Newer
Older
"""Reinforcement Learning (Chapter 21)
"""
from collections import defaultdict
from utils import argmax
class PassiveADPAgent(agents.Agent):
"""Passive (non-learning) agent that uses adaptive dynamic programming
on a given MDP and policy. [Fig. 21.2]"""
NotImplemented
class PassiveTDAgent:
"""The abstract class for a Passive (non-learning) agent that uses
temporal differences to learn utility estimates. Override update_state
method to convert percept to state and reward. The mdp being probided
should be an instance of a subclass of the MDP Class.[Fig. 21.4]
"""
def __init__(self, pi, mdp, alpha=None):
self.pi = pi
self.U = {s: 0. for s in mdp.states}
self.Ns = {s: 0 for s in mdp.states}
self.s = None
self.a = None
self.r = None
self.gamma = mdp.gamma
self.terminals = mdp.terminals
if alpha:
self.alpha = alpha
else:
self.alpha = lambda n: 1./(1+n) # udacity video
def __call__(self, percept):
s_prime, r_prime = self.update_state(percept)
pi, U, Ns, s, a, r = self.pi, self.U, self.Ns, self.s, self.a, self.r
alpha, gamma, terminals = self.alpha, self.gamma, self.terminals
if not Ns[s_prime]:
U[s_prime] = r_prime
if s is not None:
Ns[s] += 1
U[s] += alpha(Ns[s]) * (r + gamma * U[s_prime] - U[s])
if s_prime in terminals:
self.s = self.a = self.r = None
else:
self.s, self.a, self.r = s_prime, pi[s_prime], r_prime
return self.a
def update_state(self, percept):
''' To be overriden in most cases. The default case
assumes th percept to be of type (state, reward)'''
return percept
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
class QLearningAgent:
""" An exploratory Q-learning agent. It avoids having to learn the transition
model because the Q-value of a state can be related directly to those of
its neighbors. [Fig. 21.8]
"""
def __init__(self, mdp, Ne, Rplus, alpha=None):
self.gamma = mdp.gamma
self.terminals = mdp.terminals
self.all_act = mdp.actlist
self.Ne = Ne # iteration limit in exploration function
self.Rplus = Rplus # large value to assign before iteration limit
self.Q = defaultdict(float)
self.Nsa = defaultdict(float)
self.s = None
self.a = None
self.r = None
if alpha:
self.alpha = alpha
else:
self.alpha = lambda n: 1./(1+n) # udacity video
def f(self, u, n):
""" Exploration function. Returns fixed Rplus untill
agent has visited state, action a Ne number of times.
Same as ADP agent in book."""
if n < self.Ne:
return self.Rplus
else:
return u
def actions_in_state(self, state):
""" Returns actions possible in given state.
Useful for max and argmax. """
if state in self.terminals:
return [None]
else:
return self.all_act
def __call__(self, percept):
s1, r1 = self.update_state(percept)
Q, Nsa, s, a, r = self.Q, self.Nsa, self.s, self.a, self.r
alpha, gamma, terminals, actions_in_state = self.alpha, self.gamma, self.terminals, self.actions_in_state
if s1 in terminals:
Q[(s1, None)] = r1
if s is not None:
Nsa[(s, a)] += 1
Q[(s, a)] += alpha(Nsa[(s, a)])*(r+gamma*max([Q[(s1, a1)] for a1 in actions_in_state(s1)])-Q[(s, a)])
if s1 in terminals:
self.s = self.a = self.r = None
else:
self.s, self.r = s1, r1
self.a = argmax(actions_in_state(s1), key=lambda a1: self.f(Q[(s1, a1)], Nsa[(s1, a1)]))
return self.a
def update_state(self, percept):
''' To be overriden in most cases. The default case
assumes the percept to be of type (state, reward)'''
return percept
def run_single_trial(agent_program, mdp):
''' Execute trial for given agent_program
and mdp. mdp should be an instance of subclass
of mdp.MDP '''
def take_single_action(mdp, s, a):
'''
Selects outcome of taking action a
in state s. Weighted Sampling.
'''
x = random.uniform(0, 1)
cumulative_probability = 0.0
for probability_state in mdp.T(s, a):
probability, state = probability_state
cumulative_probability += probability
if x < cumulative_probability:
break
return state
current_state = mdp.init
while True:
current_reward = mdp.R(current_state)
percept = (current_state, current_reward)
next_action = agent_program(percept)
if next_action is None:
break
current_state = take_single_action(mdp, current_state, next_action)