Newer
Older
"""Representations and Inference for Logic (Chapters 7-9, 12)
Covers both Propositional and First-Order Logic. First we have four
important data types:
KB Abstract class holds a knowledge base of logical expressions
KB_Agent Abstract class subclasses agents.Agent
Expr A logical expression, imported from utils.py
substitution Implemented as a dictionary of var:value pairs, {x:1, y:x}
Be careful: some functions take an Expr as argument, and some take a KB.
Logical expressions can be created with Expr or expr, imported from utils, TODO
or with expr, which adds the capability to write a string that uses
the connectives ==>, <==, <=>, or <=/=>. But be careful: these have the
opertor precedence of commas; you may need to add parens to make precendence work.
See logic.ipynb for examples.
Then we implement various functions for doing logical inference:
pl_true Evaluate a propositional logical sentence in a model
tt_entails Say if a statement is entailed by a KB
pl_resolution Do resolution on propositional sentences
dpll_satisfiable See if a propositional sentence is satisfiable
And a few other functions:
to_cnf Convert to conjunctive normal form
unify Do unification of two FOL sentences
diff, simp Symbolic differentiation and simplification
from utils import (
removeall, unique, first, every, argmax, probability, num_or_str,
Surya Teja Cheedella
a validé
isnumber, issequence, Symbol, Expr, expr, subexpressions, implies
from collections import defaultdict
# ______________________________________________________________________________
class KB:
"""A knowledge base to which you can tell and ask sentences.
To create a KB, first subclass this class and implement
tell, ask_generator, and retract. Why ask_generator instead of ask?
The book is a bit vague on what ask means --
For a Propositional Logic KB, ask(P & Q) returns True or False, but for an
FOL KB, something like ask(Brother(x, y)) might return many substitutions
such as {x: Cain, y: Abel}, {x: Abel, y: Cain}, {x: George, y: Jeb}, etc.
So ask_generator generates these one at a time, and ask either returns the
first one or returns False."""
def __init__(self, sentence=None):
def ask(self, query):
"""Return a substitution that makes the query true, or, failing that, return False."""
def ask_generator(self, query):
"Yield all the substitutions that make query true."
def retract(self, sentence):
"Remove sentence from the KB."
class PropKB(KB):
"A KB for propositional logic. Inefficient, with no indexing."
def __init__(self, sentence=None):
self.clauses = []
if sentence:
self.tell(sentence)
"Add the sentence's clauses to the KB."
"Return the empty substitution {} if KB entails query; else return None."
if tt_entails(Expr('&', *self.clauses), query):
yield {}
def ask_if_true(self, query):
"Return True if the KB entails query, else return False."
if self.ask_generator(query) == {}:
return True
else:
return False
def retract(self, sentence):
"Remove the sentence's clauses from the KB."
for c in conjuncts(to_cnf(sentence)):
if c in self.clauses:
self.clauses.remove(c)
# ______________________________________________________________________________
def KB_AgentProgram(KB):
"""A generic logical knowledge-based agent program. [Fig. 7.1]"""
steps = itertools.count()
def program(percept):
KB.tell(make_percept_sentence(percept, t))
action = KB.ask(make_action_query(t))
KB.tell(make_action_sentence(action, t))
return action
def make_percept_sentence(self, percept, t):
return Expr("Percept")(percept, t)
def make_action_query(self, t):
return expr("ShouldDo(action, {})".format(t))
def make_action_sentence(self, action, t):
return Expr("Did")(action[expr('action')], t)
return program
def is_symbol(s):
"A string s is a symbol if it starts with an alphabetic char."
return isinstance(s, str) and s[:1].isalpha()
def is_var_symbol(s):
"A logic variable symbol is an initial-lowercase string."
return is_symbol(s) and s[0].islower()
def is_prop_symbol(s):
"""A proposition logic symbol is an initial-uppercase string other than
return is_symbol(s) and s[0].isupper() and s != 'TRUE' and s != 'FALSE'
"""Return a set of the variables in expression s.
>>> variables(expr('F(x, x) & G(x, y) & H(y, z) & R(A, z, 2)')) == {x, y, z}
return {x for x in subexpressions(s) if is_variable(x)}
def is_definite_clause(s):
"""returns True for exprs s of the form A & B & ... & C ==> D,
where all literals are positive. In clause form, this is
~A | ~B | ... | ~C | D, where exactly one clause is positive.
