Newer
Older
"""Provides some utilities widely used by other modules"""
import functools
import operator
import os.path
import random
import re
# ______________________________________________________________________________
def sequence(iterable):
"Coerce iterable to sequence, if it is not already one."
return (iterable if isinstance(iterable, collections.abc.Sequence)
else tuple(iterable))
def removeall(item, seq):
"""Return a copy of seq (or string) with all occurences of item removed."""
if isinstance(seq, str):
"""Remove duplicate elements from seq. Assumes hashable elements."""
return list(set(seq))
def count(seq):
"""Count the number of items in sequence that are interpreted as true."""
return sum(bool(x) for x in seq)
def product(numbers):
"""Return the product of the numbers, e.g. product([2, 3, 10]) == 60"""
result = 1
for x in numbers:
result *= x
"Return the first element of an iterable or the next element of a generator; or default."
try:
return iterable[0]
except IndexError:
return default
except TypeError:
return next(iterable, default)
def every(predicate, seq): # TODO: replace with all
"""True if every element of seq satisfies predicate."""
return all(predicate(x) for x in seq)
def is_in(elt, seq):
"""Similar to (elt in seq), but compares with 'is', not '=='."""
# ______________________________________________________________________________
# argmin and argmax
def argmin_random_tie(seq, key=identity):
"""Return a minimum element of seq; break ties at random."""
return argmin(shuffled(seq), key=key)
def argmax_random_tie(seq, key=identity):
"Return an element with highest fn(seq[i]) score; break ties at random."
return argmax(shuffled(seq), key=key)
def shuffled(iterable):
"Randomly shuffle a copy of iterable."
items = list(iterable)
random.shuffle(items)
Surya Teja Cheedella
a validé
return items
# ______________________________________________________________________________
# Statistical and mathematical functions
def histogram(values, mode=0, bin_function=None):
"""Return a list of (value, count) pairs, summarizing the input values.
Sorted by increasing value, or if mode=1, by decreasing count.
If bin_function is given, map it over values first."""
bins = {}
for val in values:
bins[val] = bins.get(val, 0) + 1
if mode:
return sorted(list(bins.items()), key=lambda x: (x[1], x[0]),
reverse=True)
else:
return sorted(bins.items())
def mean(numbers):
"The mean or average of numbers."
numbers = sequence(numbers)
return sum(numbers) / len(numbers)
def dotproduct(X, Y):
"""Return the sum of the element-wise product of vectors X and Y."""
def element_wise_product(X, Y):
"""Return vector as an element-wise product of vectors X and Y"""
def matrix_multiplication(X_M, *Y_M):
"""Return a matrix as a matrix-multiplication of X_M and arbitary number of matrices *Y_M"""
def _mat_mult(X_M, Y_M):
"""Return a matrix as a matrix-multiplication of two matrices X_M and Y_M
>>> matrix_multiplication([[1, 2, 3],
[2, 3, 4]],
[[3, 4],
[1, 2],
[1, 0]])
[[8, 8],[13, 14]]
"""
assert len(X_M[0]) == len(Y_M)
result = [[0 for i in range(len(Y_M[0]))] for j in range(len(X_M))]
for i in range(len(X_M)):
for j in range(len(Y_M[0])):
for k in range(len(Y_M)):
result[i][j] += X_M[i][k] * Y_M[k][j]
return(result)
result = X_M
for Y in Y_M:
result = _mat_mult(result, Y)
return(result)
def vector_to_diagonal(v):
"""Converts a vector to a diagonal matrix with vector elements
as the diagonal elements of the matrix"""
diag_matrix = [[0 for i in range(len(v))] for j in range(len(v))]
for i in range(len(v)):
diag_matrix[i][i] = v[i]
return diag_matrix
def vector_add(a, b):
"""Component-wise addition of two vectors."""
return tuple(map(operator.add, a, b))
def scalar_vector_product(X, Y):
"""Return vector as a product of a scalar and a vector"""
return [X*y for y in Y]
def scalar_matrix_product(X, Y):
return([scalar_vector_product(X, y) for y in Y])
def inverse_matrix(X):
"""Inverse a given square matrix of size 2x2"""
assert len(X) == 2
assert len(X[0]) == 2
det = X[0][0] * X[1][1] - X[0][1] * X[1][0]
assert det != 0
inv_mat = scalar_matrix_product(1.0/det, [[X[1][1], -X[0][1]], [-X[1][0], X[0][0]]])
return(inv_mat)
def probability(p):
"Return true with probability p."
