Newer
Older
"""
from utils import *
#______________________________________________________________________________
# Minimax Search
def minimax_decision(state, game):
"""Given a state in a game, calculate the best move by searching
forward all the way to the terminal states. [Fig. 5.3]"""
player = game.to_move(state)
def max_value(state):
if game.terminal_test(state):
return game.utility(state, player)
v = -infinity
for a in game.actions(state):
v = max(v, min_value(game.result(state, a)))
return v
def min_value(state):
if game.terminal_test(state):
return game.utility(state, player)
v = infinity
for a in game.actions(state):
v = min(v, max_value(game.result(state, a)))
return v
# Body of minimax_decision:
return argmax(game.actions(state),
lambda a: min_value(game.result(state, a)))
#______________________________________________________________________________
def alphabeta_full_search(state, game):
"""Search game to determine best action; use alpha-beta pruning.
As in [Fig. 5.7], this version searches all the way to the leaves."""
player = game.to_move(state)
def max_value(state, alpha, beta):
if game.terminal_test(state):
return game.utility(state, player)
v = -infinity
for a in game.actions(state):
v = max(v, min_value(game.result(state, a), alpha, beta))
if v >= beta:
return v
alpha = max(alpha, v)
return v
def min_value(state, alpha, beta):
if game.terminal_test(state):
return game.utility(state, player)
v = infinity
for a in game.actions(state):
v = min(v, max_value(game.result(state, a), alpha, beta))
if v <= alpha:
return v
beta = min(beta, v)
return v
# Body of alphabeta_search:
return argmax(game.actions(state),
lambda a: min_value(game.result(state, a),
-infinity, infinity))
def alphabeta_search(state, game, d=4, cutoff_test=None, eval_fn=None):
"""Search game to determine best action; use alpha-beta pruning.
This version cuts off search and uses an evaluation function."""
player = game.to_move(state)
def max_value(state, alpha, beta, depth):
if cutoff_test(state, depth):
return eval_fn(state)
v = -infinity
for a in game.actions(state):
v = max(v, min_value(game.result(state, a),
alpha, beta, depth+1))
if v >= beta:
return v
alpha = max(alpha, v)
return v
def min_value(state, alpha, beta, depth):
if cutoff_test(state, depth):
return eval_fn(state)
v = infinity
for a in game.actions(state):
v = min(v, max_value(game.result(state, a),
alpha, beta, depth+1))
if v <= alpha:
return v
beta = min(beta, v)
return v
# Body of alphabeta_search starts here:
# The default test cuts off at depth d or at a terminal state
cutoff_test = (cutoff_test or
(lambda state,depth: depth>d or game.terminal_test(state)))
eval_fn = eval_fn or (lambda state: game.utility(state, player))
return argmax(game.actions(state),
lambda a: min_value(game.result(state, a),
-infinity, infinity, 0))
#______________________________________________________________________________
# Players for Games
def query_player(game, state):
"Make a move by querying standard input."
game.display(state)
return num_or_str(raw_input('Your move? '))
def random_player(game, state):
"A player that chooses a legal move at random."
def alphabeta_player(game, state):
return alphabeta_search(state, game)
def play_game(game, *players):
>>> play_game(Fig52Game(), alphabeta_player, alphabeta_player)
state = game.initial
while True:
for player in players:
move = player(game, state)
if game.terminal_test(state):
return game.utility(state, game.to_move(game.initial))
#______________________________________________________________________________
# Some Sample Games
class Game:
"""A game is similar to a problem, but it has a utility for each
state and a terminal test instead of a path cost and a goal
test. To create a game, subclass this class and implement actions,
result, utility, and terminal_test. You may override display and
successors or you can inherit their default methods. You will also
need to set the .initial attribute to the initial state; this can
be done in the constructor."""
