Newer
Older
"""Reinforcement Learning (Chapter 21)"""
from collections import defaultdict
from utils import argmax
class PassiveDUEAgent:
"""Passive (non-learning) agent that uses direct utility estimation
on a given MDP and policy.
import sys
from mdp import sequential_decision_environment
north = (0, 1)
south = (0,-1)
west = (-1, 0)
east = (1, 0)
policy = {(0, 2): east, (1, 2): east, (2, 2): east, (3, 2): None, (0, 1): north, (2, 1): north, (3, 1): None, (0, 0): north, (1, 0): west, (2, 0): west, (3, 0): west,}
agent = PassiveDUEAgent(policy, sequential_decision_environment)
for i in range(200):
run_single_trial(agent,sequential_decision_environment)
agent.estimate_U()
agent.U[(0, 0)] > 0.2
True
"""
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def __init__(self, pi, mdp):
self.pi = pi
self.mdp = mdp
self.U = {}
self.s = None
self.a = None
self.s_history = []
self.r_history = []
self.init = mdp.init
def __call__(self, percept):
s1, r1 = percept
self.s_history.append(s1)
self.r_history.append(r1)
##
##
if s1 in self.mdp.terminals:
self.s = self.a = None
else:
self.s, self.a = s1, self.pi[s1]
return self.a
def estimate_U(self):
# this function can be called only if the MDP has reached a terminal state
# it will also reset the mdp history
assert self.a is None, 'MDP is not in terminal state'
assert len(self.s_history) == len(self.r_history)
# calculating the utilities based on the current iteration
U2 = {s : [] for s in set(self.s_history)}
for i in range(len(self.s_history)):
s = self.s_history[i]
U2[s] += [sum(self.r_history[i:])]
U2 = {k : sum(v)/max(len(v), 1) for k, v in U2.items()}
# resetting history
self.s_history, self.r_history = [], []
# setting the new utilities to the average of the previous
# iteration and this one
for k in U2.keys():
if k in self.U.keys():
self.U[k] = (self.U[k] + U2[k]) /2
else:
self.U[k] = U2[k]
return self.U
def update_state(self, percept):
'''To be overridden in most cases. The default case
assumes the percept to be of type (state, reward)'''
return percept
"""Passive (non-learning) agent that uses adaptive dynamic programming
on a given MDP and policy. [Figure 21.2]
import sys
from mdp import sequential_decision_environment
north = (0, 1)
south = (0,-1)
west = (-1, 0)
east = (1, 0)
policy = {(0, 2): east, (1, 2): east, (2, 2): east, (3, 2): None, (0, 1): north, (2, 1): north, (3, 1): None, (0, 0): north, (1, 0): west, (2, 0): west, (3, 0): west,}
agent = PassiveADPAgent(policy, sequential_decision_environment)
for i in range(100):
run_single_trial(agent,sequential_decision_environment)
agent.U[(0, 0)] > 0.2
True
agent.U[(0, 1)] > 0.2
True
"""
""" Class for implementing modified Version of input MDP with
an editable transition model P and a custom function T. """
def __init__(self, init, actlist, terminals, gamma, states):
super().__init__(init, actlist, terminals, states=states, gamma=gamma)
nested_dict = lambda: defaultdict(nested_dict)
# StackOverflow:whats-the-best-way-to-initialize-a-dict-of-dicts-in-python
self.P = nested_dict()
def T(self, s, a):
"""Return a list of tuples with probabilities for states
return [(prob, res) for (res, prob) in self.P[(s, a)].items()]
def __init__(self, pi, mdp):
self.pi = pi
self.mdp = PassiveADPAgent.ModelMDP(mdp.init, mdp.actlist,
mdp.terminals, mdp.gamma, mdp.states)
self.U = {}
self.Nsa = defaultdict(int)
self.Ns1_sa = defaultdict(int)
self.s = None
self.a = None
self.visited = set() # keeping track of visited states
def __call__(self, percept):
s1, r1 = percept
mdp = self.mdp
R, P, terminals, pi = mdp.reward, mdp.P, mdp.terminals, self.pi
s, a, Nsa, Ns1_sa, U = self.s, self.a, self.Nsa, self.Ns1_sa, self.U
if s1 not in self.visited: # Reward is only known for visited state.
self.visited.add(s1)
if s is not None:
Nsa[(s, a)] += 1
Ns1_sa[(s1, s, a)] += 1
# for each t such that Ns′|sa [t, s, a] is nonzero
for t in [res for (res, state, act), freq in Ns1_sa.items()
if (state, act) == (s, a) and freq != 0]:
P[(s, a)][t] = Ns1_sa[(t, s, a)] / Nsa[(s, a)]
self.U = policy_evaluation(pi, U, mdp)
##
##
self.Nsa, self.Ns1_sa = Nsa, Ns1_sa
if s1 in terminals:
self.s = self.a = None
else:
self.s, self.a = s1, self.pi[s1]
return self.a
def update_state(self, percept):
"""To be overridden in most cases. The default case
assumes the percept to be of type (state, reward)."""