>>> is_definite_clause(expr('Farmer(Mac)'))
True
"""
if is_symbol(s.op):
return True
antecedent, consequent = s.args
return (is_symbol(consequent.op) and
every(lambda arg: is_symbol(arg.op), conjuncts(antecedent)))
withal
a validé
def parse_definite_clause(s):
"Return the antecedents and the consequent of a definite clause."
assert is_definite_clause(s)
if is_symbol(s.op):
return [], s
else:
antecedent, consequent = s.args
return conjuncts(antecedent), consequent
withal
a validé
A, B, C, D, E, F, G, P, Q, x, y, z = map(Expr, 'ABCDEFGPQxyz')
# ______________________________________________________________________________
def tt_entails(kb, alpha):
"""Does kb entail the sentence alpha? Use truth tables. For propositional
kb's and sentences. [Fig. 7.10]. Note that the 'kb' should be an
Expr which is a conjunction of clauses.
>>> tt_entails(expr('P & Q'), expr('Q'))
True
"""
assert not variables(alpha)
return tt_check_all(kb, alpha, prop_symbols(kb & alpha), {})
def tt_check_all(kb, alpha, symbols, model):
"Auxiliary routine to implement tt_entails."
if not symbols:
if pl_true(kb, model):
result = pl_true(alpha, model)
assert result in (True, False)
return result
else:
return True
else:
P, rest = symbols[0], symbols[1:]
return (tt_check_all(kb, alpha, rest, extend(model, P, True)) and
tt_check_all(kb, alpha, rest, extend(model, P, False)))
def prop_symbols(x):
"Return a list of all propositional symbols in x."
if not isinstance(x, Expr):
return []
elif is_prop_symbol(x.op):
return [x]
else:
return list(set(symbol for arg in x.args for symbol in prop_symbols(arg)))
def tt_true(s):
"""Is a propositional sentence a tautology?
>>> tt_true('P | ~P')
True
"""
def pl_true(exp, model={}):
"""Return True if the propositional logic expression is true in the model,
and False if it is false. If the model does not specify the value for
every proposition, this may return None to indicate 'not obvious';
this may happen even when the expression is tautological."""
op, args = exp.op, exp.args
if exp == TRUE:
return True
elif exp == FALSE:
return False
elif is_prop_symbol(op):
return model.get(exp)
elif op == '~':
p = pl_true(args[0], model)
if p is None:
return None
else:
return not p
elif op == '|':
result = False
for arg in args:
p = pl_true(arg, model)
if p is True:
return True
if p is None:
result = None
return result
elif op == '&':
result = True
for arg in args:
p = pl_true(arg, model)
if p is False:
return False
if p is None:
result = None
return result
p, q = args
return pl_true(~p | q, model)
return pl_true(p | ~q, model)
pt = pl_true(p, model)
qt = pl_true(q, model)
if op == '<=>':
return pt == qt
return pt != qt
else:
raise ValueError("illegal operator in logic expression" + str(exp))
# ______________________________________________________________________________
def to_cnf(s):
"""Convert a propositional logical sentence to conjunctive normal form.
That is, to the form ((A | ~B | ...) & (B | C | ...) & ...) [p. 253]
(~B & ~C)
"""
if isinstance(s, str):
s = expr(s)
s = eliminate_implications(s) # Steps 1, 2 from p. 253
s = move_not_inwards(s) # Step 3
return distribute_and_over_or(s) # Step 4
def eliminate_implications(s):
"Change implications into equivalent form with only &, |, and ~ as logical operators."
a, b = args[0], args[-1]
return (b | ~a)
return (a | ~b)
elif s.op == '<=>':
return (a | ~b) & (b | ~a)
assert len(args) == 2 # TODO: relax this restriction
return Expr(s.op, *args)
def move_not_inwards(s):
"""Rewrite sentence s by moving negation sign inward.
