Newer
Older
event = {'Burglary': True, 'Earthquake': True}
event = {'Burglary': False, 'Earthquake': True}
# assert BoolCPT({T: 0.2, F: 0.625}).p(False, ['Burglary'], event) == 0.375
# assert BoolCPT(0.75).p(False, [], {}) == 0.25
# cpt = BoolCPT({True: 0.2, False: 0.7})
# assert cpt.rand(['A'], {'A': True}) in [True, False]
# cpt = BoolCPT({(True, True): 0.1, (True, False): 0.3,
# (False, True): 0.5, (False, False): 0.7})
# assert cpt.rand(['A', 'B'], {'A': True, 'B': False}) in [True, False]
# #enumeration_ask('Earthquake', {}, burglary)
s = {'A': True, 'B': False, 'C': True, 'D': False}
assert consistent_with(s, {})
assert consistent_with(s, s)
assert not consistent_with(s, {'A': False})
assert not consistent_with(s, {'D': True})
random.seed(21)
p = rejection_sampling('Earthquake', {}, burglary, 1000)
assert p[True], p[False] == (0.001, 0.999)
random.seed(71)
p = likelihood_weighting('Earthquake', {}, burglary, 1000)
assert p[True], p[False] == (0.002, 0.998)
def test_probdist_basic():
P = ProbDist('Flip')
def test_probdist_frequency():
P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
assert (P['lo'], P['med'], P['hi']) == (0.125, 0.375, 0.5)
def test_probdist_normalize():
P = ProbDist('Flip')
P['H'], P['T'] = 35, 65
P = P.normalize()
assert (P.prob['H'], P.prob['T']) == (0.350, 0.650)
def test_jointprob():
P = JointProbDist(['X', 'Y'])
P[1, 1] = 0.25
assert P[1, 1] == 0.25
P[dict(X=0, Y=1)] = 0.5
assert P[dict(X=0, Y=1)] == 0.5
assert event_values({'A': 10, 'B': 9, 'C': 8}, ['C', 'A']) == (8, 10)
assert event_values((1, 2), ['C', 'A']) == (1, 2)
def test_enumerate_joint_ask():
P = JointProbDist(['X', 'Y'])
P[0, 0] = 0.25
P[0, 1] = 0.5
P[1, 1] = P[2, 1] = 0.125
assert enumerate_joint_ask(
'X', dict(Y=1), P).show_approx() == '0: 0.667, 1: 0.167, 2: 0.167'
def test_bayesnode_p():
bn = BayesNode('X', 'Burglary', {T: 0.2, F: 0.625})
assert bn.p(False, {'Burglary': False, 'Earthquake': True}) == 0.375
assert enumeration_ask(
'Burglary', dict(JohnCalls=T, MaryCalls=T),
burglary).show_approx() == 'False: 0.716, True: 0.284'
elimination_ask(
'Burglary', dict(JohnCalls=T, MaryCalls=T),
burglary).show_approx() == 'False: 0.716, True: 0.284'
def test_rejection_sampling():
random.seed(47)
rejection_sampling(
'Burglary', dict(JohnCalls=T, MaryCalls=T),
burglary, 10000).show_approx() == 'False: 0.7, True: 0.3'
def test_likelihood_weighting():
random.seed(1017)
assert likelihood_weighting(
'Burglary', dict(JohnCalls=T, MaryCalls=T),
burglary, 10000).show_approx() == 'False: 0.702, True: 0.298'
def test_forward_backward():
umbrella_prior = [0.5, 0.5]
umbrella_transition = [[0.7, 0.3], [0.3, 0.7]]
umbrella_sensor = [[0.9, 0.2], [0.1, 0.8]]
umbrellaHMM = HiddenMarkovModel(umbrella_transition, umbrella_sensor)
umbrella_evidence = [T, T, F, T, T]
assert (rounder(forward_backward(umbrellaHMM, umbrella_evidence, umbrella_prior)) ==
[[0.6469, 0.3531], [0.8673, 0.1327], [0.8204, 0.1796], [0.3075, 0.6925], [0.8204, 0.1796], [0.8673, 0.1327]])
umbrella_evidence = [T, F, T, F, T]
assert rounder(forward_backward(umbrellaHMM, umbrella_evidence, umbrella_prior)) == [[0.5871, 0.4129],
[0.7177, 0.2823], [0.2324, 0.7676], [0.6072, 0.3928], [0.2324, 0.7676], [0.7177, 0.2823]]
def test_fixed_lag_smoothing():
umbrella_evidence = [T, F, T, F, T]
e_t = F
t = 4
umbrella_transition = [[0.7, 0.3], [0.3, 0.7]]
umbrella_sensor = [[0.9, 0.2], [0.1, 0.8]]
umbrellaHMM = HiddenMarkovModel(umbrella_transition, umbrella_sensor)
d = 2
assert rounder(fixed_lag_smoothing(e_t, umbrellaHMM, d, umbrella_evidence, t)) == [0.1111, 0.8889]
assert fixed_lag_smoothing(e_t, umbrellaHMM, d, umbrella_evidence, t) is None
umbrella_evidence = [T, T, F, T, T]
# t = 4
e_t = T
d = 1
assert rounder(fixed_lag_smoothing(e_t, umbrellaHMM, d, umbrella_evidence, t)) == [0.9939, 0.0061]
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
def test_particle_filtering():
N = 10
umbrella_evidence = T
umbrella_prior = [0.5, 0.5]
umbrella_transition = [[0.7, 0.3], [0.3, 0.7]]
umbrella_sensor = [[0.9, 0.2], [0.1, 0.8]]
umbrellaHMM = HiddenMarkovModel(umbrella_transition, umbrella_sensor)
assert particle_filtering(umbrella_evidence, N, umbrellaHMM)
# The following should probably go in .ipynb:
"""
# We can build up a probability distribution like this (p. 469):
>>> P = ProbDist()
>>> P['sunny'] = 0.7
>>> P['rain'] = 0.2
>>> P['cloudy'] = 0.08
>>> P['snow'] = 0.02
# and query it like this: (Never mind this ELLIPSIS option
# added to make the doctest portable.)
>>> P['rain'] #doctest:+ELLIPSIS
0.2...
# A Joint Probability Distribution is dealt with like this (Fig. 13.3): # noqa
>>> P = JointProbDist(['Toothache', 'Cavity', 'Catch'])
>>> T, F = True, False
>>> P[T, T, T] = 0.108; P[T, T, F] = 0.012; P[F, T, T] = 0.072; P[F, T, F] = 0.008
>>> P[T, F, T] = 0.016; P[T, F, F] = 0.064; P[F, F, T] = 0.144; P[F, F, F] = 0.576
>>> P[T, T, T]
0.108
# Ask for P(Cavity|Toothache=T)
>>> PC = enumerate_joint_ask('Cavity', {'Toothache': T}, P)
>>> PC.show_approx()
'False: 0.4, True: 0.6'
>>> 0.6-epsilon < PC[T] < 0.6+epsilon
True
>>> 0.4-epsilon < PC[F] < 0.4+epsilon
True
"""