class PassiveTDAgent:
"""The abstract class for a Passive (non-learning) agent that uses
temporal differences to learn utility estimates. Override update_state
method to convert percept to state and reward. The mdp being provided
should be an instance of a subclass of the MDP Class. [Figure 21.4]
import sys
from mdp import sequential_decision_environment
north = (0, 1)
south = (0,-1)
west = (-1, 0)
east = (1, 0)
policy = {(0, 2): east, (1, 2): east, (2, 2): east, (3, 2): None, (0, 1): north, (2, 1): north, (3, 1): None, (0, 0): north, (1, 0): west, (2, 0): west, (3, 0): west,}
agent = PassiveTDAgent(policy, sequential_decision_environment, alpha=lambda n: 60./(59+n))
for i in range(200):
run_single_trial(agent,sequential_decision_environment)
agent.U[(0, 0)] > 0.2
True
agent.U[(0, 1)] > 0.2
True
def __init__(self, pi, mdp, alpha=None):
self.pi = pi
self.U = {s: 0. for s in mdp.states}
self.Ns = {s: 0 for s in mdp.states}
self.s = None
self.a = None
self.r = None
self.gamma = mdp.gamma
self.terminals = mdp.terminals
if alpha:
self.alpha = alpha
else:
self.alpha = lambda n: 1/(1+n) # udacity video
def __call__(self, percept):
s1, r1 = self.update_state(percept)
pi, U, Ns, s, r = self.pi, self.U, self.Ns, self.s, self.r
alpha, gamma, terminals = self.alpha, self.gamma, self.terminals
if s is not None:
Ns[s] += 1
U[s] += alpha(Ns[s]) * (r + gamma * U[s1] - U[s])
if s1 in terminals:
self.s = self.a = self.r = None
else:
self.s, self.a, self.r = s1, pi[s1], r1
return self.a
def update_state(self, percept):
"""To be overridden in most cases. The default case
assumes the percept to be of type (state, reward)."""
class QLearningAgent:
""" An exploratory Q-learning agent. It avoids having to learn the transition
model because the Q-value of a state can be related directly to those of
its neighbors. [Figure 21.8]
import sys
from mdp import sequential_decision_environment
north = (0, 1)
south = (0,-1)
west = (-1, 0)
east = (1, 0)
policy = {(0, 2): east, (1, 2): east, (2, 2): east, (3, 2): None, (0, 1): north, (2, 1): north, (3, 1): None, (0, 0): north, (1, 0): west, (2, 0): west, (3, 0): west,}
q_agent = QLearningAgent(sequential_decision_environment, Ne=5, Rplus=2, alpha=lambda n: 60./(59+n))
for i in range(200):
run_single_trial(q_agent,sequential_decision_environment)
q_agent.Q[((0, 1), (0, 1))] >= -0.5
True
q_agent.Q[((1, 0), (0, -1))] <= 0.5
True
"""
def __init__(self, mdp, Ne, Rplus, alpha=None):
self.gamma = mdp.gamma
self.terminals = mdp.terminals
self.all_act = mdp.actlist
self.Ne = Ne # iteration limit in exploration function
self.Rplus = Rplus # large value to assign before iteration limit
self.Q = defaultdict(float)
self.Nsa = defaultdict(float)
self.s = None
self.a = None
self.r = None
if alpha:
self.alpha = alpha
else:
self.alpha = lambda n: 1./(1+n) # udacity video
def f(self, u, n):
""" Exploration function. Returns fixed Rplus until
agent has visited state, action a Ne number of times.
Same as ADP agent in book."""
if n < self.Ne:
return self.Rplus
else:
return u
def actions_in_state(self, state):
""" Return actions possible in given state.
Useful for max and argmax. """
if state in self.terminals:
return [None]
else:
return self.all_act
def __call__(self, percept):
s1, r1 = self.update_state(percept)
Q, Nsa, s, a, r = self.Q, self.Nsa, self.s, self.a, self.r
alpha, gamma, terminals = self.alpha, self.gamma, self.terminals,
actions_in_state = self.actions_in_state
if s in terminals:
Q[s, None] = r1
Q[s, a] += alpha(Nsa[s, a]) * (r + gamma * max(Q[s1, a1]
for a1 in actions_in_state(s1)) - Q[s, a])
if s in terminals:
self.s = self.a = self.r = None
else:
self.s, self.r = s1, r1
self.a = argmax(actions_in_state(s1), key=lambda a1: self.f(Q[s1, a1], Nsa[s1, a1]))
return self.a
def update_state(self, percept):
"""To be overridden in most cases. The default case
assumes the percept to be of type (state, reward)."""
def run_single_trial(agent_program, mdp):
"""Execute trial for given agent_program
and mdp. mdp should be an instance of subclass
def take_single_action(mdp, s, a):
"""
Select outcome of taking action a
x = random.uniform(0, 1)
cumulative_probability = 0.0
for probability_state in mdp.T(s, a):
probability, state = probability_state
cumulative_probability += probability
if x < cumulative_probability:
break
return state
current_state = mdp.init
while True:
current_reward = mdp.R(current_state)
percept = (current_state, current_reward)
next_action = agent_program(percept)
if next_action is None:
break
current_state = take_single_action(mdp, current_state, next_action)