return p > random.uniform(0.0, 1.0)
def weighted_sample_with_replacement(seq, weights, n):
"""Pick n samples from seq at random, with replacement, with the
probability of each element in proportion to its corresponding
weight."""
return [sample() for _ in range(n)]
def weighted_sampler(seq, weights):
"Return a random-sample function that picks from seq weighted by weights."
totals = []
for w in weights:
totals.append(w + totals[-1] if totals else w)
return lambda: seq[bisect.bisect(totals, random.uniform(0, totals[-1]))]
def rounder(numbers, d = 4):
"Round a single number, or sequence of numbers, to d decimal places."
if isinstance(numbers, (int, float)):
return round(numbers, d)
else:
constructor = type(numbers) # Can be list, set, tuple, etc.
return constructor(rounder(n, d) for n in numbers)
def num_or_str(x):
"""The argument is a string; convert to a number if
possible, or strip it.
"""
except ValueError:
try:
except ValueError:
"""Multiply each number by a constant such that the sum is 1.0"""
return([(n / total) for n in numbers])
"""Return x clipped to the range [lowest..highest]."""
def sigmoid(x):
"""Return activation value of x with sigmoid function"""
return 1/(1 + math.exp(-x))
def step(x):
"""Return activation value of x with sign function"""
return 1 if x >= 0 else 0
try: # math.isclose was added in Python 3.5; but we might be in 3.4
from math import isclose
except ImportError:
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
"Return true if numbers a and b are close to each other."
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
# ______________________________________________________________________________
# Misc Functions
# TODO: Use functools.lru_cache memoization decorator
def memoize(fn, slot=None):
"""Memoize fn: make it remember the computed value for any argument list.
If slot is specified, store result in that slot of first argument.
If slot is false, store results in a dictionary."""
if slot:
def memoized_fn(obj, *args):
if hasattr(obj, slot):
return getattr(obj, slot)
else:
val = fn(obj, *args)
setattr(obj, slot, val)
return val
else:
def memoized_fn(*args):
memoized_fn.cache[args] = fn(*args)
return memoized_fn.cache[args]
memoized_fn.cache = {}
return memoized_fn
"Try to find some reasonable name for the object."
return (getattr(obj, 'name', 0) or getattr(obj, '__name__', 0) or
getattr(getattr(obj, '__class__', 0), '__name__', 0) or
str(obj))
def isnumber(x):
def issequence(x):
"Is x a sequence?"
return isinstance(x, collections.abc.Sequence)
def print_table(table, header=None, sep=' ', numfmt='%g'):
"""Print a list of lists as a table, so that columns line up nicely.
header, if specified, will be printed as the first row.
numfmt is the format for all numbers; you might want e.g. '%6.2f'.
(If you want different formats in different columns,
don't use print_table.) sep is the separator between columns."""
justs = ['rjust' if isnumber(x) else 'ljust' for x in table[0]]
if header:
table.insert(0, header)
table = [[numfmt.format(x) if isnumber(x) else x for x in row]
map(lambda seq: max(list(map(len, seq))),
list(zip(*[list(map(str, row)) for row in table]))))
for row in table:
print(sep.join(getattr(
str(x), j)(size) for (j, size, x) in zip(justs, sizes, row)))
def AIMAFile(components, mode='r'):
"Open a file based at the AIMA root directory."
aima_root = os.path.dirname(__file__)
aima_file = os.path.join(aima_root, *components)
return open(aima_file)
def DataFile(name, mode='r'):
"Return a file in the AIMA /aima-data directory."
def unimplemented():
"Use this as a stub for not-yet-implemented functions."
raise NotImplementedError
# ______________________________________________________________________________
# Expressions
# See https://docs.python.org/3/reference/expressions.html#operator-precedence
# See https://docs.python.org/3/reference/datamodel.html#special-method-names
Surya Teja Cheedella
a validé
class Expr(object):
"""A mathematical expression with an operator and 0 or more arguments.
op is a str like '+' or 'sin'; args are Expressions.