"Return a list of the allowable moves at this point."
abstract
"Return the state that results from making a move from a state."
abstract
def utility(self, state, player):
"Return the value of this final state to player."
abstract
def terminal_test(self, state):
"Return True if this is a final state for the game."
def to_move(self, state):
"Return the player whose move it is in this state."
return state.to_move
def display(self, state):
"Print or otherwise display the state."
print state
def __repr__(self):
return '<%s>' % self.__class__.__name__
class Fig52Game(Game):
"""The game represented in [Fig. 5.2]. Serves as a simple test case.
>>> g = Fig52Game()
>>> minimax_decision('A', g)
'a1'
>>> alphabeta_full_search('A', g)
'a1'
>>> alphabeta_search('A', g)
'a1'
"""
succs = dict(A=dict(a1='B', a2='C', a3='D'),
B=dict(b1='B1', b2='B2', b3='B3'),
C=dict(c1='C1', c2='C2', c3='C3'),
D=dict(d1='D1', d2='D2', d3='D3'))
utils = Dict(B1=3, B2=12, B3=8, C1=2, C2=4, C3=6, D1=14, D2=5, D3=2)
initial = 'A'
def actions(self, state):
return self.succs.get(state, {}).keys()
return self.succs[state][move]
def utility(self, state, player):
if player == 'MAX':
return self.utils[state]
else:
return -self.utils[state]
def terminal_test(self, state):
return state not in ('A', 'B', 'C', 'D')
def to_move(self, state):
return if_(state in 'BCD', 'MIN', 'MAX')
class TicTacToe(Game):
"""Play TicTacToe on an h x v board, with Max (first player) playing 'X'.
A state has the player to move, a cached utility, a list of moves in
the form of a list of (x, y) positions, and a board, in the form of
a dict of {(x, y): Player} entries, where Player is 'X' or 'O'."""
def __init__(self, h=3, v=3, k=3):
update(self, h=h, v=v, k=k)
moves = [(x, y) for x in range(1, h+1)
for y in range(1, v+1)]
self.initial = Struct(to_move='X', utility=0, board={}, moves=moves)
"Legal moves are any square not yet taken."
return state.moves
if move not in state.moves:
return state # Illegal move has no effect
board = state.board.copy(); board[move] = state.to_move
moves = list(state.moves); moves.remove(move)
return Struct(to_move=if_(state.to_move == 'X', 'O', 'X'),
utility=self.compute_utility(board, move, state.to_move),
board=board, moves=moves)
def utility(self, state, player):
"Return the value to player; 1 for win, -1 for loss, 0 otherwise."
return if_(player == 'X', state.utility, -state.utility)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
def terminal_test(self, state):
"A state is terminal if it is won or there are no empty squares."
return state.utility != 0 or len(state.moves) == 0
def display(self, state):
board = state.board
for x in range(1, self.h+1):
for y in range(1, self.v+1):
print board.get((x, y), '.'),
print
def compute_utility(self, board, move, player):
"If X wins with this move, return 1; if O return -1; else return 0."
if (self.k_in_row(board, move, player, (0, 1)) or
self.k_in_row(board, move, player, (1, 0)) or
self.k_in_row(board, move, player, (1, -1)) or
self.k_in_row(board, move, player, (1, 1))):
return if_(player == 'X', +1, -1)
else:
return 0
def k_in_row(self, board, move, player, (delta_x, delta_y)):
"Return true if there is a line through move on board for player."
x, y = move
n = 0 # n is number of moves in row
while board.get((x, y)) == player:
n += 1
x, y = x + delta_x, y + delta_y
x, y = move
while board.get((x, y)) == player:
n += 1
x, y = x - delta_x, y - delta_y
n -= 1 # Because we counted move itself twice
return n >= self.k
class ConnectFour(TicTacToe):
"""A TicTacToe-like game in which you can only make a move on the bottom
row, or in a square directly above an occupied square. Traditionally
played on a 7x6 board and requiring 4 in a row."""
def __init__(self, h=7, v=6, k=4):
TicTacToe.__init__(self, h, v, k)
return [(x, y) for (x, y) in state.moves
if y == 0 or (x, y-1) in state.board]
__doc__ += random_tests("""
>>> play_game(Fig52Game(), random_player, random_player)
>>> play_game(TicTacToe(), random_player, random_player)
0