Newer
Older
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def best_first_graph_search(problem, f):\n",
" \"\"\"Search the nodes with the lowest f scores first.\n",
" You specify the function f(node) that you want to minimize; for example,\n",
" if f is a heuristic estimate to the goal, then we have greedy best\n",
" first search; if f is node.depth then we have breadth-first search.\n",
" There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n",
" values will be cached on the nodes as they are computed. So after doing\n",
" a best first search you can examine the f values of the path returned.\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" f = memoize(f, 'f')\n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier = PriorityQueue(min, f)\n",
" frontier.append(node)\n",
" \n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" elif child in frontier:\n",
" incumbent = frontier[child]\n",
" if f(child) < f(incumbent):\n",
" del frontier[incumbent]\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## UNIFORM COST SEARCH\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true
},
"def uniform_cost_search(problem):\n",
" \"[Figure 3.14]\"\n",
" #Uniform Cost Search uses Best First Search algorithm with f(n) = g(n)\n",
" iterations, all_node_colors, node = best_first_graph_search(problem, lambda node: node.path_cost)\n",
" return(iterations, all_node_colors, node)"
"cell_type": "code",
"execution_count": 23,
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "46b8200b4a8f47e7b18145234a8469da"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ca9b2d01bbd5458bb037585c719d73fc"
},
"metadata": {},
"output_type": "display_data"
}
],
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = uniform_cost_search, problem = romania_problem)"
"cell_type": "markdown",
"metadata": {},
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def greedy_best_first_search(problem, h=None):\n",
" \"\"\"Greedy Best-first graph search is an informative searching algorithm with f(n) = h(n).\n",
" You need to specify the h function when you call best_first_search, or\n",
" else in your Problem subclass.\"\"\"\n",
" h = memoize(h or problem.h, 'h')\n",
" iterations, all_node_colors, node = best_first_graph_search(problem, lambda n: h(n))\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e3ddd0260d7d4a8aa62d610976b9568a"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "dae485b1f4224c34a88de42d252da76c"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = greedy_best_first_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## A\\* SEARCH\n",
"\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def astar_search(problem, h=None):\n",
" \"\"\"A* search is best-first graph search with f(n) = g(n)+h(n).\n",
" You need to specify the h function when you call astar_search, or\n",
" else in your Problem subclass.\"\"\"\n",
" h = memoize(h or problem.h, 'h')\n",
" iterations, all_node_colors, node = best_first_graph_search(problem, lambda n: n.path_cost + h(n))\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "15a78d815f0c4ea589cdd5ad40bc8794"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "10450687dd574be2a380e9e40403fa83"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = astar_search, problem = romania_problem)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"scrolled": false
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9019790cf8324d73966373bb3f5373a8"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b8a3195598da472d996e4e8b81595cb7"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aabe167a0d6440f0a020df8a85a9206c"
}
},
"metadata": {},
"output_type": "display_data"
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "25d146d187004f4f9db6a7dccdbc7e93"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "68d532810a9e46309415fd353c474a4d"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"# display_visual(user_input = True, algorithm = breadth_first_tree_search)\n",