Expr('x') or Symbol('x') creates a symbol (a nullary Expr).
Expr('-', x) creates a unary; Expr('+', x, 1) creates a binary."""
Surya Teja Cheedella
a validé
def __init__(self, op, *args):
Surya Teja Cheedella
a validé
def __neg__(self): return Expr('-', self)
def __pos__(self): return Expr('+', self)
def __invert__(self): return Expr('~', self)
def __add__(self, rhs): return Expr('+', self, rhs)
def __sub__(self, rhs): return Expr('-', self, rhs)
def __mul__(self, rhs): return Expr('*', self, rhs)
def __pow__(self, rhs): return Expr('**',self, rhs)
def __mod__(self, rhs): return Expr('%', self, rhs)
def __and__(self, rhs): return Expr('&', self, rhs)
def __xor__(self, rhs): return Expr('^', self, rhs)
def __rshift__(self, rhs): return Expr('>>', self, rhs)
def __lshift__(self, rhs): return Expr('<<', self, rhs)
def __truediv__(self, rhs): return Expr('/', self, rhs)
def __floordiv__(self, rhs): return Expr('//', self, rhs)
def __matmul__(self, rhs): return Expr('@', self, rhs)
def __or__(self, rhs):
if isinstance(rhs, Expression) :
Surya Teja Cheedella
a validé
return Expr('|', self, rhs)
else:
return NotImplemented # So that InfixOp can handle it
Surya Teja Cheedella
a validé
def __radd__(self, lhs): return Expr('+', lhs, self)
def __rsub__(self, lhs): return Expr('-', lhs, self)
def __rmul__(self, lhs): return Expr('*', lhs, self)
def __rdiv__(self, lhs): return Expr('/', lhs, self)
def __rpow__(self, lhs): return Expr('**', lhs, self)
def __rmod__(self, lhs): return Expr('%', lhs, self)
def __rand__(self, lhs): return Expr('&', lhs, self)
def __rxor__(self, lhs): return Expr('^', lhs, self)
def __ror__(self, lhs): return Expr('|', lhs, self)
def __rrshift__(self, lhs): return Expr('>>', lhs, self)
def __rlshift__(self, lhs): return Expr('<<', lhs, self)
def __rtruediv__(self, lhs): return Expr('/', lhs, self)
def __rfloordiv__(self, lhs): return Expr('//', lhs, self)
def __rmatmul__(self, lhs): return Expr('@', lhs, self)
Surya Teja Cheedella
a validé
def __call__(self, *args):
"Call: if 'f' is a Symbol, then f(0) == Expr('f', 0)."
if self.args:
raise ValueError('can only do a call for a Symbol, not an Expr')
else:
return Expr(self.op, *args)
Surya Teja Cheedella
a validé
def __eq__(self, other):
"'x == y' evaluates to True or False; does not build an Expr."
Surya Teja Cheedella
a validé
return (isinstance(other, Expr)
and self.op == other.op
Surya Teja Cheedella
a validé
def __hash__(self): return hash(self.op) ^ hash(self.args)
Surya Teja Cheedella
a validé
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
def __repr__(self):
op = self.op
args = [str(arg) for arg in self.args]
if op.isidentifier(): # f(x) or f(x, y)
return '{}({})'.format(op, ', '.join(args)) if args else op
elif len(args) == 1: # -x or -(x + 1)
return op + args[0]
else: # (x - y)
opp = (' ' + op + ' ')
return '(' + opp.join(args) + ')'
# An 'Expression' is either an Expr or a Number.
# Symbol is not an explicit type; it is any Expr with 0 args.
Number = (int, float, complex)
Expression = (Expr, Number)
def Symbol(name):
"A Symbol is just an Expr with no args."
return Expr(name)
def symbols(names):
"Return a tuple of Symbols; names is a comma/whitespace delimited str."
return tuple(Symbol(name) for name in names.replace(',', ' ').split())
def subexpressions(x):
"Yield the subexpressions of an Expression (including x itself)."
yield x
if isinstance(x, Expr):
for arg in x.args:
yield from subexpressions(arg)
def arity(expression):
"The number of sub-expressions in this expression."
if isinstance(expression, Expr):
return len(expression.args)
else: # expression is a number
return 0
# For operators that are not defined in Python, we allow new InfixOps:
class InfixOp:
"""Allow 'P |implies| Q, where P, Q are Exprs and implies is an InfixOp."""
