIahWrRoAwMvLC8HBwfLnu3btWuL1q1ev\nxt69e3H48GGMGDFC/rijoyM8PT3l9+fPn49mzZrBz89P/tjWrVtRs2ZNXLlyBa1bt0ZGRgamTZsG\na2trAICFhYX8tTVr1gQAGBoayrMTESmDtwNSiEoLp7ETkVKKi4tDz549oa2tDR8fH7i6uiIsLAz3\n798HAPnmBkTKhiM7gby8PAwdOhR+fn7ynT2JSDl07NgR0dHRiI6OxqVLl9CtWzf06NEDd+7c+aTj\nr127hqZNm360LKxfv7686ASAevXq4dGjR/L7jx49gre3NywtLVGtWjXo6enh0aNH72wO17JlyxL3\nr169ilOnTkFXV1d+MzExAQDcunULADBlyhR4enqia9euWLJkicpsvkREqksmk33yz3CiT8Wyk4iU\n0sOHD+Hu7o5t27ZhyZIleP36NWbMmAFXV1fs3r0bWVlZQkckKhPm5ubIyMhAYWGh0FEEI5FI0KxZ\nM7i5uQkdhYhKmba2NiwsLGBhYYFWrVph8+bNePHiBTZu3Ag1tTcfbd7O3gDwWT8LNTQ0StwXiUSQ\nSqXy+6NGjcLly5excuVKnDt3DtHR0TA2Nn5nEyIdHZ0S96VSKfr27Ssva9/ekpOT0a9fPwCAr68v\n4uLiMGDAAJw7dw5NmzZFUFDQf34PRESKQiqVonPnzrh48aLQUUiJsOwkIqWUk5ODKlWqoEqVKhg5\nciQOHz6MgIAA+YL+Dg4OCAkJ4e6opHQqV66MevXqIT09XegogtixYwciIyOxfv16jt4mUgEikQhq\namrIy8uDgYEBACAzM1P+fHR0dInXt2jRAtevXy+x4dB/debMGUyYMAF9+/aFjY0N9PT0SlzzQ2xt\nbXHz5k3Ur19fXti+venp6clfJxaLMXHiRBw8eBAeHh7YvHkzAEBTUxMAUFxc/NnZiYgqGnV1dYwf\nPx6BgYFCRyElwrKTiJRSbm6u/ENPUVER1NTUMHjwYBw5cgQREREwMjKCu7u7fFo7kTKxtLRUyans\nycnJmDhxIsLDw0sUB0SkPF6/fo0HDx7gwYMHiI+Px4QJE/Dy5Us4ODhAS0sLbdu2hZ+fH27evIlz\n585h2rRpJY53dnaGoaEh+vfvj9OnTyM1NRW///77O7uxf4ylpSW2b9+OuLg4XL58GU5OTvIi8mPG\njRuH58+fw9HRERcvXkRqaiqOHj0KLy8v5OTkID8/H+PGjcPJkyeRnp6Oixcv4syZM2jcuDGAN9Pr\nRSIRDh48iKysLLx8+fK//eUREVVQHh4eiIiIwL1794SOQkqCZScRKaW8vDz5eluVKr3Zi00qlUIm\nk6FDhw7Yu3cvYmJiuAMgKSVVXLfz9evXcHR0xIIFC9CiRQuh4xBRGTl69Cjq1q2LunXrok2bNrh8\n+TJ2796Nzp07A4B8ynerVq3g7e2NxYsXlzheR0cHkZGRMDY2hoODA7766issWLDgP40EDwoKwsuX\nL2FnZwcnJye4u7ujQYMG/3pcvXr1cPbsWaipqaFXr16wsbHBuHHjULlyZVSuXBnq6up4+vQpXF1d\nYWVlhe+++w7t2rXDihUrAABGRkZYuHAh5s6di9q1a2P8+PGfnJmIqCKrVq0ahg8fjnXr1gkdhZSE\nSPb3RW2IiJTEkydPUL16dfn6XX8nk8kgk8ne+xyRMggMDERycjLWrFkjdJRyM3HiRNy9exd79+7l\n9HUiIiIiBZOUlIT27dsjIyMDWlpaQschBcdP+kSklGrWrPnBMvPt+l5EykrVRnbu27cPf/zxB7Zs\n2cKik4iIiEgBWVpaonXr1ggNDRU6CikBftonIpUgk8nk09iJlJ0qlZ0ZGRnw8vLCjh07UKNGDaHj\nEBEREdFnkkgkCAwM5Gc2+mIsO4lIJbx8+RLz58/nqC9SCQ0aNMD9+/fx+vVroaOUqcLCQjg5OWH6\n9Olo27at0HGIiIiI6At0794dUqn0P20aR/Q+LDuJSCU8evQIYWFhQscgKhcaGhowMTFBamqq0FHK\n1Lx581CjRg1MnTpV6ChERERE9IVEIhEmTpyIwMBAoaOQgmPZSUQq4enTp5ziSirF0tJSqaeyR0RE\nIDQ0FL/88gvX4CUiIiJSEi4uLjh37hxu3boldBRSYPx0QEQqgWUnqRplXrfz/v37cHV1xfbt22Fg\nYCB0HCJSQL169cL27duFjkFERP+gra0NDw8PrF69WugopMBYdhKRSmDZSapGWcvO4uJiDB8+HGPH\njkWnTp2EjkNECuj27du4fPkyBg0aJHQUIiJ6j3HjxmHr1q148eKF0FFIQbHsJCKVwLKTVI2ylp2L\nFy+GSCTC3LlzhY5CRAoqJCQETk5O0NLSEjoKERG9h4mJCbp3746QkBCho5CCYtlJRCqBZSepGmUs\nO0+cOIH169cjNDQU6urqQschIgUklUoRFBQEDw8PoaMQEdFHTJo0CatWrUJxcbHQUUgBsewkIpXA\nspNUjampKbKyspCfny90lFLx6NEjuLi4ICQkBHXr1hU6DhEpqGPHjqFmzZqwtbUVOgoREX1Eu3bt\nUKNGDRw6dEjoKKSAWHYSkUpg2UmqRl1dHQ0aNEBKSorQUb6YVCrFqFGj4OLigp49ewodh4gU2JYt\nWziqk4hIAYhEIkgkEgQGBgodhRQQy04iUgksO0kVKctUdn9/f7x48QKLFi0SOgoRKbDs7GxERETA\n2dlZ6ChERPQJhg4dips3byI2NlboKKRgWHYSkUpg2UmqyNLSUuHLznPnzmH58uXYsWMHNDQ0hI5D\nRAps+/bt6NevH38fICJSEJqamhg7dixWrVoldBRSMCw7iUglsOwkVaToIzufPHkCZ2dnbNy4Eaam\npkLHISIFJpPJsHnzZk5hJyJSMN7e3tizZw8eP34sdBRSICw7iUglPH36FNWrVxc6BlG5UuSyUyaT\nwcPDAwMGDED//v2FjkNECu7y5cvIy8tDp06dhI5CRET/gaGhIQYMGIBNmzYJHYUUCMtOIlIJHNlJ\nqkiRy841a9bg9u3b8PPzEzoKESmBtxsTqanx4w8RkaKRSCRYu3YtCgsLhY5CCkIkk8lkQocgIipL\nUqkUGhoaKCgogLq6utBxiMqNVCqFrq4uHj16BF1dXaHjfLKoqCj07NkT58+fh4WFhdBxiEjB5ebm\nwsTEBLGxsTAyMhI6DhERfYbOnTvj+++/h5OTk9BRSAHwq00iUnrPnz+Hrq4ui05SOWpqamjYsCFS\nUlKEjvLJXrx4AUdHR6xevZpFJxGVit27d8Pe3p5FJxGRApNIJAgMDBQ6BikIlp1EpPQ4hZ1UmVgs\nRlJSktAxPolMJoO3tze6du3Kb+2JqNRs2bIFnp6eQscgIqIv8O233+LBgwe4ePGi0FFIAbDsJCKl\nx7KTVJmlpaXCrNu5ZcsW3LhxAwEBAUJHISIlkZCQgOTkZPTt21foKERE9AXU1dUxYcIEju6kT8Ky\nk4iUHstOUmWKsknRjRs3MGvWLISHh0NLS0voOESkJIKCgjBy5EhoaGgIHYWIiL6Qu7s7IiIicO/e\nPaGjUAXHspOIlB7LTlJlilB25ubmwtHREf7+/mjcuLHQcYhISRQWFmLr1q3w8PAQOgoREZWC6tWr\nw9nZGT///LPQUaiCY9lJREqPZSepMkUoOydOnAhbW1uMGjVK6ChEpEQOHDgAsVgMKysroaMQEVEp\nmTBhAjZu3Ij8/Hyho1AFxrKTiJQey05SZXXq1EF+fj6eP38udJT3Cg0NxZkzZ7Bu3TqIRCKh4xCR\nEtmyZQtHdRIRKRkrKyu0atUKYWFhQkehCoxlJxEpPZadpMpEIhEsLCwq5OjOpKQkTJo0CeHh4dDT\n0xM6DhEpkXv37uHcuXMYMmSI0FGIiKiUSSQSBAYGQiaTCR2FKiiWnUSk9Fh2kqoTi8VISkoSOkYJ\nr169gqOjIxYtWoTmzZsLHYeIlExISAiGDBkCHR0doaMQEVEp++abb1BUVISTJ08KHYUqKJadRKT0\nWHaSqquI63ZOmzYNDRs2xPfffy90FCJSMlKpFEFBQfD09BQ6ChERlQGRSASJRIKAgACho1AFxbKT\niJQey05SdZaWlhWq7Ny7dy8OHTqEzZs3c51OIip1kZGR0NHRQcuWLYWOQkREZcTFxQXnzp3DrVu3\nhI5CFRDLTiJSeiw7SdVVpJGdaWlpGDNmDHbu3Inq1asLHYeIlJCamhrGjx/PL1OIiJSYtrY23N3d\nsWbNGqGjUAUkknFFVyJScg0bNkRERATEYrHQUYgEkZWVBSsrKzx58kTQHAUFBejQoQOGDh2KqVOn\nCpqFiJTX2483LDuJiJTb7du30aJFC6SlpaFq1apCx6EKhCM7iUjpiUQijuwklVarVi1IpVJkZ2cL\nmmPu3LkwMDDA5MmTBc1BRMpNJBKx6CQiUgGmpqbo1q0bQkJChI5CFQzLTiJSajKZDDdu3IC+vr7Q\nUYgEIxKJBJ/KfujQIezcuRMhISFQU+OvH0RERET05SQSCVavXg2pVCp0FKpA+GmDiJSaSCRClSpV\nOMKDVJ5YLEZSUpIg17579y7c3d0RFhaGWrVqCZKBiIiIiJSPvb09qlWrhkOHDgkdhSoQlp1EREQq\nQKiRnUVFRXB2dsb48ePRoUOHcr8+ERERESkvkUgEiUSCgIAAoaNQBcKyk4iISAVYWloKUnYuWrQI\nmpqamD17drlfm4iIiIiU39ChQ3Hz5k3cuHFD6ChUQVQSOgARERGVPSFGdh4/fhybN29GVFQU1NXV\ny/XaRKS8srKysH//fhQVFUEmk6Fp06b4+uuvhY5FREQCqVy5MsaMGYNVq1Zh48aNQsehCkAkk8lk\nQocgIiKisvX06VPUr18fz58/L5c1bB8+fAhbW1uEhITgm2++KfPrEZFq2L9/P5YtW4abN29CR0cH\nRkZGKCoqgqmpKYYOHYpvv/0WOjo6QsckIqJy9vDhQ1hbWyMlJYWb0xKnsRMREamCGjVqQFNTE48e\nPSrza0mlUowcORKurq4sOomoVM2cORNt2rRBamoq7t69C39/fzg6OkIqlWLp0qXYsmWL0BGJiEgA\ntWvXxoABAziykwBwZCcREZHKaNeuHZYtW4b27duX6XV++uknHDhwACdPnkSlSlwxh4hKR2pqKuzt\n7XH16lUYGRmVeO7u3bvYsmULFi5ciNDQUAwbNkyglEREJJTo6Gg4ODggNTUVGhoaQschAXFkJxER\nkYooj3U7z549i5UrV2LHjh0sOomoVIlEIujr62PDhg0AAJlMhuLiYgCAsbExFixYAFdXVxw9ehSF\nhYVCRiUiIgE0b94c5ubm+PXXX4WOQgJj2UlEKk8qlSIzMxNSqVToKERlSiwWIykpqczOn52dDWdn\nZ2zevBkmJiZldh0iUk1mZmYYMmQIdu7ciZ07dwLAO5ufmZubIy4ujiN6iIhUlEQiQWBgoNAxSGAs\nO4mIALRq1Qq6urpo0qQJvvvuO0yfPh0bNmzA8ePHcfv2bRahpBTKcmSnTCaDu7s7Bg0aBAcHhzK5\nBhGprrcrb40bNw7ffPMNXFxcYGNjg8DAQCQmJiIpKQnh4eEIDQ2Fs7OzwGmJiEgo/fv3R2ZmJi5d\nuiR0FBIQ1+wkIvr/Xr58iVu3biElJQXJyclISUmR37Kzs2FmZgYLCwtYWFhALBbL/2xqavrOyBKi\niigqKgpubm6IiYkp9XMHBgZi+/btOHv2LDQ1NUv9/EREz58/R05ODmQyGbKzs7Fnzx6EhYUhIyMD\nZmZmePHiBRwdHREQEMD/LxMRqbDly5cjKioKoaGhQkchgbDsJCL6BHl5eUhNTX2nBE1JScHDhw9R\nv379d0pQCwsL1K9fn1PpqMLIyclBnTp18PLlS4hEolI775UrV9C7d29cvHgR5ubmpXZeIiLgTckZ\nFBSERYsWoW7duiguLkbt2rXRrVs3fPfdd9DQ0MC1a9fQokULNGrUSOi4