>>> move_not_inwards(~(A | B))
if s.op == '~':
def NOT(b):
return move_not_inwards(~b)
a = s.args[0]
if a.op == '~':
return move_not_inwards(a.args[0]) # ~~A ==> A
if a.op == '&':
return associate('|', list(map(NOT, a.args)))
if a.op == '|':
return associate('&', list(map(NOT, a.args)))
return s
elif is_symbol(s.op) or not s.args:
return s
else:
return Expr(s.op, *list(map(move_not_inwards, s.args)))
def distribute_and_over_or(s):
"""Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
>>> distribute_and_over_or((A & B) | C)
((A | C) & (B | C))
"""
if s.op == '|':
if s.op != '|':
return distribute_and_over_or(s)
return FALSE
return distribute_and_over_or(s.args[0])
conj = first(arg for arg in s.args if arg.op == '&')
if not conj:
others = [a for a in s.args if a is not conj]
rest = associate('|', others)
return associate('&', [distribute_and_over_or(c | rest)
for c in conj.args])
elif s.op == '&':
return associate('&', list(map(distribute_and_over_or, s.args)))
else:
return s
def associate(op, args):
"""Given an associative op, return an expression with the same
meaning as Expr(op, *args), but flattened -- that is, with nested
instances of the same op promoted to the top level.
>>> associate('&', [(A&B),(B|C),(B&C)])
(A & B & (B | C) & B & C)
>>> associate('|', [A|(B|(C|(A&B)))])
if len(args) == 0:
return _op_identity[op]
elif len(args) == 1:
return args[0]
else:
return Expr(op, *args)
_op_identity = {'&': TRUE, '|': FALSE, '+': 0, '*': 1}
"""Given an associative op, return a flattened list result such
that Expr(op, *result) means the same as Expr(op, *args)."""
result = []
if arg.op == op:
collect(arg.args)
else:
result.append(arg)
def conjuncts(s):
"""Return a list of the conjuncts in the sentence s.
>>> conjuncts(A & B)
[A, B]
>>> conjuncts(A | B)
[(A | B)]
"""
def disjuncts(s):
"""Return a list of the disjuncts in the sentence s.
>>> disjuncts(A | B)
[A, B]
>>> disjuncts(A & B)
[(A & B)]
"""
# ______________________________________________________________________________
def pl_resolution(KB, alpha):
"Propositional-logic resolution: say if alpha follows from KB. [Fig. 7.12]"
clauses = KB.clauses + conjuncts(to_cnf(~alpha))
new = set()
while True:
n = len(clauses)
pairs = [(clauses[i], clauses[j])
for i in range(n) for j in range(i+1, n)]
for (ci, cj) in pairs:
resolvents = pl_resolve(ci, cj)
new = new.union(set(resolvents))
for c in new:
def pl_resolve(ci, cj):
"""Return all clauses that can be obtained by resolving clauses ci and cj."""
clauses = []
for di in disjuncts(ci):
for dj in disjuncts(cj):
if di == ~dj or ~di == dj:
removeall(dj, disjuncts(cj)))
clauses.append(associate('|', dnew))
return clauses
# ______________________________________________________________________________
def tell(self, sentence):
assert is_definite_clause(sentence), "Must be definite clause"
self.clauses.append(sentence)
"Yield the empty substitution if KB implies query; else nothing."
if pl_fc_entails(self.clauses, query):
yield {}
def retract(self, sentence):
self.clauses.remove(sentence)
def clauses_with_premise(self, p):
"""Return a list of the clauses in KB that have p in their premise.
This could be cached away for O(1) speed, but we'll recompute it."""
if c.op == '==>' and p in conjuncts(c.args[0])]
def pl_fc_entails(KB, q):
"""Use forward chaining to see if a PropDefiniteKB entails symbol q.
[Fig. 7.15]
Surya Teja Cheedella
a validé
>>> pl_fc_entails(horn_clauses_KB, expr('Q'))
True
"""
count = dict([(c, len(conjuncts(c.args[0]))) for c in KB.clauses
agenda = [s for s in KB.clauses if is_prop_symbol(s.op)]
while agenda:
p = agenda.pop()
if not inferred[p]:
inferred[p] = True
for c in KB.clauses_with_premise(p):
count[c] -= 1
if count[c] == 0:
agenda.append(c.args[1])
return False
Surya Teja Cheedella
a validé
""" [Figure 7.13]
Simple inference in a wumpus world example
"""
wumpus_world_inference = expr("(B11 <=> (P12 | P21)) & ~B11")
Surya Teja Cheedella
a validé
""" [Figure 7.16]
Propositional Logic Forward Chaining example
"""
horn_clauses_KB = PropDefiniteKB()
for s in "P==>Q; (L&M)==>P; (B&L)==>M; (A&P)==>L; (A&B)==>L; A;B".split(';'):
Surya Teja Cheedella
a validé
horn_clauses_KB.tell(expr(s))
# ______________________________________________________________________________
def dpll_satisfiable(s):
"""Check satisfiability of a propositional sentence.
