Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### TOTAL ORDER PLANNER\n",
"\n",
"In mathematical terminology, **total order**, **linear order** or **simple order** refers to a set *X* which is said to be totally ordered under ≤ if the following statements hold for all *a*, *b* and *c* in *X*:\n",
"<br>\n",
"If *a* ≤ *b* and *b* ≤ *a*, then *a* = *b* (antisymmetry).\n",
"<br>\n",
"If *a* ≤ *b* and *b* ≤ *c*, then *a* ≤ *c* (transitivity).\n",
"<br>\n",
"*a* ≤ *b* or *b* ≤ *a* (connex relation).\n",
"\n",
"<br>\n",
"In simpler terms, a total order plan is a linear ordering of actions to be taken to reach the goal state.\n",
"There may be several different total-order plans for a particular goal depending on the problem.\n",
"<br>\n",
"<br>\n",
"In the module, the `Linearize` class solves problems using this paradigm.\n",
"At its core, the `Linearize` uses a solved planning graph from `GraphPlan` and finds a valid total-order solution for it.\n",
"Let's have a look at the class."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from planning import *\n",
"from notebook import psource"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">Linearize</span><span class=\"p\">:</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">planningproblem</span><span class=\"p\">):</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">planningproblem</span> <span class=\"o\">=</span> <span class=\"n\">planningproblem</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">filter</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">solution</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Filter out persistence actions from a solution"""</span>\n",
"\n",
" <span class=\"n\">new_solution</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">section</span> <span class=\"ow\">in</span> <span class=\"n\">solution</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]:</span>\n",
" <span class=\"n\">new_section</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">operation</span> <span class=\"ow\">in</span> <span class=\"n\">section</span><span class=\"p\">:</span>\n",
" <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"p\">(</span><span class=\"n\">operation</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"s1\">'P'</span> <span class=\"ow\">and</span> <span class=\"n\">operation</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">isupper</span><span class=\"p\">()):</span>\n",
" <span class=\"n\">new_section</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">operation</span><span class=\"p\">)</span>\n",
" <span class=\"n\">new_solution</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">new_section</span><span class=\"p\">)</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">new_solution</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">orderlevel</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">level</span><span class=\"p\">,</span> <span class=\"n\">planningproblem</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Return valid linear order of actions for a given level"""</span>\n",
"\n",
" <span class=\"k\">for</span> <span class=\"n\">permutation</span> <span class=\"ow\">in</span> <span class=\"n\">itertools</span><span class=\"o\">.</span><span class=\"n\">permutations</span><span class=\"p\">(</span><span class=\"n\">level</span><span class=\"p\">):</span>\n",
" <span class=\"n\">temp</span> <span class=\"o\">=</span> <span class=\"n\">copy</span><span class=\"o\">.</span><span class=\"n\">deepcopy</span><span class=\"p\">(</span><span class=\"n\">planningproblem</span><span class=\"p\">)</span>\n",
" <span class=\"n\">count</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">permutation</span><span class=\"p\">:</span>\n",
" <span class=\"k\">try</span><span class=\"p\">:</span>\n",
" <span class=\"n\">temp</span><span class=\"o\">.</span><span class=\"n\">act</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">)</span>\n",
" <span class=\"n\">count</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span>\n",
" <span class=\"k\">except</span><span class=\"p\">:</span>\n",
" <span class=\"n\">count</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"n\">temp</span> <span class=\"o\">=</span> <span class=\"n\">copy</span><span class=\"o\">.</span><span class=\"n\">deepcopy</span><span class=\"p\">(</span><span class=\"n\">planningproblem</span><span class=\"p\">)</span>\n",
" <span class=\"k\">break</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">count</span> <span class=\"o\">==</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">permutation</span><span class=\"p\">):</span>\n",
" <span class=\"k\">return</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"n\">permutation</span><span class=\"p\">),</span> <span class=\"n\">temp</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">execute</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Finds total-order solution for a planning graph"""</span>\n",
"\n",
" <span class=\"n\">graphplan_solution</span> <span class=\"o\">=</span> <span class=\"n\">GraphPlan</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">planningproblem</span><span class=\"p\">)</span><span class=\"o\">.</span><span class=\"n\">execute</span><span class=\"p\">()</span>\n",
" <span class=\"n\">filtered_solution</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">filter</span><span class=\"p\">(</span><span class=\"n\">graphplan_solution</span><span class=\"p\">)</span>\n",
" <span class=\"n\">ordered_solution</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
" <span class=\"n\">planningproblem</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">planningproblem</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">level</span> <span class=\"ow\">in</span> <span class=\"n\">filtered_solution</span><span class=\"p\">:</span>\n",
" <span class=\"n\">level_solution</span><span class=\"p\">,</span> <span class=\"n\">planningproblem</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">orderlevel</span><span class=\"p\">(</span><span class=\"n\">level</span><span class=\"p\">,</span> <span class=\"n\">planningproblem</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">element</span> <span class=\"ow\">in</span> <span class=\"n\">level_solution</span><span class=\"p\">:</span>\n",
" <span class=\"n\">ordered_solution</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">element</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">return</span> <span class=\"n\">ordered_solution</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(Linearize)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `filter` method removes the persistence actions (if any) from the planning graph representation.\n",
"<br>\n",
"The `orderlevel` method finds a valid total-ordering of a specified level of the planning-graph, given the state of the graph after the previous level.\n",
"<br>\n",
"The `execute` method sequentially calls `orderlevel` for all the levels in the planning-graph and returns the final total-order solution.\n",
"<br>\n",
"<br>\n",
"Let's look at some examples."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Load(C1, P1, SFO),\n",
" Fly(P1, SFO, JFK),\n",
" Load(C2, P2, JFK),\n",
" Fly(P2, JFK, SFO),\n",
" Unload(C2, P2, SFO),\n",
" Unload(C1, P1, JFK)]"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# total-order solution for air_cargo problem\n",
"Linearize(air_cargo()).execute()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[Remove(Spare, Trunk), Remove(Flat, Axle), PutOn(Spare, Axle)]"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# total-order solution for spare_tire problem\n",
"Linearize(spare_tire()).execute()"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[MoveToTable(C, A), Move(B, Table, C), Move(A, Table, B)]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# total-order solution for three_block_tower problem\n",
"Linearize(three_block_tower()).execute()"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[ToTable(A, B), FromTable(B, A), FromTable(C, B)]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# total-order solution for simple_blocks_world problem\n",
"Linearize(simple_blocks_world()).execute()"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[RightSock, LeftSock, RightShoe, LeftShoe]"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# total-order solution for socks_and_shoes problem\n",
"Linearize(socks_and_shoes()).execute()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}