REQksGfPnsHMzAw3b95E\nvXr1hI5DAmDZSUT0hV69eoXU1NR3StCUlBTcv38fxsbG75SgFhYWMDMz4wg4Knd16tR5707Gn+v5\n8+ewtbXFjz/+iKFDh5bKOYmI/m7GjBk4c+YMJBIJatasiTVr1uCPP/6AnZ0ddHR04O/vj5YtWwod\nk4iIKpBx48ahRo0aWLx4sdBRSAAsO4mIylBBQQHS0tLeW4TeuXMH9erVe6cEtbCwgLm5OapUqSJ0\nfFJCHTp0wA8//IDOnTt/8blkMhmcnJxQs2ZN/Pzzz18ejojoPYyMjLBx40b07dsXAJCVlYURI0ag\nU6dOOHr0KO7evYuDBw9CLBYLnJSIiCqKxMREdOzYERkZGfxcpYIqCR2AiEiZaWpqwsrKClZWVu88\nV1hYiIyMjBIF6PHjx5GcnIyMjAzUrl37vUVow4YNoa2tLcC7IWXwdpOi0ig7N23ahISEBFy4cOHL\ngxERvUdKSgoMDQ1RtWpV+WMGBga4du0aNm7ciDlz5sDa2hoHDx7EpEmTIJPJSnWZDiIiUkxWVlaw\ns7PDrl27MHLkSKHjUDlj2UlEJBANDQ15gflPRUVFuHPnToki9PTp00hJSUFaWhr09fXfKUHFYjEa\nNmwIXV3dcn8v+fn52L17N2JiYqCn9//au/Ooquv8j+OviwYiiwqBqGCskhuagFaaW6aknhzNMbcp\nQk1Tp2XEpvFnLkfHJnMZTcxMiAIrR6k0LS1JzZLCFUkkwQ0VRdExFUSIe39/dLwT4Q568cvzcY7n\nyPf7vd/P+3s9srz4fD5vF/Xo0UPh4eGqWZMvM1VNUFCQ9u3bV+H77N69W//3f/+nzZs3y9HRsRIq\nA4CyLBaLfH195ePjo8WLFys8PFyFhYVKSEiQyWTSfffdJ0nq3bu3vvvuO40dO5avOwAAq3feeUf3\n3nsvvwirhvhuAACqoJo1a8rPz09+fn567LHHypwrLS3VsWPHrCFoVlaWfvzxR2VnZ2v//v2qU6dO\nuRD08t9/PzOmMuXn5+vHH3/UhQsXNHfuXKWmpio+Pl6enp6SpK1bt2r9+vW6ePGimjRpogcffFAB\nAQFlvungm5A7IygoSImJiRW6R0FBgZ566inNnj1b999/fyVVBgBlmUwm1axZU/3799fzzz+vLVu2\nyMnJSb/88otmzpxZ5tri4mKCTgBAGd7e3vx8UU2xZycAGIjZbNbx48etIegf9wmtXbv2FUPQwMBA\n1atX75bHLS0tVW5urnx8fBQaGqpOnTpp+vTp1uX2kZGRys/Pl729vY4ePaqioiJNnz5dTzzxhLVu\nOzs7nT17VidOnJCXl5fq1q1bKe8Jytq9e7cGDRqkPXv23PI9nn32WVksFsXHx1deYQBwDadOnVJc\nXJxOnjypZ555RiEhIZKkzMxMderUSe+++671awoAAKjeCDsBoJqwWCzKy8u7YhCalZVlXVZ/pc7x\n7u7uN/xbUS8vL40fP14vv/yy7OzsJP22QbiTk5O8vb1lNpsVHR2t999/X9u3b5evr6+k335gnTp1\nqrZs2aK8vDyFhYUpPj7+isv8cesKCwvl7u6ugoIC67/Pzfjggw80Y8YMbdu2zSZbJgDAZefPn9ey\nZcv0zTff6MMPP7R1OQAAoIog7AQAyGKxKD8CGnabAAAeCUlEQVQ//4qzQbOysmSxWHTixInrdjIs\nKCiQp6en4uLi9NRTT131ujNnzsjT01MpKSkKDw+XJLVv316FhYVatGiRvL29NWzYMJWUlGj16tXs\nCVnJvL299f3331v3u7tRP//8szp06KDk5GTrrCoAsKW8vDxZLBZ5eXnZuhQAAFBFsLENAEAmk0ke\nHh7y8PDQww8/XO786dOn5eDgcNXXX95v8+DBgzKZTNa9On9//vI4krRy5Urdc889CgoKkiRt2bJF\nKSkp2rVrlzVEmzt3rpo3b66DBw+qWbNmlfKc+M3ljuw3E3ZevHhRAwYM0PTp0wk6AVQZ9evXt3UJ\nAACgirn59WsAgGrnesvYzWazJGnv3r1ydXWVm5tbmfO/bz6UmJioyZMn6+WXX1bdunV16dIlrVu3\nTt7e3goJCdGvv/4qSapTp468vLyUnp5+m56q+rocdt6McePGKTg4WM8999xtqgoArq2kpEQsSgMA\nANdD2AkAqDQZGRny9PS0NjuyWCwqLS2VnZ2dCgoKNH78eE2aNEmjR4/WjBkzJEmXLl3S3r171aRJ\nE0n/C07z8vLk4eGhX375xXovVI6bDTuXL1+udevW6d1336WjJQCbefzxx5WcnGzrMgAAQBXHMnYA\nQIVYLBadPXtW7u7u2rdvn3x9fVWnTh1JvwWXNWrUUFpaml588UWdPXtWCxcuVERERJnZnnl5edal\n6pdDzZycHNWoUaNCXeJxZUFBQdq0adMNXXvgwAGNGTNGa9assf67AsCddvDgQaWlpalDhw62LgUA\nAFRxhJ0AgAo5duyYunfvrqKiIh06dEh+fn5655131KlTJ7Vr104JCQmaPXu22rdvr9dff12urq6S\nftu/02KxyNXVVYWFhdbO3jVq1JAkpaWlydHRUX5+ftbrLyspKVGfPn3KdY739fXVPffcc4ffgbtP\nkyZNbmhmZ3FxsQYOHKgJEyZYG0kBgC3ExcVp8ODB122UBwAAQDd2AECFWCwWpaena+fOncrNzdX2\n7du1fft2tWnTRvPnz1erVq105swZRUREKCwsTMHBwQoKClLLli3l4OAgOzs7DR06VIcPH9ayZcvU\nsGFDSVJoaKjatGmj2bNnWwPSy0pKSrR27dpyneOPHTumRo0alQtBAwMD5efnd80mS9VJUVGR6tat\nqwsXLqhmzav/3nPcuHHKysrSypUrWb4OwGZKS0vl6+urNWvW0CANAABcF2EnAOC2yszMVFZWljZt\n2qT09HQdOHBAhw8f1rx58zRy5EjZ2dlp586dGjJkiHr27KmePXtq0aJFWr9+vTZs2KBWrVrd8FjF\nxcU6dOhQuRA0KytLR44cUYMGDcqFoIGBgQoICKh2s4V8fX2VnJysgICAK55fvXq1Ro8erZ07d8rd\n3f0OVwcA//Pll19q8uTJSk1NtXUpAADgLkDYCQCwCbPZLDu7//XJ+/TTTzVz5kwdOHBA4eHhmjJl\nisLCwiptvJKSEuXk5FwxCD106JA8PT3LhaBBQUEKCAhQ7dq1K62OqiIzM1ONGze+4rMdPXpUYWFh\nWrFiBfvjAbC5J598Ut27d9fIkSNtXQoAALgLEHYCMKTIyEjl5+dr9erVti4Ft+D3zYvuhNLSUh05\ncqRcCJqdna0DBw7Izc2tXAh6eUaoi4vLHavzTjCbzRo8eLBCQkI0YcIEW5cDoJo7efKkmjRpopyc\nnHJbmgAAAFwJYScAm4iMjNT7778vSapZs6bq1aun5s2bq3///nruuecq3GSmMsLOy812tm7dWqkz\nDHF3MZvNOnbsWLkQNDs7W/v375eLi0u5EPTyn7uxe7nZbNbFixfl6OhYZuYtANjC7NmzlZ6ervj4\neFuXAgAA7hJ0YwdgM926dVNCQoJKS0t16tQpffPNN5o8ebISEhKUnJwsJyencq8pLi6Wvb29DapF\ndWVnZycfHx/5+PioS5cuZc5ZLBYdP368TAi6YsUKaxhaq1atK4aggYGBcnNzs9ETXZudnd0V/+8B\nwJ1msVi0ZMkSLV682NalAACAuwhTNgDYjIODg7y8vNSoUSO1bt1af/vb37Rx40bt2LFDM2fOlPRb\nE5UpU6YoKipKdevW1ZAhQyRJ6enp6tatmxwdHeXm5qbIyEj98ssv5caYPn266tevL2dnZz377LO6\nePGi9ZzFYtHMmTMVEBAgR0dHtWzZUomJidbzfn5+kqTw8HCZTCZ17txZkrR161Z1795d9957r1xd\nXdWhQwelpKTcrrcJVZjJZFLDhg3VsWNHDRs2TK+//rqWL1+unTt36ty5c/rpp5/05ptvqmvXriou\nLtaqVas0evRo+fn5yc3NTe3atdOQIUOsIX9KSopOnTolFl0AgJSSkiKz2czewQAA4KYwsxNAldKi\nRQtFREQoKSlJU6dOlSTNmTNHEydO1LZt22SxWFRQUKAePXqobdu2Sk1N1ZkzZzRixAhFRUUpKSnJ\neq9NmzbJ0dFRycnJOnbsmKKiovT3v/9d8+fPlyRNnDhRK1asUExMjIKDg5WSkqIRI0aoXr166tWr\nl1JTU9W2bVutXbtWrVq1ss4oPX/+vP7yl79o3rx5MplMWrBggXr27Kns7Gy6VsPKZDKpfv36ql+/\nfrkf1C0Wi/Lz88vsEbp27VrrDFGz2XzFrvFBQUHy9PS8o/uZAoCtLFmyRMOGDeNzHgAAuCns2QnA\nJq61p+arr76q+fPnq7CwUL6+vmrZsqU+//xz6/l3331X0dHROnr0qLU5zMaNG9WlSxdlZWUpMDBQ\nkZGR+uyzz3T06FE5OztLkhITEzVs2DCdOXNGknTvvffqq6++0iOPPGK990svvaR9+/bpiy++uOE9\nOy0Wixo2bKg333xTQ4cOrZT3B9XbmTNnrtg1Pjs7W0VFRVcNQhs0aEAoAMAQzp8/Lx8fH2VmZsrL\ny8vW5QAAgLsIMzsBVDl/7MT9x6Bx7969CgkJKdMF++GHH5adnZ0yMjIUGBgoSQoJCbEGnZL00EMP\nqbi4WPv379elS5dUVFSkiIiIMmOVlJTI19f3mvWdPHlSr732mjZs2KC8vDyVlpbq4sWLysnJqchj\nA1Zubm5q27at2rZtW+7c2bNntX//fmsIunnzZr333nvKzs7W+fPnFRAQYA1AZ8yYoZo1+VIP4O6z\nbNkydenShaATAADcNH4CAlDlZGRkyN/f3/rxzTRLudFZbWazWZL0+eefq3HjxmXOXa8T/DPPPKO8\nvDzNnTtXvr6+cnBw0KOPPqri4uIbrhO4VXXr1lVoaKhCQ0PLnTt//rw1CD18+LANqgOAyrFkyRJN\nnDjR1mUAAIC7EGEngCrlp59+0tq1a6/5A07Tpk0VFxen8+fPW2d3btmyRWazWU2bNrVel56eroKC\nAmtY+sMPP8je3l4BAQEym81ycHDQ4cOH1bVr1yuOc3mPztLS0jLHv/vuO82fP1+9evWSJOXl5en4\n8eO3/tBAJXFxcVHr1q3VunVrW5cCALdsz549OnLkiCIiImxdCgAAuAvRjR2AzVy6dEknTpxQbm6u\n0tLSNGfOHHXu3FmhoaGKjo6+6uuGDBmi2rVr6+mnn1Z6erq+/fZbjRw5Uv369bMuYZekX3/9VVFR\nUdqzZ4++/vprvfrqqxoxYoScnJzk4uKi6OhoRUdHKy4uTtnZ2dq1a5cWLVqkxYsXS5I8PT3l6Oio\ndevWKS8vz9rtvUmTJkpMTFRGRoa2bt2qgQMHWoNRAABQMbGxsYqMjGQbDgAAcEsIOwHYzPr169Wg\nQQM1btxYjz76qFatWqUpU6bo22+/vebS9dq1a2vdunU6d+6c2rZtqz59+uihhx5SXFxcmes6deqk\n5s2bq0uXLurbt6+6du2qmTNnWs9PmzZNU6ZM0axZs9S8eXM99thjSkpKkp+fnySpZs2amj9/vpYs\nWaKGDRuqT58+kqS4uDhduHBBoaGhGjhwoKKioq67zycAALi+S5cuKSEhQVFRUbYuBQAA3KXoxg4A\nAACgSli+fLkWLlyoDRs22LoUAABwl2JmJwAAAIAqITY2VsOHD7d1GQAA4C7GzE4AAAAANnf48GG1\nadNGR48elaOjo63LAQAAdylmdgIAAACwufj4eA0cOJCgEwAAVAhhJwAAAACbKi0tVVxcHEvYAQA3\n7cSJE+revbucnJxkMpkqdK/IyEj17t27kiqDrRB2AgAAALCp5ORkubu764EHHrB1KQCAKiYyMlIm\nk6ncnwcffFCSNGvWLOXm5mrXrl06fvx4hcaaN2+eEhMTK6Ns2FBNWxcAAAAAoHqjMREA4