This differs from the book code in two ways: (1) it returns a model
rather than True when it succeeds; this is more useful. (2) The
function find_pure_symbol is passed a list of unknown clauses, rather
than a list of all clauses and the model; this is more efficient."""
clauses = conjuncts(to_cnf(s))
symbols = prop_symbols(s)
return dpll(clauses, symbols, {})
def dpll(clauses, symbols, model):
"See if the clauses are true in a partial model."
unknown_clauses = [] # clauses with an unknown truth value
for c in clauses:
return False
unknown_clauses.append(c)
if not unknown_clauses:
return model
P, value = find_pure_symbol(symbols, unknown_clauses)
if P:
return dpll(clauses, removeall(P, symbols), extend(model, P, value))
P, value = find_unit_clause(clauses, model)
if P:
return dpll(clauses, removeall(P, symbols), extend(model, P, value))
if not symbols:
raise TypeError("Argument should be of the type Expr.")
P, symbols = symbols[0], symbols[1:]
return (dpll(clauses, symbols, extend(model, P, True)) or
dpll(clauses, symbols, extend(model, P, False)))
def find_pure_symbol(symbols, clauses):
"""Find a symbol and its value if it appears only as a positive literal
(or only as a negative) in clauses.
>>> find_pure_symbol([A, B, C], [A|~B,~B|~C,C|A])
(A, True)
"""
for s in symbols:
found_pos, found_neg = False, False
if not found_pos and s in disjuncts(c):
found_pos = True
if not found_neg and ~s in disjuncts(c):
found_neg = True
if found_pos != found_neg:
return s, found_pos
return None, None
def find_unit_clause(clauses, model):
"""Find a forced assignment if possible from a clause with only 1
variable not bound in the model.
>>> find_unit_clause([A|B|C, B|~C, ~A|~B], {A:True})
(B, False)
"""
for clause in clauses:
return None, None
def unit_clause_assign(clause, model):
"""Return a single variable/value pair that makes clause true in
the model, if possible.
>>> unit_clause_assign(A|B|C, {A:True})
(None, None)
>>> unit_clause_assign(B|~C, {A:True})
(None, None)
>>> unit_clause_assign(~A|~B, {A:True})
(B, False)
"""
P, value = None, None
for literal in disjuncts(clause):
sym, positive = inspect_literal(literal)
if sym in model:
if model[sym] == positive:
return None, None # clause already True
elif P:
return None, None # more than 1 unbound variable
else:
P, value = sym, positive
return P, value
def inspect_literal(literal):
"""The symbol in this literal, and the value it should take to
make the literal true.
>>> inspect_literal(P)
(P, True)
>>> inspect_literal(~P)
(P, False)
"""
if literal.op == '~':
# ______________________________________________________________________________
def WalkSAT(clauses, p=0.5, max_flips=10000):
"""Checks for satisfiability of all clauses by randomly flipping values of variables
"""
# set of all symbols in all clauses
symbols = set(sym for clause in clauses for sym in prop_symbols(clause))
# model is a random assignment of true/false to the symbols in clauses
model = dict([(s, random.choice([True, False])) for s in symbols])
for i in range(max_flips):
satisfied, unsatisfied = [], []
for clause in clauses:
(satisfied if pl_true(clause, model) else unsatisfied).append(clause)
if not unsatisfied: # if model satisfies all the clauses
return model
clause = random.choice(unsatisfied)
if probability(p):
sym = random.choice(prop_symbols(clause))
else:
# Flip the symbol in clause that maximizes number of sat. clauses
def sat_count(sym):
#returns the the number of clauses satisfied after flipping the symbol
model[sym] = not model[sym]
count = len([clause for clause in clauses if pl_true(clause, model)])
model[sym] = not model[sym]
return count
model[sym] = not model[sym]
#If no solution is found within the flip limit, we return failure
return None
# ______________________________________________________________________________
"An agent for the wumpus world that does logical inference. [Fig. 7.20]"""
def __init__(self):
def plan_route(current, goals, allowed):
unimplemented()
# ______________________________________________________________________________
def SAT_plan(init, transition, goal, t_max, SAT_solver=dpll_satisfiable):
"""Converts a planning problem to Satisfaction problem by translating it to a cnf sentence.