"display_visual(user_input = True)"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Different heuristics provide different efficiency in solving A* problems which are generally defined by the number of explored nodes as well as the branching factor. With the classic 8 puzzle we can show the efficiency of different heuristics through the number of explored nodes.\n",
"The *8 Puzzle Problem* consists of a 3x3 tray in which the goal is to get the initial configuration to the goal state by shifting the numbered tiles into the blank space.\n",
" Initial State Goal State\n",
" | 7 | 2 | 4 | | 0 | 1 | 2 |\n",
" | 5 | 0 | 6 | | 3 | 4 | 5 |\n",
" | 8 | 3 | 1 | | 6 | 7 | 8 |\n",
" \n",
"We have a total of 9 blank tiles giving us a total of 9! initial configuration but not all of these are solvable, the solvability of a configuration can be checked by calculating the Inversion Permutation. If the total Inversion Permutation is even then the initial configuration is solvable else the initial configuration is not solvable which means that only 9!/2 initial states lead to a solution.\n",
"1.) Manhattan Distance:- For the 8 puzzle problem Manhattan distance is defined as the distance of a tile from its goal state( for the tile numbered '1' in the initial configuration Manhattan distance is 4 \"2 for left and 2 for upward displacement\").\n",
"2.) No. of Misplaced Tiles:- The heuristic calculates the number of misplaced tiles between the current state and goal state.\n",
"3.) Sqrt of Manhattan Distance:- It calculates the square root of Manhattan distance.\n",
"4.) Max Heuristic:- It assign the score as max of Manhattan Distance and No. of misplaced tiles. "
]
},
{
"cell_type": "code",
"execution_count": 2,
Aman Deep Singh
a validé
"metadata": {
"collapsed": true
},
"# heuristics for 8 Puzzle Problem\n",
"\n",
"def linear(state,goal):\n",
" return sum([1 if state[i] != goal[i] else 0 for i in range(8)])\n",
"\n",
"def manhanttan(state,goal):\n",
"\tindex_goal = {0:[2,2], 1:[0,0], 2:[0,1], 3:[0,2], 4:[1,0], 5:[1,1], 6:[1,2], 7:[2,0], 8:[2,1]}\n",
"\tindex_state = {}\n",
"\tindex = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]\n",
"\tx=0\n",
"\ty=0\n",
"\tfor i in range(len(state)):\n",
"\t\tindex_state[state[i]] = index[i]\n",
"\tmhd = 0\n",
"\tfor i in range(8):\n",
"\t\tfor j in range(2):\n",
"\t\t\tmhd = abs(index_goal[i][j] - index_state[i][j]) + mhd\n",
"\treturn mhd\n",
"\n",
"def sqrt_manhanttan(state,goal):\n",
"\tindex_goal = {0:[2,2], 1:[0,0], 2:[0,1], 3:[0,2], 4:[1,0], 5:[1,1], 6:[1,2], 7:[2,0], 8:[2,1]}\n",
"\tindex_state = {}\n",
"\tindex = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]\n",
"\tx=0\n",
"\ty=0\n",
"\tfor i in range(len(state)):\n",
"\t\tindex_state[state[i]] = index[i]\n",
"\tmhd = 0\n",
"\tfor i in range(8):\n",
"\t\tfor j in range(2):\n",
"\t\t\tmhd = (index_goal[i][j] - index_state[i][j])**2 + mhd\n",
"\treturn math.sqrt(mhd)\n",
"\n",
"def max_heuristic(state,goal):\n",
"\tscore1 = manhanttan(state, goal)\n",
"\tscore2 = linear(state, goal)\n",
"\treturn max(score1, score2)\t\t\n"
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n",
"Number of explored nodes by the following heuristic are: 126\n",
"[2, 4, 3, 1, 5, 6, 7, 8, 0]\n",
"[2, 4, 3, 1, 5, 0, 7, 8, 6]\n",
"[2, 4, 3, 1, 0, 5, 7, 8, 6]\n",
"[2, 0, 3, 1, 4, 5, 7, 8, 6]\n",
"[0, 2, 3, 1, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 0, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 0, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 0, 7, 8, 6]\n",
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
"[1, 2, 3, 4, 5, 6, 7, 8, 0]\n",
"Number of explored nodes by the following heuristic are: 129\n",
"[2, 4, 3, 1, 5, 6, 7, 8, 0]\n",
"[2, 4, 3, 1, 5, 0, 7, 8, 6]\n",
"[2, 4, 3, 1, 0, 5, 7, 8, 6]\n",
"[2, 0, 3, 1, 4, 5, 7, 8, 6]\n",
"[0, 2, 3, 1, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 0, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 0, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 0, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 6, 7, 8, 0]\n",
"Number of explored nodes by the following heuristic are: 126\n",
"[2, 4, 3, 1, 5, 6, 7, 8, 0]\n",
"[2, 4, 3, 1, 5, 0, 7, 8, 6]\n",
"[2, 4, 3, 1, 0, 5, 7, 8, 6]\n",