Fq6deum\nhISEMsfs7e0lSdnZ2QoNDVVQUNAt3//XX39VjRo1VKdOnQrViaqBmZ0AAAAAbCY/P1/r1q3T4MGD\nbV0KAKCKcnBwkJeXV5k/bm5u8vX11cqVK/XBBx/IZDIpMjJSkpSTk6O+ffvKxcVFLi4u6tevn44e\nPWq935QpU9SiRQvFx8crICBADg4OKigoKLeM3WKxaObMmQoICJCjo6NatmzJzM+7ADM7AQAAANhM\nYmKievfurbp169q6FADAXWbr1q0aPHiw3NzcNG/ePDk6OspsNqtPnz5ydHTUhg0bJEljx47Vn/70\nJ23dutW6r+fBgwf14Ycfavny5bK3t1etWrXK3X/ixIlasWKFYmJiFBwcrJSUFI0YMUL16tVTr169\n7uiz4sYRdgIAAACwCYvFotjYWL311lu2LgUAUIWtXbtWzs7OZY6NGTNGb7zxhhwcHOTo6CgvLy9J\n0tdff63du3dr//798vX1lSR9+OGHCgwMVHJysrp16yZJKi4uVkJCgurXr3/FMQsKCjRnzhx99dVX\neuSRRyRJfn5+Sk1NVUxMDGFnFUbYCQAAAMAmUlNTdfHiRXXq1MnWpQAAqrCOHTtq8eLFZY5dbUXA\n3r171bBhQ2vQKUn+/v5q2LChMjIyrGGnt7f3VYNOScrIyFBRUZEiIiLKdHkvKSkpc29UPYSdAAAA\nAGwiNjZWUVFRZX6IBADgj2rXrq3AwMAK3+f3X2+cnJyuea3ZbJYkff7552rcuHGZc/fcc0+Fa8Ht\nQ9gJAAAA4I67cOGCli9frj179ti6FACAgTRt2lS5ubk6dOiQdQbmgQMHlJubq2bNmt3wfZo1ayYH\nBwcdPnxYXbt2vU3V4nYg7AQAAABwxy1fvlwdOnRQw4YNbV0KAKCKu3Tpkk6cOFHmWI0aNeTh4VHu\n2m7duikkJERDhgzRvHnzJEl//etf1aZNm5sKLV1cXBQdHa3o6GhZLBZ17NhRFy5c0A8//CA7Ozs9\n99xzFXso3DaEnQAAAADuuNjYWEVHR9u6DADAXWD9+vVq0KBBmWONGjXS0aNHy11rMpm0cuVKvfDC\nC+rSpYuk3wLQt95666a3TZk2bZrq16+vWbNm6fnnn5erq6tat26tV1555dYfBredyWKxWGxdBAAA\nAIDqIzMzU126dFFOTg77ngEAgEplZ+sCAAAAAFQvsbGxevrppwk6AQBApSPsBACgGpoyZYpatGhh\n6zIAVEMlJSX64IMPFBUVZetSAACAARF2AgBQheXl5enFF19UQECAHBwc1KhRIz3++OP64osvKnTf\n6Ohobdq0qZKqBIAbt3r1agUHBys4ONjWpQAAAAOiQREAAFXUoUOH1L59e7m4uOj1119Xq1atZDab\nlZycrFGjRiknJ6fca4qLi2Vvb3/dezs7O8vZ2fl2lA0A17RkyRINGzbM1mUAAACDYmYnAABV1OjR\noyVJ27Zt04ABAxQcHKymTZtq7Nix2r17t6Tfuk3GxMSoX79+cnJy0oQJE1RaWqphw4bJz89Pjo6O\nCgoK0syZM2U2m633/uMydrPZrGnTpsnHx0cODg5q2bKlVq5caT3/8MMPa9y4cWXqO3funBwdHfXJ\nJ59IkhITExUeHi4XFxd5enrqz3/+s44dO3bb3h8Ad59jx44pJSVF/fv3t3UpAADAoAg7AQCogs6c\nOaO1a9dqzJgxV5yBWbduXevfp06dqp49eyo9PV1jxoyR2WxWo0aN9J///Ed79+7VP//5T82YMUPv\nvffeVcebN2+e3nzzTb3xxhtKT09X37591a9fP+3atUuSNHToUH388cdlAtOkpCTVqlVLvXr1kvTb\nrNKpU6cqLS1Nq1evVn5+vgYNGlRZbwkAA4iPj9eAAQPk5ORk61IAAIBBmSwWi8XWRQAAgLJSU1PV\nrl07ffLJJ+rbt+9VrzOZTBo7dqzeeuuta97v1Vdf1bZt27R+/XpJv83sXLFihX766SdJUqNGjTRy\n5EhNmjTJ+prOnTvL29tbiYmJOn36tBo0aKAvv/xSjz76qCSpW7du8vf31+LFi684ZmZmppo2baoj\nR47I29v7pp4fgPGYzWYFBgZq2bJlCg8Pt3U5AADAoJjZCQBAFXQzv4sMCwsrd2zRokUKCwuTh4eH\nnJ2dNXfu3Cvu8Sn9thw9NzdX7du3L3O8Q4cOysjIkCS5u7srIiJCS5culSTl5uZqw4YNGjp0qPX6\nHTt2qE+fPrrvvvvk4uJiretq4wKoXjZu3FjmcwMAAMDtQNgJAEAVFBQUJJPJpL1791732j8uB122\nbJleeuklRUZGat26ddq1a5dGjx6t4uLim67DZDJZ/z506FAlJSWpqKhIH3/8sXx8fPTII49IkgoK\nCtSjRw/Vrl1bCQkJ2rp1q9auXStJtzQuAOO53Jjo959XAAAAKhthJwAAVZCbm5t69OihBQsW6MKF\nC+XOnz179qqv/e6779SuXTuNHTtWbdq0UWBgoPbv33/V611dXdWwYUN9//335e7TrFkz68dPPPGE\nJGn16tVaunSpBg8ebA0tMjMzlZ+frxkzZqhjx466//77dfLkyZt6ZgDG9d///ldffPGFhgwZYutS\nAACAwRF2AgBQRcXExMhisSgsLEzLly/Xzz//rMzMTL399tsKCQm56uuaNGmiHTt26Msvv1RWVpam\nTZumTZs2XXOs8ePHa9asWfroo4+0b98+TZo0SZs3b1Z0dLT1mlq1aunJJ5/U9OnTtWPHjjJL2Bs3\nbiwHBwctWLBABw4c0Jo1a/Taa69V/E0AYAhLly7V448/Lnd3d1uXAgAADI6wEwCAKsrf3187duzQ\nY489pr///e8KCQlR165dtWrVqqs2BZKkkSNHasCAARo8eLDCw8N16NAhjRs37ppjvfDCCxo/frxe\neeUVtWjRQp9++qmSkpLUqlWrMtcNHTpUaWlpeuCBB8rM+vTw8ND777+vzz77TM2aNdPUqVM1Z86c\nir0BAAzBYrFYl7ADAADcbnRjBwAAAHDbbN++Xf3799f+/ftlZ8dcCwAAcHvx3QYAAACA2yY2NlZR\nUVEEnQAA4I5gZicAAACA26KwsFDe3t5KS0uTj4+PrcsBAADVAL9eBQAAAHBbJCUlqV27dgSdAADg\njiHsBAAAAHBbxMbGavjw4bYuAwAAVCMsYwcAAABQ6bKystShQwcdOXJE9vb2ti4HAABUE8zsBAAA\nAFDpEhISNHToUIJOAABwRzGzEwAAAEClslgsKiws1KVLl+Tm5mbrcgAAQDVC2AkAAAAAAADAEFjG\nDgAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAAAAAABDIOwEAAAAAAAAYAiEnQAAAAAAAAAMgbATAAAA\nAAAAgCEQdgIAAAAAAAAwBMJOAAAAAAAAAIZA2AkAAAAAAADAEAg7AQAAAAAAABgCYScAAAAAAAAA\nQyDsBAAAAAAAAGAIhJ0AAAAAAAAADIGwEwAAAAAAAIAhEHYCAAAAAAAAMATCTgAAAAAAAACGQNgJ\nAAAAAAAAwBAIOwEAAAAAAAAYAmEnAAAAAAAAAEMg7AQAAAAAAABgCISdAAAAAAAAAAyBsBMAAAAA\nAACAIRB2AgAAAAAAADAEwk4AAAAAAAAAhkDYCQAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAIByfH19\nNWvWrDsy1saNG2UymZSfn39HxgMAAMZlslgsFlsXAQAAAODOycvL07/+9S+tXr1aR44ckaurqwID\nAzVo0CA9++yzcnZ21qlTp+Tk5KTatWvf9nqKi4t15swZ1a9fXyaT6baPBwAAjKumrQsAAAAAcOcc\nOnRI7du3l6urq6ZNm6aQkBA5Ojpqz549WrJkidzd3TV48GB5eHhUeKzi4mLZ29tf9zp7e3t5eXlV\neDwAAACWsQMAAADVyPPPPy87Oztt27ZNAwcOVLNmzeTn56fevXvrs88+06BBgySVX8ZuMpm0YsWK\nMve60jUxMTHq16+fnJycNGHCBEnSmjVrFBwcrFq1aqljx476+OOPZTKZdOjQIUnll7HHx8fL2dm5\nzFgsdQcAADeCsBMAAACoJk6fPq1169ZpzJgxcnJyuuI1FV1GPnXqVPXs2VPp6ekaM2aMcnJy1K9f\nP/Xq1UtpaWl64YUX9Morr1RoDAAAgKsh7AQAAACqiezsbFksFgUHB5c57u3tLWdnZzk7O2vUqFEV\nGuOpp57S8OHD5e/vLz8/P7399tvy9/fXnDlzFBwcrP79+1d4DAAAgKsh7AQAAACquc2bN2vXrl1q\n27atioqKKnSvsLCwMh9nZmYqPDy8zLF27dpVaAwAAICroUERAAAAUE0EBgbKZDIpMzOzzHE/Pz9J\numbndZPJJIvFUuZYSUlJueuutjz+ZtjZ2d3QWAAAAH/EzE4AAACgmnB3d1f37t21YMECXbhw4aZe\n6+HhoePHj1s/zsvLK/Px1dx///3atm1bmWOpqanXHauwsFDnzp2zHtu1a9dN1QsAAKonwk4AAACg\nGlm4cKHMZrNCQ0P10UcfKSMjQ/v27dNHH32ktLQ01ahR44qv69q1q2JiYrRt2zbt3LlTkZGRqlWr\n1nXHGzVqlPbv36/o6Gj9/PPP+uSTT/TOO+9IunozpHbt2snJyUn/+Mc/lJ2draSkJC1cuPDWHxoA\nAFQbhJ0AAABANeLv76+dO3cqIiJCr732mh544AG1adNGc+bM0ejRo/Xvf//7iq+bPXu2/P391blz\nZ/Xv31/Dhw+Xp6fndce77777lJSUpFWrVqlVq1aaO3euJk+eLElXDUvd3Ny0dOlSff3112rZsqUW\nL16sadOm3fpDAwCAasNk+eNmOAAAAABwG82bN0+TJk3S2bNnrzq7EwAA4FbQoAgAAADAbRUTE6Pw\n8HB5eHjohx9+0LRp0xQZGUnQCQAAKh1hJwAAAIDbKjs7WzNmzNDp06fl7e2tUaNGadKkSbYuCwAA\nGBDL2AEAAAAAAAAYAg2KAAAAAAAAABgCYScAAAAAAAAAQyDsBAAAAAAAAGAIhJ0AAAAAAAAADIGw\nEwAAAAAAAIAhEHYCAAAAAAAAMATCTgAAAAAAAACGQNgJAAAAAAAAwBAIOwEAAAAAAAAYAmEnAAAA\nAAAAAEMg7AQAAAAAAABgCISdAAAAAAAAAAyBsBMAAAAAAACAIRB2AgAAAAAAADAEwk4AAAAAAAAA\nhkDYCQAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAAAAAABDIOwEAAAAAAAAYAiEnQAAAAAAAAAMgbAT\nAAAAAAAAgCEQdgIAAAAAAAAwBMJOAAAAAAAAAIZA2AkAAAAAAADAEAg7AQAAAAAAABgCYScAAAAA\nAAAAQyDsBAAAAAAAAGAIhJ0AAAAAAAAADIGwEwAAAAAAAIAhEHYCAAAAAAAAMATCTgAAAAAAAACG\nQNgJAAAAAAAAwBAIOwEAAAAAAAAYAmEnAAAAAAAAAEMg7AQAAAAAAABgCISdAAAAAAAAAAyBsBMA\nAAAAAACAIRB2AgAAAAAAADAEwk4AAAAAAAAAhkDYCQAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAAAA\nAABDIOwEAAAAAAAAYAiEnQAAAAAAAAAMgbATAAAAAAAAgCEQdgIAAAAAAAAwBMJOAAAAAAAAAIZA\n2AkAAAAAAADAEAg7AQAAAAAAABgCYScAAAAAAAAAQyDsBAAAAAAAAGAIhJ0AAAAAAAAADIGwEwAA\nAAAAAIAhEHYCAAAAAAAAMATCTgAAAAAAAACGQNgJAAAAAAAAwBAIOwEAAAAAAAAYAmEnAAAAAAAA\nAEMg7AQAAAAAAABgCISdAAAAAAAAAAyBsBMAAAAAAACAIRB2AgAAAAAAADAEwk4AAAAAAAAAhkDY\nCQAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAAAAAABDIOwEAAAAAAAAYAiEnQAAAAAAAAAMgbATAAAA\nAAAAgCEQdgIAAAAAAAAwBMJOAAAAAAAAAIbw/w8Gv+6fOvtiAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7efbc06a4b70>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"show_map(node_colors)"
]
},
{
"cell_type": "markdown",
"source": [
"Voila! You see, the romania map as shown in the Figure[3.2] in the book. Now, see how different searching algorithms perform with our problem statements."
]
},
{
"cell_type": "markdown",
"## SEARCHING ALGORITHMS VISUALIZATION\n",
"In this section, we have visualizations of the following searching algorithms:\n",
"1. Breadth First Tree Search - Implemented\n",
"2. Depth First Tree Search - Implemented\n",
"3. Depth First Graph Search - Implemented\n",
"4. Breadth First Search - Implemented\n",
"5. Best First Graph Search\n",
"6. Uniform Cost Search - Implemented\n",
"7. Depth Limited Search\n",
"8. Iterative Deepening Search\n",
"9. A\\*-Search - Implemented\n",
"10. Recursive Best First Search\n",
"\n",
"We add the colors to the nodes to have a nice visualisation when displaying. So, these are the different colors we are using in these visuals:\n",
"* Un-explored nodes - <font color='black'>white</font>\n",
"* Frontier nodes - <font color='orange'>orange</font>\n",
"* Currently exploring node - <font color='red'>red</font>\n",
"* Already explored nodes - <font color='gray'>gray</font>\n",
"Now, we will define some helper methods to display interactive buttons and sliders when visualising search algorithms."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def final_path_colors(problem, solution):\n",
" \"returns a node_colors dict of the final path provided the problem and solution\"\n",
" \n",
" # get initial node colors\n",
" final_colors = dict(initial_node_colors)\n",
" # color all the nodes in solution and starting node to green\n",
" final_colors[problem.initial] = \"green\"\n",
" for node in solution:\n",
" final_colors[node] = \"green\" \n",
" return final_colors\n",
"\n",
"\n",
"def display_visual(user_input, algorithm=None, problem=None):\n",
" if user_input == False:\n",
" def slider_callback(iteration):\n",
" # don't show graph for the first time running the cell calling this function\n",
" try:\n",
" show_map(all_node_colors[iteration])\n",
" except:\n",
" pass\n",
" def visualize_callback(Visualize):\n",
" if Visualize is True:\n",
" button.value = False\n",
" \n",
" global all_node_colors\n",
" \n",
" iterations, all_node_colors, node = algorithm(problem)\n",
" solution = node.solution()\n",
" all_node_colors.append(final_path_colors(problem, solution))\n",
" \n",
" slider.max = len(all_node_colors) - 1\n",
" \n",
" for i in range(slider.max + 1):\n",
" slider.value = i\n",
" \n",
" slider = widgets.IntSlider(min=0, max=1, step=1, value=0)\n",
" slider_visual = widgets.interactive(slider_callback, iteration = slider)\n",
" display(slider_visual)\n",
" button = widgets.ToggleButton(value = False)\n",
" button_visual = widgets.interactive(visualize_callback, Visualize = button)\n",
" display(button_visual)\n",
" \n",
" if user_input == True:\n",
" node_colors = dict(initial_node_colors)\n",
" if algorithm == None:\n",
" algorithms = {\"Breadth First Tree Search\": breadth_first_tree_search,\n",
" \"Depth First Tree Search\": depth_first_tree_search,\n",
" \"Breadth First Search\": breadth_first_search,\n",
" \"Depth First Graph Search\": depth_first_graph_search,\n",
" \"Uniform Cost Search\": uniform_cost_search,\n",
" \"A-star Search\": astar_search}\n",
" algo_dropdown = widgets.Dropdown(description = \"Search algorithm: \",\n",
" options = sorted(list(algorithms.keys())),\n",
" value = \"Breadth First Tree Search\")\n",
" display(algo_dropdown)\n",
" \n",
" def slider_callback(iteration):\n",
" # don't show graph for the first time running the cell calling this function\n",
" try:\n",
" show_map(all_node_colors[iteration])\n",
" except:\n",
" pass\n",
" def visualize_callback(Visualize):\n",
" if Visualize is True:\n",
" button.value = False\n",
" \n",
" problem = GraphProblem(start_dropdown.value, end_dropdown.value, romania_map)\n",
" global all_node_colors\n",
" \n",
" if algorithm == None:\n",
" user_algorithm = algorithms[algo_dropdown.value]\n",
" \n",
"# print(user_algorithm)\n",
"# print(problem)\n",
" \n",
" iterations, all_node_colors, node = user_algorithm(problem)\n",
" solution = node.solution()\n",
" all_node_colors.append(final_path_colors(problem, solution))\n",
" slider.max = len(all_node_colors) - 1\n",
" \n",
" for i in range(slider.max + 1):\n",
" slider.value = i\n",
"# time.sleep(.5)\n",
" start_dropdown = widgets.Dropdown(description = \"Start city: \",\n",
" options = sorted(list(node_colors.keys())), value = \"Arad\")\n",
" display(start_dropdown)\n",
" end_dropdown = widgets.Dropdown(description = \"Goal city: \",\n",
" options = sorted(list(node_colors.keys())), value = \"Fagaras\")\n",
" display(end_dropdown)\n",
" \n",
" button = widgets.ToggleButton(value = False)\n",
" button_visual = widgets.interactive(visualize_callback, Visualize = button)\n",
" display(button_visual)\n",
" \n",
" slider = widgets.IntSlider(min=0, max=1, step=1, value=0)\n",
" slider_visual = widgets.interactive(slider_callback, iteration = slider)\n",
" display(slider_visual)"
]
},
{
"cell_type": "markdown",
"## BREADTH-FIRST TREE SEARCH\n",
"We have a working implementation in search module. But as we want to interact with the graph while it is searching, we need to modify the implementation. Here's the modified breadth first tree search."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"source": [
"def tree_search(problem, frontier):\n",
" \"\"\"Search through the successors of a problem to find a goal.\n",
" The argument frontier should be an empty queue.\n",
" Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" frontier.append(Node(problem.initial))\n",
" node_colors[Node(problem.initial).state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" # modify the currently searching node to red\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" # modify goal node to green after reaching the goal\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" frontier.extend(node.expand(problem))\n",
" \n",
" for n in node.expand(problem):\n",
" node_colors[n.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" # modify the color of explored nodes to gray\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None\n",
"\n",
"def breadth_first_tree_search(problem):\n",
" \"Search the shallowest nodes in the search tree first.\"\n",
" iterations, all_node_colors, node = tree_search(problem, FIFOQueue())\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "markdown",
"Now, we use ipywidgets to display a slider, a button and our romania map. By sliding the slider we can have a look at all the intermediate steps of a particular search algorithm. By pressing the button **Visualize**, you can see all the steps without interacting with the slider. These two helper functions are the callback functions which are called when we interact with the slider and the button.\n",
"\n"
]
},
{
"cell_type": "code",
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d55324f7343a4c71a9a2d4da6d037037"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b07a3813dd724c51a9b37f646cf2be25"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Fagaras', romania_map)\n",
"display_visual(user_input = False, algorithm = breadth_first_tree_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Depth-First Tree Search:\n",
"Now let's discuss another searching algorithm, Depth-First Tree Search."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
"source": [
"def depth_first_tree_search(problem):\n",
" \"Search the deepest nodes in the search tree first.\"\n",
" # This algorithm might not work in case of repeated paths\n",
" # and may run into an infinite while loop.\n",
" iterations, all_node_colors, node = tree_search(problem, Stack())\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "523b10cf84e54798a044ee714b864b52"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aecea953f6a448c192ac8e173cf46e35"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Oradea', romania_map)\n",
"display_visual(user_input = False, algorithm = depth_first_tree_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {
"## BREADTH-FIRST SEARCH\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 17,
},
"outputs": [],
"source": [
"def breadth_first_search(problem):\n",
" \"[Figure 3.11]\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier = FIFOQueue()\n",
" frontier.append(node)\n",
" \n",
" # modify the color of frontier nodes to blue\n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored.add(node.state) \n",
" \n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" if problem.goal_test(child.state):\n",
" node_colors[child.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, child)\n",
" frontier.append(child)\n",
"\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None"
]
},
{
"cell_type": "code",
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "735a3dea191a42b6bd97fdfd337ea3e7"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ef445770d70a4b7c9d1544b98a55ca4d"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = breadth_first_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Depth-First Graph Search: \n",
"Although we have a working implementation in search module, we have to make a few changes in the algorithm to make it suitable for visualization."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
"source": [
"def graph_search(problem, frontier):\n",
" \"\"\"Search through the successors of a problem to find a goal.\n",
" The argument frontier should be an empty queue.\n",
" If two paths reach a state, only use the first one. [Figure 3.7]\"\"\"\n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" frontier.append(Node(problem.initial))\n",
" explored = set()\n",
" \n",
" # modify the color of frontier nodes to orange\n",
" node_colors[Node(problem.initial).state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" while frontier:\n",
" # Popping first node of queue\n",
" node = frontier.pop()\n",
" \n",
" # modify the currently searching node to red\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" # modify goal node to green after reaching the goal\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" frontier.extend(child for child in node.expand(problem)\n",
" if child.state not in explored and\n",
" child not in frontier)\n",
" \n",
" for n in frontier:\n",
" # modify the color of frontier nodes to orange\n",
" node_colors[n.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" # modify the color of explored nodes to gray\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" return None\n",
"\n",
"\n",
"def depth_first_graph_search(problem):\n",
" \"\"\"Search the deepest nodes in the search tree first.\"\"\"\n",
" iterations, all_node_colors, node = graph_search(problem, Stack())\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "61149ffbc02846af97170f8975d4f11d"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "90b1f8f77fdb4207a3570fbe88a0bdf6"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = depth_first_graph_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"## UNIFORM COST SEARCH\n",
"\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 22,
},
"outputs": [],
"source": [
"def best_first_graph_search(problem, f):\n",
" \"\"\"Search the nodes with the lowest f scores first.\n",
" You specify the function f(node) that you want to minimize; for example,\n",
" if f is a heuristic estimate to the goal, then we have greedy best\n",
" first search; if f is node.depth then we have breadth-first search.\n",
" There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n",
" values will be cached on the nodes as they are computed. So after doing\n",
" a best first search you can examine the f values of the path returned.\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" f = memoize(f, 'f')\n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier = PriorityQueue(min, f)\n",
" frontier.append(node)\n",
" \n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" elif child in frontier:\n",
" incumbent = frontier[child]\n",
" if f(child) < f(incumbent):\n",
" del frontier[incumbent]\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None\n",
"\n",
"def uniform_cost_search(problem):\n",
" \"[Figure 3.14]\"\n",
" iterations, all_node_colors, node = best_first_graph_search(problem, lambda node: node.path_cost)\n",
" return(iterations, all_node_colors, node)"
"cell_type": "code",
"execution_count": 23,
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a667c668001e4e598478ba4a870c6aec"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "135c6bd739de4aab8fc7b2fcb6b90954"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = uniform_cost_search, problem = romania_problem)"
"cell_type": "markdown",
"metadata": {},
"## A\\* SEARCH\n",
"\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 24,
},
"outputs": [],
"source": [
"def best_first_graph_search(problem, f):\n",
" \"\"\"Search the nodes with the lowest f scores first.\n",
" You specify the function f(node) that you want to minimize; for example,\n",
" if f is a heuristic estimate to the goal, then we have greedy best\n",
" first search; if f is node.depth then we have breadth-first search.\n",
" There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n",
" values will be cached on the nodes as they are computed. So after doing\n",
" a best first search you can examine the f values of the path returned.\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" f = memoize(f, 'f')\n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier = PriorityQueue(min, f)\n",
" frontier.append(node)\n",
" \n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" elif child in frontier:\n",
" incumbent = frontier[child]\n",
" if f(child) < f(incumbent):\n",
" del frontier[incumbent]\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None\n",
"\n",
"def astar_search(problem, h=None):\n",
" \"\"\"A* search is best-first graph search with f(n) = g(n)+h(n).\n",
" You need to specify the h function when you call astar_search, or\n",
" else in your Problem subclass.\"\"\"\n",
" h = memoize(h or problem.h, 'h')\n",
" iterations, all_node_colors, node = best_first_graph_search(problem, lambda n: n.path_cost + h(n))\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3e62c492a82044e4813ad5d84e698874"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b661fd0c0c8d495db2672aedc25b9a44"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = astar_search, problem = romania_problem)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"scrolled": false
},
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f1ffa858c92429bb28f74c23c0c939c"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7a98e98ffec14520b93ce542f5169bcc"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "094beb8cf34c4a5b87f8368539d24091"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8f89c87de964ee69004902763e68a54"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2ccdb4aba3ee4371a78306755e5642ad"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"# display_visual(user_input = True, algorithm = breadth_first_tree_search)\n",
"display_visual(user_input = True)"
{
"cell_type": "markdown",
"\n",
"Genetic algorithms (or GA) are inspired by natural evolution and are particularly useful in optimization and search problems with large state spaces.\n",
"\n",
"Given a problem, algorithms in the domain make use of a *population* of solutions (also called *states*), where each solution/state represents a feasible solution. At each iteration (often called *generation*), the population gets updated using methods inspired by biology and evolution, like *crossover*, *mutation* and *natural selection*."
]
},
{
"cell_type": "markdown",
"source": [
"### Overview\n",
"\n",
"A genetic algorithm works in the following way:\n",
"\n",
"1) Initialize random population.\n",
"\n",
"2) Calculate population fitness.\n",
"\n",
"3) Select individuals for mating.\n",
"\n",
"4) Mate selected individuals to produce new population.\n",
"\n",
" * Random chance to mutate individuals.\n",
"\n",
"5) Repeat from step 2) until an individual is fit enough or the maximum number of iterations was reached."
]
},
{
"cell_type": "markdown",
"### Glossary\n",
"\n",
"Before we continue, we will lay the basic terminology of the algorithm.\n",
"\n",
"* Individual/State: A list of elements (called *genes*) that represent possible solutions.\n",
"* Population: The list of all the individuals/states.\n",
"\n",
"* Gene pool: The alphabet of possible values for an individual's genes.\n",
"\n",
"* Generation/Iteration: The number of times the population will be updated.\n",
"\n",
"* Fitness: An individual's score, calculated by a function specific to the problem."
]
},
{
"cell_type": "markdown",
"### Crossover\n",
"\n",
"Two individuals/states can \"mate\" and produce one child. This offspring bears characteristics from both of its parents. There are many ways we can implement this crossover. Here we will take a look at the most common ones. Most other methods are variations of those below.\n",
"\n",
"* Point Crossover: The crossover occurs around one (or more) point. The parents get \"split\" at the chosen point or points and then get merged. In the example below we see two parents get split and merged at the 3rd digit, producing the following offspring after the crossover.\n",
"\n",
"\n",
"\n",
"* Uniform Crossover: This type of crossover chooses randomly the genes to get merged. Here the genes 1, 2 and 5 were chosen from the first parent, so the genes 3, 4 were added by the second parent.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"### Mutation\n",
"\n",
"When an offspring is produced, there is a chance it will mutate, having one (or more, depending on the implementation) of its genes altered.\n",
"\n",
"For example, let's say the new individual to undergo mutation is \"abcde\". Randomly we pick to change its third gene to 'z'. The individual now becomes \"abzde\" and is added to the population."
]
},
{
"cell_type": "markdown",
"At each iteration, the fittest individuals are picked randomly to mate and produce offsprings. We measure an individual's fitness with a *fitness function*. That function depends on the given problem and it is used to score an individual. Usually the higher the better.\n",
"The selection process is this:\n",
"1) Individuals are scored by the fitness function.\n",
"\n",
"2) Individuals are picked randomly, according to their score (higher score means higher chance to get picked). Usually the formula to calculate the chance to pick an individual is the following (for population *P* and individual *i*):\n",
"\n",
"$$ chance(i) = \\dfrac{fitness(i)}{\\sum_{k \\, in \\, P}{fitness(k)}} $$"
]
},
{
"cell_type": "markdown",
"### Implementation\n",
"\n",
"Below we look over the implementation of the algorithm in the `search` module.\n",
"\n",
"First the implementation of the main core of the algorithm:"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource genetic_algorithm"
]
},
{
"cell_type": "markdown",
"source": [
"The algorithm takes the following input:\n",
"\n",
"* `population`: The initial population.\n",
"\n",
"* `fitness_fn`: The problem's fitness function.\n",
"\n",
"* `gene_pool`: The gene pool of the states/individuals. By default 0 and 1.\n",
"* `f_thres`: The fitness threshold. If an individual reaches that score, iteration stops. By default 'None', which means the algorithm will not halt until the generations are ran.\n",
"\n",
"* `ngen`: The number of iterations/generations.\n",
"\n",
"* `pmut`: The probability of mutation.\n",
"\n",
"The algorithm gives as output the state with the largest score."
]
},
{
"cell_type": "markdown",
"For each generation, the algorithm updates the population. First it calculates the fitnesses of the individuals, then it selects the most fit ones and finally crosses them over to produce offsprings. There is a chance that the offspring will be mutated, given by `pmut`. If at the end of the generation an individual meets the fitness threshold, the algorithm halts and returns that individual.\n",
"\n",
"The function of mating is accomplished by the method `reproduce`:"
]
},
{
"cell_type": "code",
},
"outputs": [],
"source": [
]
},
{
"cell_type": "markdown",
"source": [
"The method picks at random a point and merges the parents (`x` and `y`) around it.\n",
"The mutation is done in the method `mutate`:"
]
},
{
"cell_type": "code",
},
"outputs": [],
"source": [
]
},
{
"cell_type": "markdown",
"We pick a gene in `x` to mutate and a gene from the gene pool to replace it with.\n",
"\n",
"To help initializing the population we have the helper function `init_population`\":"
]
},
{
"cell_type": "code",
},
"outputs": [],
"source": [
]
},
{
"cell_type": "markdown",
"source": [
"The function takes as input the number of individuals in the population, the gene pool and the length of each individual/state. It creates individuals with random genes and returns the population when done."
]
},
{
"cell_type": "markdown",
"source": [
"### Usage\n",
"Below we give two example usages for the genetic algorithm, for a graph coloring problem and the 8 queens problem.\n",
"First we will take on the simpler problem of coloring a small graph with two colors. Before we do anything, let's imagine how a solution might look. First, we have to represent our colors. Say, 'R' for red and 'G' for green. These make up our gene pool. What of the individual solutions though? For that, we will look at our problem. We stated we have a graph. A graph has nodes and edges, and we want to color the nodes. Naturally, we want to store each node's color. If we have four nodes, we can store their colors in a list of genes, one for each node. A possible solution will then look like this: ['R', 'R', 'G', 'R']. In the general case, we will represent each solution with a list of chars ('R' and 'G'), with length the number of nodes.\n",
"Next we need to come up with a fitness function that appropriately scores individuals. Again, we will look at the problem definition at hand. We want to color a graph. For a solution to be optimal, no edge should connect two nodes of the same color. How can we use this information to score a solution? A naive (and ineffective) approach would be to count the different colors in the string. So ['R', 'R', 'R', 'R'] has a score of 1 and ['R', 'R', 'G', 'G'] has a score of 2. Why that fitness function is not ideal though? Why, we forgot the information about the edges! The edges are pivotal to the problem and the above function only deals with node colors. We didn't use all the information at hand and ended up with an ineffective answer. How, then, can we use that information to our advantage?\n",
"We said that the optimal solution will have all the edges connecting nodes of different color. So, to score a solution we can count how many edges are valid (aka connecting nodes of different color). That is a great fitness function!\n",
"Let's jump into solving this problem using the `genetic_algorithm` function."
]
},
{
"cell_type": "markdown",
"source": [
"First we need to represent the graph. Since we mostly need information about edges, we will just store the edges. We will denote edges with capital letters and nodes with integers:"
]
},
{
"cell_type": "code",
},
"outputs": [],
"source": [
"edges = {\n",
" 'A': [0, 1],\n",
" 'B': [0, 3],\n",
" 'C': [1, 2],\n",
" 'D': [2, 3]\n",
"}"
]
},
{
"cell_type": "markdown",
"Edge 'A' connects nodes 0 and 1, edge 'B' connects nodes 0 and 3 etc.\n",
"\n",
"We already said our gene pool is 'R' and 'G', so we can jump right into initializing our population. Since we have only four nodes, `state_length` should be 4. For the number of individuals, we will try 8. We can increase this number if we need higher accuracy, but be careful! Larger populations need more computating power and take longer. You need to strike that sweet balance between accuracy and cost (the ultimate dilemma of the programmer!)."
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['R', 'G', 'G', 'R'], ['R', 'G', 'R', 'R'], ['G', 'R', 'G', 'R'], ['R', 'G', 'R', 'G'], ['G', 'R', 'R', 'G'], ['G', 'R', 'G', 'R'], ['G', 'R', 'R', 'R'], ['R', 'G', 'G', 'G']]\n"
"population = init_population(8, ['R', 'G'], 4)\n",
]
},
{
"cell_type": "markdown",
"We created and printed the population. You can see that the genes in the individuals are random and there are 8 individuals each with 4 genes.\n",
"Next we need to write our fitness function. We previously said we want the function to count how many edges are valid. So, given a coloring/individual `c`, we will do just that:"
]
},
{
"cell_type": "code",
},
"outputs": [],
"source": [
"def fitness(c):\n",
" return sum(c[n1] != c[n2] for (n1, n2) in edges.values())"
]
},
{
"cell_type": "markdown",
"Great! Now we will run the genetic algorithm and see what solution it gives."
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"solution = genetic_algorithm(population, fitness, gene_pool=['R', 'G'])\n",
"print(solution)"
]
},
{
"cell_type": "markdown",
"source": [
"The algorithm converged to a solution. Let's check its score:"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
}
],
"source": [
"print(fitness(solution))"
]
},
{
"cell_type": "markdown",
"source": [
"The solution has a score of 4. Which means it is optimal, since we have exactly 4 edges in our graph, meaning all are valid!\n",
"*NOTE: Because the algorithm is non-deterministic, there is a chance a different solution is given. It might even be wrong, if we are very unlucky!*"
]
},
{
"cell_type": "markdown",
"#### Eight Queens\n",
"\n",
"Let's take a look at a more complicated problem.\n",
"\n",
"In the *Eight Queens* problem, we are tasked with placing eight queens on an 8x8 chessboard without any queen threatening the others (aka queens should not be in the same row, column or diagonal). In its general form the problem is defined as placing *N* queens in an NxN chessboard without any conflicts.\n",
"\n",
"First we need to think about the representation of each solution. We can go the naive route of representing the whole chessboard with the queens' placements on it. That is definitely one way to go about it, but for the purpose of this tutorial we will do something different. We have eight queens, so we will have a gene for each of them. The gene pool will be numbers from 0 to 7, for the different columns. The *position* of the gene in the state will denote the row the particular queen is placed in.\n",
"\n",
"For example, we can have the state \"03304577\". Here the first gene with a value of 0 means \"the queen at row 0 is placed at column 0\", for the second gene \"the queen at row 1 is placed at column 3\" and so forth.\n",
"\n",
"We now need to think about the fitness function. On the graph coloring problem we counted the valid edges. The same thought process can be applied here. Instead of edges though, we have positioning between queens. If two queens are not threatening each other, we say they are at a \"non-attacking\" positioning. We can, therefore, count how many such positionings are there.\n",
"\n",
"Let's dive right in and initialize our population:"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0, 2, 7, 1, 7, 3, 2, 4], [2, 7, 5, 4, 4, 5, 2, 0], [7, 1, 6, 0, 1, 3, 0, 2], [0, 3, 6, 1, 3, 0, 5, 4], [0, 4, 6, 4, 7, 4, 1, 6]]\n"
]
}
],
"source": [
"population = init_population(100, range(8), 8)\n",
]
},
{
"cell_type": "markdown",
"We have a population of 100 and each individual has 8 genes. The gene pool is the integers from 0 to 7, in string form. Above you can see the first five individuals.\n",
"\n",
"Next we need to write our fitness function. Remember, queens threaten each other if they are at the same row, column or diagonal.\n",
"Since positionings are mutual, we must take care not to count them twice. Therefore for each queen, we will only check for conflicts for the queens after her.\n",
"\n",
"A gene's value in an individual `q` denotes the queen's column, and the position of the gene denotes its row. We can check if the aforementioned values between two genes are the same. We also need to check for diagonals. A queen *a* is in the diagonal of another queen, *b*, if the difference of the rows between them is equal to either their difference in columns (for the diagonal on the right of *a*) or equal to the negative difference of their columns (for the left diagonal of *a*). Below is given the fitness function."
]
},
{
"cell_type": "code",
},
"outputs": [],
"source": [
"def fitness(q):\n",
" non_attacking = 0\n",
" for row1 in range(len(q)):\n",
" for row2 in range(row1+1, len(q)):\n",
" col1 = int(q[row1])\n",
" col2 = int(q[row2])\n",
" row_diff = row1 - row2\n",
" col_diff = col1 - col2\n",
" if col1 != col2 and row_diff != col_diff and row_diff != -col_diff:\n",
" non_attacking += 1\n",
]
},
{
"cell_type": "markdown",
"Note that the best score achievable is 28. That is because for each queen we only check for the queens after her. For the first queen we check 7 other queens, for the second queen 6 others and so on. In short, the number of checks we make is the sum 7+6+5+...+1. Which is equal to 7\\*(7+1)/2 = 28.\n",
"\n",
"Because it is very hard and will take long to find a perfect solution, we will set the fitness threshold at 25. If we find an individual with a score greater or equal to that, we will halt. Let's see how the genetic algorithm will fare."
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"26\n"
]
}
],
"solution = genetic_algorithm(population, fitness, f_thres=25, gene_pool=range(8))\n",
"print(solution)\n",
"print(fitness(solution))"
]
},
{
"cell_type": "markdown",
"Above you can see the solution and its fitness score, which should be no less than 25."
]
},
{
"cell_type": "markdown",
"source": [
"With that this tutorial on the genetic algorithm comes to an end. Hope you found this guide helpful!"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.2"
"state": {
"013d8df0a2ab4899b09f83aa70ce5d50": {
"views": []
},
"01ee7dc2239c4b0095710436453b362d": {
"views": []
},
"04d594ae6a704fc4b16895e6a7b85270": {
"views": []
},
"052ea3e7259346a4b022ec4fef1fda28": {
"views": [
{
}
]
},
"0ade4328785545c2b66d77e599a3e9da": {
"views": [
{
}
]
},
"0b94d8de6b4e47f89b0382b60b775cbd": {
"views": []
},
"0c63dcc0d11a451ead31a4c0c34d7b43": {
"views": []
},
"0d91be53b6474cdeac3239fdffeab908": {
"views": [
{
}
]
},
"0fe9c3b9b1264d4abd22aef40a9c1ab9": {
"views": []
},
"10fd06131b05455d9f0a98072d7cebc6": {
"views": []
},
"1193eaa60bb64cb790236d95bf11f358": {
"views": [
{
}
]
},
"11b596cbf81a47aabccae723684ac3a5": {
"views": []
},
"127ae5faa86f41f986c39afb320f2298": {
"views": []
},
"16a9167ec7b4479e864b2a32e40825a1": {
"views": [
{
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
}
]
},
"170e2e101180413f953a192a41ecbfcc": {
"views": []
},
"181efcbccf89478792f0e38a25500e51": {
"views": []
},
"1894a28092604d69b0d7d465a3b165b1": {
"views": []
},
"1a56cc2ab5ae49ea8bf2a3f6ca2b1c36": {
"views": []
},
"1cfd8f392548467696d8cd4fc534a6b4": {
"views": []
},
"1e395e67fdec406f8698aa5922764510": {
"views": []
},
"23509c6536404e96985220736d286183": {
"views": []
},
"23bffaca1206421fb9ea589126e35438": {
"views": []
},
"25330d0b799e4f02af5e510bc70494cf": {
"views": []
},
"2ab8bf4795ac4240b70e1a94e14d1dd6": {
"views": [
{
}
]
},
"2bd48f1234e4422aaedecc5815064181": {
"views": []
},
"2d3a082066304c8ebf2d5003012596b4": {
"views": []
},
"2dc962f16fd143c1851aaed0909f3963": {
"views": [
{
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
}
]
},
"2f659054242a453da5ea0884de996008": {
"views": []
},
"30a214881db545729c1b883878227e95": {
"views": []
},
"3275b81616424947be98bf8fd3cd7b82": {
"views": []
},
"330b52bc309d4b6a9b188fd9df621180": {
"views": []
},
"3320648123f44125bcfda3b7c68febcf": {
"views": []
},
"338e3b1562e747f197ab3ceae91e371f": {
"views": []
},
"34658e2de2894f01b16cf89905760f14": {
"views": [
{
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
}
]
},
"352f5fd9f698460ea372c6af57c5b478": {
"views": []
},
"35dc16b828a74356b56cd01ff9ddfc09": {
"views": []
},
"3805ce2994364bd1b259373d8798cc7a": {
"views": []
},
"3d1f1f899cfe49aaba203288c61686ac": {
"views": []
},
"3d7e943e19794e29b7058eb6bbe23c66": {
"views": []
},
"3f6652b3f85740949b7711fbcaa509ba": {
"views": []
},
"43e48664a76342c991caeeb2d5b17a49": {
"views": [
{
}
]
},
"4662dec8595f45fb9ae061b2bdf44427": {
"views": []
},
"47ae3d2269d94a95a567be21064eb98a": {
"views": []
},
"49c49d665ba44746a1e1e9dc598bc411": {
"views": [
{
}
]
},
"4a1c43b035f644699fd905d5155ad61f": {
"views": [
{
}
]
},
"4eb88b6f6b4241f7b755f69b9e851872": {
"views": []
},
"4fbb3861e50f41c688e9883da40334d4": {
"views": []
},
"52d76de4ee8f4487b335a4a11726fbce": {
"views": []
},
"53eccc8fc0ad461cb8277596b666f32a": {
"views": [
{
}
]
},
"54d3a6067b594ad08907ce059d9f4a41": {
"views": []
},
"612530d3edf8443786b3093ab612f88b": {
"views": []
},
"613a133b6d1f45e0ac9c5c270bc408e0": {
"views": []
},
"636caa7780614389a7f52ad89ea1c6e8": {
"views": [
{
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
}
]
},
"63aa621196294629b884c896b6a034d8": {
"views": []
},
"66d1d894cc7942c6a91f0630fc4321f9": {
"views": []
},
"6775928a174b43ecbe12608772f1cb05": {
"views": []
},
"6bce621c90d543bca50afbe0c489a191": {
"views": []
},
"6ebbb8c7ec174c15a6ee79a3c5b36312": {
"views": []
},
"743219b9d37e4f47a5f777bb41ad0a96": {
"views": [
{
}
]
},
"774f464794cc409ca6d1106bcaac0cf1": {
"views": []
},
"7ba3da40fb26490697fc64b3248c5952": {
"views": []
},
"7e79fea4654f4bedb5969db265736c25": {
"views": []
},
"85c82ed0844f4ae08a14fd750e55fc15": {
"views": []
},
"86e8f92c1d584cdeb13b36af1b6ad695": {
"views": [
{
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
}
]
},
"88485e72d2ec447ba7e238b0a6de2839": {
"views": []
},
"892d7b895d3840f99504101062ba0f65": {
"views": []
},
"89be4167713e488696a20b9b5ddac9bd": {
"views": []
},
"8a24a07d166b45498b7d8b3f97c131eb": {
"views": []
},
"8e7c7f3284ee45b38d95fe9070d5772f": {
"views": []
},
"98985eefab414365991ed6844898677f": {
"views": []
},
"98df98e5af87474d8b139cb5bcbc9792": {
"views": []
},
"99f11243d387409bbad286dd5ecb1725": {
"views": []
},
"9ab2d641b0be4cf8950be5ba72e5039f": {
"views": []
},
"9b1ffbd1e7404cb4881380a99c7d11bc": {
"views": []
},
"9c07ec6555cb4d0ba8b59007085d5692": {
"views": []
},
"9cc80f47249b4609b98223ce71594a3d": {
"views": []
},
"9d79bfd34d3640a3b7156a370d2aabae": {
"views": []
},
"a015f138cbbe4a0cad4d72184762ed75": {
"views": []
},
"a27d2f1eb3834c38baf1181b0de93176": {
"views": []
},
"a29b90d050f3442a89895fc7615ccfee": {
"views": [
{
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
}
]
},
"a725622cfc5b43b4ae14c74bc2ad7ad0": {
"views": []
},
"ac2e05d7d7e945bf99862a2d9d1fa685": {
"views": []
},
"b0bb2ca65caa47579a4d3adddd94504b": {
"views": []
},
"b8995c40625d465489e1b7ec8014b678": {
"views": []
},
"ba83da1373fe45d19b3c96a875f2f4fb": {
"views": []
},
"baa0040d35c64604858c529418c22797": {
"views": []
},
"badc9fd7b56346d6b6aea68bfa6d2699": {
"views": [
{
}
]
},
"bdb41c7654e54c83a91452abc59141bd": {
"views": []
},
"c2399056ef4a4aa7aa4e23a0f381d64a": {
"views": [
{
}
]
},
"c73b47b242b4485fb1462abcd92dc7c9": {
"views": []
},
"ce3f28a8aeee4be28362d068426a71f6": {
"views": [
{
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
}
]
},
"d3067a6bb84544bba5f1abd241a72e55": {
"views": []
},
"db13a2b94de34ce9bea721aaf971c049": {
"views": []
},
"db468d80cb6e43b6b88455670b036618": {
"views": []
},
"e2cb458522b4438ea3f9873b6e411acb": {
"views": []
},
"e77dca31f1d94d4dadd3f95d2cdbf10e": {
"views": []
},
"e7bffb1fed664dea90f749ea79dcc4f1": {
"views": [
{
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
}
]
},
"e80abb145fce4e888072b969ba8f455a": {
"views": []
},
"e839d0cf348c4c1b832fc1fc3b0bd3c9": {
"views": []
},
"e948c6baadde46f69f105649555b84eb": {
"views": []
},
"eb16e9da25bf4bef91a34b1d0565c774": {
"views": []
},
"ec82b64048834eafa3e53733bb54a713": {
"views": []
},
"edbb3a621c87445e9df4773cc60ec8d2": {
"views": []
},
"ef6c99705936425a975e49b9e18ac267": {
"views": []
},
"f1b494f025dd48d1ae58ae8e3e2ebf46": {
"views": []
},
"f435b108c59c42989bf209a625a3a5b5": {
"views": [
{
}
]
},
"f71ed7e15a314c28973943046c4529d6": {
"views": []
},
"f81f726f001c4fb999851df532ed39f2": {
"views": []
}
},
}
},
"nbformat": 4,