[Fig. 7.22]"""
#Functions used by SAT_plan
def translate_to_SAT(init, transition, goal, time):
clauses = []
states = [state for state in transition]
Surya Teja Cheedella
a validé
state_sym[(s, t)] = Expr("State_{}".format(next(state_counter)))
#Add initial state axiom
clauses.append(state_sym[init, 0])
#Add goal state axiom
clauses.append(state_sym[goal, time])
#All possible transitions
transition_counter = itertools.count()
for s in states:
for action in transition[s]:
s_ = transition[s][action]
for t in range(time):
#Action 'action' taken from state 's' at time 't' to reach 's_'
action_sym[(s, action, t)] = Expr("Transition_{}".format(next(transition_counter)))
clauses.append(action_sym[s, action, t] |implies| state_sym[s, t])
clauses.append(action_sym[s, action, t] |implies| state_sym[s_, t + 1])
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
#Allow only one state at any time
for t in range(time+1):
#must be a state at any time
clauses.append(associate('|', [ state_sym[s, t] for s in states ]))
for s in states:
for s_ in states[states.index(s)+1:]:
#for each pair of states s, s_ only one is possible at time t
clauses.append((~state_sym[s, t]) | (~state_sym[s_, t]))
#Restrict to one transition per timestep
for t in range(time):
#list of possible transitions at time t
transitions_t = [tr for tr in action_sym if tr[2] == t]
#make sure atleast one of the transition happens
clauses.append(associate('|', [ action_sym[tr] for tr in transitions_t ]))
for tr in transitions_t:
for tr_ in transitions_t[transitions_t.index(tr) + 1 :]:
#there cannot be two transitions tr and tr_ at time t
clauses.append((~action_sym[tr]) | (~action_sym[tr_]))
#Combine the clauses to form the cnf
return associate('&', clauses)
def extract_solution(model):
true_transitions = [ t for t in action_sym if model[action_sym[t]]]
#Sort transitions based on time which is the 3rd element of the tuple
true_transitions.sort(key = lambda x: x[2])
return [ action for s, action, time in true_transitions ]
#dcitionaries to help extract the solution from model
state_sym = {}
action_sym = {}
cnf = translate_to_SAT(init, transition, goal, t)
model = SAT_solver(cnf)
if model is not False:
return extract_solution(model)
return None
# ______________________________________________________________________________
def unify(x, y, s):
"""Unify expressions x,y with substitution s; return a substitution that
would make x,y equal, or None if x,y can not unify. x and y can be
variables (e.g. Expr('x')), constants, lists, or Exprs. [Fig. 9.1]"""
return None
elif x == y:
return s
elif is_variable(x):
return unify_var(x, y, s)
elif is_variable(y):
return unify_var(y, x, s)
elif isinstance(x, Expr) and isinstance(y, Expr):
return unify(x.args, y.args, unify(x.op, y.op, s))
elif isinstance(x, str) or isinstance(y, str):
elif issequence(x) and issequence(y) and len(x) == len(y):
return unify(x[1:], y[1:], unify(x[0], y[0], s))
else:
return None
def is_variable(x):
"A variable is an Expr with no args and a lowercase symbol as the op."
return isinstance(x, Expr) and not x.args and x.op[0].islower()
def unify_var(var, x, s):
if var in s:
return unify(s[var], x, s)
return None
else:
return extend(s, var, x)
def occur_check(var, x, s):
"""Return true if variable var occurs anywhere in x
(or in subst(s, x), if s has a binding for x)."""
if var == x:
return True
elif isinstance(x, Expr):
return (occur_check(var, x.op, s) or
occur_check(var, x.args, s))
def extend(s, var, val):
"Copy the substitution s and extend it by setting var to val; return copy."
s2 = s.copy()
s2[var] = val
return s2
def subst(s, x):
"""Substitute the substitution s into the expression x.