Surya Teja Cheedella
a validé
def __init__(self, op, lhs=None): self.op, self.lhs = op, lhs
def __call__(self, lhs, rhs): return Expr(self.op, lhs, rhs)
def __or__(self, rhs): return Expr(self.op, self.lhs, rhs)
def __ror__(self, lhs): return InfixOp(self.op, lhs)
def __repr__(self): return "InfixOp('{}', {})".format(self.op, self.lhs)
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
infix_ops = (implies, rimplies, equiv) = [InfixOp(o) for o in ['==>', '<==', '<=>']]
def expr(x):
"""Shortcut to create an Expression. x is a str in which:
- identifiers are automatically defined as Symbols.
- '==>' is treated as an infix |implies|, as are all infix_ops
If x is already an Expression, it is returned unchanged. Example:
>>> expr('P & Q ==> Q')
((P & Q) ==> Q)
"""
if isinstance(x, str):
return eval(expr_handle_infix_ops(x),
defaultkeydict(Symbol, InfixOp=InfixOp))
else:
return x
def expr_handle_infix_ops(x):
"""Given a str, return a new str with '==>' replaced by |InfixOp('==>')|, etc.
>>> expr_handle_infix_ops('P ==> Q')
"P |InfixOp('==>', None)| Q"
"""
for op in infix_ops:
x = x.replace(op.op, '|' + str(op) + '|')
return x
class defaultkeydict(collections.defaultdict):
"""Like defaultdict, but the default_factory is a function of the key.
>>> d = defaultkeydict(len); d['four']
4
"""
def __missing__(self, key):
self[key] = result = self.default_factory(key)
return result
Surya Teja Cheedella
a validé
# ______________________________________________________________________________
# Queues: Stack, FIFOQueue, PriorityQueue
# TODO: Possibly use queue.Queue, queue.PriorityQueue
# TODO: Priority queues may not belong here -- see treatment in search.py
class Queue:
"""Queue is an abstract class/interface. There are three types:
Stack(): A Last In First Out Queue.
FIFOQueue(): A First In First Out Queue.
PriorityQueue(order, f): Queue in sorted order (default min-first).
Each type supports the following methods and functions:
q.append(item) -- add an item to the queue
q.extend(items) -- equivalent to: for item in items: q.append(item)
q.pop() -- return the top item from the queue
len(q) -- number of items in q (also q.__len())
Note that isinstance(Stack(), Queue) is false, because we implement stacks
as lists. If Python ever gets interfaces, Queue will be an interface."""
def extend(self, items):
def Stack():
"""Return an empty list, suitable as a Last-In-First-Out Queue."""
return []
class FIFOQueue(Queue):
"""A First-In-First-Out Queue."""
def __init__(self):
def append(self, item):
self.A.append(item)
def __len__(self):
return len(self.A) - self.start
def extend(self, items):
e = self.A[self.start]
self.start += 1
if self.start > 5 and self.start > len(self.A)/2:
self.A = self.A[self.start:]
self.start = 0
return e
def __contains__(self, item):
return item in self.A[self.start:]
class PriorityQueue(Queue):
"""A queue in which the minimum (or maximum) element (as determined by f and
order) is returned first. If order is min, the item with minimum f(x) is
returned first; if order is max, then it is the item with maximum f(x).
Also supports dict-like lookup."""
def __init__(self, order=min, f=lambda x: x):
self.A = []
self.order = order
self.f = f
def append(self, item):
bisect.insort(self.A, (self.f(item), item))
def __len__(self):
return len(self.A)
def pop(self):
if self.order == min:
return self.A.pop(0)[1]
else:
return self.A.pop()[1]
return any(item == pair[1] for pair in self.A)
def __getitem__(self, key):
for _, item in self.A:
if item == key:
return item