"[2, 0, 3, 1, 4, 5, 7, 8, 6]\n",
"[0, 2, 3, 1, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 0, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 0, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 0, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 6, 7, 8, 0]\n",
"Number of explored nodes by the following heuristic are: 139\n",
"[2, 4, 3, 1, 5, 6, 7, 8, 0]\n",
"[2, 4, 3, 1, 5, 0, 7, 8, 6]\n",
"[2, 4, 3, 1, 0, 5, 7, 8, 6]\n",
"[2, 0, 3, 1, 4, 5, 7, 8, 6]\n",
"[0, 2, 3, 1, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 0, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 0, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 0, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 6, 7, 8, 0]\n"
]
}
],
"source": [
"# Solving the puzzle \n",
"puzzle = EightPuzzle()\n",
"puzzle.checkSolvability([2,4,3,1,5,6,7,8,0]) # checks whether the initialized configuration is solvable or not\n",
"puzzle.solve([2,4,3,1,5,6,7,8,0],[1,2,3,4,5,6,7,8,0],max_heuristic) # Max_heuristic\n",
"puzzle.solve([2,4,3,1,5,6,7,8,0],[1,2,3,4,5,6,7,8,0],linear) # Linear\n",
"puzzle.solve([2,4,3,1,5,6,7,8,0],[1,2,3,4,5,6,7,8,0],manhanttan) # Manhattan\n",
"puzzle.solve([2,4,3,1,5,6,7,8,0],[1,2,3,4,5,6,7,8,0],sqrt_manhanttan) # Sqrt_manhattan"
{
"cell_type": "markdown",
"\n",
"Genetic algorithms (or GA) are inspired by natural evolution and are particularly useful in optimization and search problems with large state spaces.\n",
"\n",
"Given a problem, algorithms in the domain make use of a *population* of solutions (also called *states*), where each solution/state represents a feasible solution. At each iteration (often called *generation*), the population gets updated using methods inspired by biology and evolution, like *crossover*, *mutation* and *natural selection*."
]
},
{
"cell_type": "markdown",
"source": [
"### Overview\n",
"\n",
"A genetic algorithm works in the following way:\n",
"\n",
"1) Initialize random population.\n",
"\n",
"2) Calculate population fitness.\n",
"\n",
"3) Select individuals for mating.\n",
"\n",
"4) Mate selected individuals to produce new population.\n",
"\n",
" * Random chance to mutate individuals.\n",
"\n",
"5) Repeat from step 2) until an individual is fit enough or the maximum number of iterations was reached."
]
},
{
"cell_type": "markdown",
"### Glossary\n",
"\n",
"Before we continue, we will lay the basic terminology of the algorithm.\n",
"\n",
"* Individual/State: A list of elements (called *genes*) that represent possible solutions.\n",
"* Population: The list of all the individuals/states.\n",
"\n",
"* Gene pool: The alphabet of possible values for an individual's genes.\n",
"\n",
"* Generation/Iteration: The number of times the population will be updated.\n",
"\n",
"* Fitness: An individual's score, calculated by a function specific to the problem."
]
},
{
"cell_type": "markdown",
"### Crossover\n",
"\n",
"Two individuals/states can \"mate\" and produce one child. This offspring bears characteristics from both of its parents. There are many ways we can implement this crossover. Here we will take a look at the most common ones. Most other methods are variations of those below.\n",
"\n",
"* Point Crossover: The crossover occurs around one (or more) point. The parents get \"split\" at the chosen point or points and then get merged. In the example below we see two parents get split and merged at the 3rd digit, producing the following offspring after the crossover.\n",
"\n",
"\n",
"\n",
"* Uniform Crossover: This type of crossover chooses randomly the genes to get merged. Here the genes 1, 2 and 5 were chosen from the first parent, so the genes 3, 4 were added by the second parent.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"### Mutation\n",
"\n",
"When an offspring is produced, there is a chance it will mutate, having one (or more, depending on the implementation) of its genes altered.\n",
"\n",
"For example, let's say the new individual to undergo mutation is \"abcde\". Randomly we pick to change its third gene to 'z'. The individual now becomes \"abzde\" and is added to the population."
]
},
{
"cell_type": "markdown",
"At each iteration, the fittest individuals are picked randomly to mate and produce offsprings. We measure an individual's fitness with a *fitness function*. That function depends on the given problem and it is used to score an individual. Usually the higher the better.\n",
"The selection process is this:\n",
"1) Individuals are scored by the fitness function.\n",
"\n",
"2) Individuals are picked randomly, according to their score (higher score means higher chance to get picked). Usually the formula to calculate the chance to pick an individual is the following (for population *P* and individual *i*):\n",
"\n",
"$$ chance(i) = \\dfrac{fitness(i)}{\\sum_{k \\, in \\, P}{fitness(k)}} $$"
]
},
{
"cell_type": "markdown",
"### Implementation\n",
"\n",
"Below we look over the implementation of the algorithm in the `search` module.\n",
"\n",
"First the implementation of the main core of the algorithm:"
]
},
{
"cell_type": "code",
Aman Deep Singh
a validé
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">genetic_algorithm</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"o\">=</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">],</span> <span class=\"n\">f_thres</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">ngen</span><span class=\"o\">=</span><span class=\"mi\">1000</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"o\">=</span><span class=\"mf\">0.1</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""[Figure 4.8]"""</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">ngen</span><span class=\"p\">):</span>\n",
" <span class=\"n\">population</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">mutate</span><span class=\"p\">(</span><span class=\"n\">recombine</span><span class=\"p\">(</span><span class=\"o\">*</span><span class=\"n\">select</span><span class=\"p\">(</span><span class=\"mi\">2</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">)),</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">))]</span>\n",
"\n",
" <span class=\"n\">fittest_individual</span> <span class=\"o\">=</span> <span class=\"n\">fitness_threshold</span><span class=\"p\">(</span><span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">f_thres</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">)</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">fittest_individual</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">fittest_individual</span>\n",
"\n",
"\n",
" <span class=\"k\">return</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">fitness_fn</span><span class=\"p\">)</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
Aman Deep Singh
a validé
"psource(genetic_algorithm)"
]
},
{
"cell_type": "markdown",
"source": [
"The algorithm takes the following input:\n",
"\n",
"* `population`: The initial population.\n",
"\n",
"* `fitness_fn`: The problem's fitness function.\n",
"\n",
"* `gene_pool`: The gene pool of the states/individuals. By default 0 and 1.\n",
"* `f_thres`: The fitness threshold. If an individual reaches that score, iteration stops. By default 'None', which means the algorithm will not halt until the generations are ran.\n",
"\n",
"* `ngen`: The number of iterations/generations.\n",
"\n",
"* `pmut`: The probability of mutation.\n",
"\n",
"The algorithm gives as output the state with the largest score."
]
},
{
"cell_type": "markdown",
"For each generation, the algorithm updates the population. First it calculates the fitnesses of the individuals, then it selects the most fit ones and finally crosses them over to produce offsprings. There is a chance that the offspring will be mutated, given by `pmut`. If at the end of the generation an individual meets the fitness threshold, the algorithm halts and returns that individual.\n",
"\n",
Aman Deep Singh
a validé
"The function of mating is accomplished by the method `recombine`:"
]
},
{
"cell_type": "code",
Aman Deep Singh
a validé
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">recombine</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">y</span><span class=\"p\">):</span>\n",
" <span class=\"n\">n</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">)</span>\n",
" <span class=\"n\">c</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">n</span><span class=\"p\">)</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">x</span><span class=\"p\">[:</span><span class=\"n\">c</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">y</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"p\">:]</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(recombine)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The method picks at random a point and merges the parents (`x` and `y`) around it.\n",
"\n",
"The mutation is done in the method `mutate`:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">mutate</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">uniform</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">)</span> <span class=\"o\">>=</span> <span class=\"n\">pmut</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">x</span>\n",
"\n",
" <span class=\"n\">n</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">)</span>\n",
" <span class=\"n\">g</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">gene_pool</span><span class=\"p\">)</span>\n",
" <span class=\"n\">c</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">n</span><span class=\"p\">)</span>\n",
" <span class=\"n\">r</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">g</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"n\">new_gene</span> <span class=\"o\">=</span> <span class=\"n\">gene_pool</span><span class=\"p\">[</span><span class=\"n\">r</span><span class=\"p\">]</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">x</span><span class=\"p\">[:</span><span class=\"n\">c</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"p\">[</span><span class=\"n\">new_gene</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">x</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"o\">+</span><span class=\"mi\">1</span><span class=\"p\">:]</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(mutate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We pick a gene in `x` to mutate and a gene from the gene pool to replace it with.\n",
"\n",
"To help initializing the population we have the helper function `init_population`\":"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",