>>> subst({x: 42, y:0}, F(x) + y)
(F(42) + 0)
"""
return [subst(s, xi) for xi in x]
return tuple([subst(s, xi) for xi in x])
return x
return s.get(x, x)
return Expr(x.op, *[subst(s, arg) for arg in x.args])
def fol_fc_ask(KB, alpha):
"""Replace all the variables in sentence with new variables."""
if not isinstance(sentence, Expr):
return sentence
if sentence in dic:
return dic[sentence]
else:
v = Expr('v_{}'.format(next(standardize_variables.counter)))
dic[sentence] = v
return v
return Expr(sentence.op,
*[standardize_variables(a, dic) for a in sentence.args])
standardize_variables.counter = itertools.count()
# ______________________________________________________________________________
"""A knowledge base consisting of first-order definite clauses.
>>> kb0 = FolKB([expr('Farmer(Mac)'), expr('Rabbit(Pete)'),
... expr('(Rabbit(r) & Farmer(f)) ==> Hates(f, r)')])
>>> kb0.tell(expr('Rabbit(Flopsie)'))
>>> kb0.retract(expr('Rabbit(Pete)'))
>>> kb0.ask(expr('Hates(Mac, x)'))[x]
Flopsie
>>> kb0.ask(expr('Wife(Pete, x)'))
False
for clause in initial_clauses:
self.tell(clause)
def tell(self, sentence):
if is_definite_clause(sentence):
self.clauses.append(sentence)
else:
raise Exception("Not a definite clause: {}".format(sentence))
def ask_generator(self, query):
def retract(self, sentence):
self.clauses.remove(sentence)
def fetch_rules_for_goal(self, goal):
return self.clauses
'Rabbit(Pete)',
'Mother(MrsMac, Mac)',
'Mother(MrsRabbit, Pete)',
'(Rabbit(r) & Farmer(f)) ==> Hates(f, r)',
'(Mother(m, c)) ==> Loves(m, c)',
'(Mother(m, r) & Rabbit(r)) ==> Rabbit(m)',
'(Farmer(f)) ==> Human(f)',
# Note that this order of conjuncts
# would result in infinite recursion:
# '(Human(h) & Mother(m, h)) ==> Human(m)'
withal
a validé
crime_kb = FolKB(
['(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)', # noqa
'Owns(Nono, M1)',
'Missile(M1)',
'(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)',
'Missile(x) ==> Weapon(x)',
'Enemy(x, America) ==> Hostile(x)',
'American(West)',
'Enemy(Nono, America)'
]))
withal
a validé
)
"""A simple backward-chaining algorithm for first-order logic. [Fig. 9.6]
KB should be an instance of FolKB, and query an atomic sentence. """
def fol_bc_or(KB, goal, theta):
for rule in KB.fetch_rules_for_goal(goal):
lhs, rhs = parse_definite_clause(standardize_variables(rule))
for theta1 in fol_bc_and(KB, lhs, unify(rhs, goal, theta)):
yield theta1
def fol_bc_and(KB, goals, theta):
if theta is None:
pass
elif not goals:
else:
first, rest = goals[0], goals[1:]
for theta1 in fol_bc_or(KB, subst(theta, first), theta):
for theta2 in fol_bc_and(KB, rest, theta1):
yield theta2
# ______________________________________________________________________________
# Example application (not in the book).
# You can use the Expr class to do symbolic differentiation. This used to be
# a part of AI; now it is considered a separate field, Symbolic Algebra.
def diff(y, x):
"""Return the symbolic derivative, dy/dx, as an Expr.
However, you probably want to simplify the results with simp.
>>> diff(x * x, x)
((x * 1) + (x * 1))
"""
else:
u, op, v = y.args[0], y.op, y.args[-1]
if op == '+':
return diff(u, x) + diff(v, x)
elif op == '-' and len(args) == 1:
return -diff(u, x)
elif op == '-':
return diff(u, x) - diff(v, x)
elif op == '*':
return u * diff(v, x) + v * diff(u, x)
elif op == '/':
return (v*diff(u, x) - u*diff(v, x)) / (v * v)
elif op == '**' and isnumber(x.op):
return (v * u ** (v - 1) * diff(u, x))
return (v * u ** (v - 1) * diff(u, x) +
u ** v * Expr('log')(u) * diff(v, x))
elif op == 'log':
return diff(u, x) / u
else: