Newer
Older
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# APPLICATIONS OF MARKOV DECISION PROCESSES\n",
"---\n",
"In this notebook we will take a look at some indicative applications of markov decision processes. \n",
"We will cover content from [`mdp.py`](https://github.com/aimacode/aima-python/blob/master/mdp.py), for **Chapter 17 Making Complex Decisions** of Stuart Russel's and Peter Norvig's book [*Artificial Intelligence: A Modern Approach*](http://aima.cs.berkeley.edu/).\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"outputs": [],
"source": [
"from mdp import *\n",
"from notebook import psource, pseudocode"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## CONTENTS\n",
"- Simple MDP\n",
" - State dependent reward function\n",
" - State and action dependent reward function\n",
" - State, action and next state dependent reward function\n",
"- Grid MDP\n",
" - Pathfinding problem\n",
"- POMDP\n",
" - Two state POMDP"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
"## SIMPLE MDP\n",
"---\n",
"### State dependent reward function\n",
"\n",
"Markov Decision Processes are formally described as processes that follow the Markov property which states that \"The future is independent of the past given the present\". \n",
"MDPs formally describe environments for reinforcement learning and we assume that the environment is *fully observable*. \n",
"Let us take a toy example MDP and solve it using the functions in `mdp.py`.\n",
"This is a simple example adapted from a [similar problem](http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/MDP.pdf) by Dr. David Silver, tweaked to fit the limitations of the current functions.\n",
"\n",
"\n",
"Let's say you're a student attending lectures in a university.\n",
"There are three lectures you need to attend on a given day.\n",
"<br>\n",
"Attending the first lecture gives you 4 points of reward.\n",
"After the first lecture, you have a 0.6 probability to continue into the second one, yielding 6 more points of reward.\n",
"<br>\n",
"But, with a probability of 0.4, you get distracted and start using Facebook instead and get a reward of -1.\n",
"From then onwards, you really can't let go of Facebook and there's just a 0.1 probability that you will concentrate back on the lecture.\n",
"<br>\n",
"After the second lecture, you have an equal chance of attending the next lecture or just falling asleep.\n",
"Falling asleep is the terminal state and yields you no reward, but continuing on to the final lecture gives you a big reward of 10 points.\n",
"<br>\n",
"From there on, you have a 40% chance of going to study and reach the terminal state, \n",
"but a 60% chance of going to the pub with your friends instead. \n",
"You end up drunk and don't know which lecture to attend, so you go to one of the lectures according to the probabilities given above.\n",
"<br> \n",
"We now have an outline of our stochastic environment and we need to maximize our reward by solving this MDP.\n",
"<br>\n",
"<br>\n",
"We first have to define our Transition Matrix as a nested dictionary to fit the requirements of the MDP class."
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t = {\n",
" 'leisure': {\n",
" 'facebook': {'leisure':0.9, 'class1':0.1},\n",
" 'quit': {'leisure':0.1, 'class1':0.9},\n",
" 'study': {},\n",
" 'sleep': {},\n",
" 'pub': {}\n",
" },\n",
" 'class1': {\n",
" 'study': {'class2':0.6, 'leisure':0.4},\n",
" 'facebook': {'class2':0.4, 'leisure':0.6},\n",
" 'quit': {},\n",
" 'sleep': {},\n",
" 'pub': {}\n",
" },\n",
" 'class2': {\n",
" 'study': {'class3':0.5, 'end':0.5},\n",
" 'sleep': {'end':0.5, 'class3':0.5},\n",
" 'facebook': {},\n",
" 'quit': {},\n",
" 'pub': {},\n",
" },\n",
" 'class3': {\n",
" 'study': {'end':0.6, 'class1':0.08, 'class2':0.16, 'class3':0.16},\n",
" 'pub': {'end':0.4, 'class1':0.12, 'class2':0.24, 'class3':0.24},\n",
" 'facebook': {},\n",
" 'quit': {},\n",
" 'sleep': {}\n",
" },\n",
" 'end': {}\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now need to define the reward for each state."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"rewards = {\n",
" 'class1': 4,\n",
" 'class2': 6,\n",
" 'class3': 10,\n",
" 'leisure': -1,\n",
" 'end': 0\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This MDP has only one terminal state."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"terminals = ['end']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's now set the initial state to Class 1."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"init = 'class1'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will write a CustomMDP class to extend the MDP class for the problem at hand. \n",
"This class will implement the `T` method to implement the transition model. This is the exact same class as given in [`mdp.ipynb`](https://github.com/aimacode/aima-python/blob/master/mdp.ipynb#MDP)."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class CustomMDP(MDP):\n",
"\n",
" def __init__(self, transition_matrix, rewards, terminals, init, gamma=.9):\n",
" # All possible actions.\n",
" actlist = []\n",
" for state in transition_matrix.keys():\n",
" actlist.extend(transition_matrix[state])\n",
" actlist = list(set(actlist))\n",
" print(actlist)\n",
"\n",
" MDP.__init__(self, init, actlist, terminals=terminals, gamma=gamma)\n",
" self.t = transition_matrix\n",
" self.reward = rewards\n",
" for state in self.t:\n",
" self.states.add(state)\n",
"\n",
" def T(self, state, action):\n",
" if action is None:\n",
" return [(0.0, state)]\n",
" else: \n",
" return [(prob, new_state) for new_state, prob in self.t[state][action].items()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now need an instance of this class."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['quit', 'sleep', 'study', 'pub', 'facebook']\n"
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
]
}
],
"source": [
"mdp = CustomMDP(t, rewards, terminals, init, gamma=.9)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The utility of each state can be found by `value_iteration`."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'class1': 16.90340650279542,\n",
" 'class2': 14.597383430869879,\n",
" 'class3': 19.10533144728953,\n",
" 'end': 0.0,\n",
" 'leisure': 13.946891353066082}"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"value_iteration(mdp)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we can compute the utility values, we can find the best policy."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"pi = best_policy(mdp, value_iteration(mdp, .01))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"`pi` stores the best action for each state."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'class2': 'sleep', 'class3': 'pub', 'end': None, 'class1': 'study', 'leisure': 'quit'}\n"
]
}
],
"source": [
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can confirm that this is the best policy by verifying this result against `policy_iteration`."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'class1': 'study',\n",
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
" 'class3': 'pub',\n",
" 'end': None,\n",
" 'leisure': 'quit'}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"policy_iteration(mdp)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"Everything looks perfect, but let us look at another possibility for an MDP.\n",
"<br>\n",
"Till now we have only dealt with rewards that the agent gets while it is **on** a particular state.\n",
"What if we want to have different rewards for a state depending on the action that the agent takes next. \n",
"The agent gets the reward _during its transition_ to the next state.\n",
"<br>\n",
"For the sake of clarity, we will call this the _transition reward_ and we will call this kind of MDP a _dynamic_ MDP. \n",
"This is not a conventional term, we just use it to minimize confusion between the two.\n",
"<br>\n",
"This next section deals with how to create and solve a dynamic MDP."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### State and action dependent reward function\n",
"Let us consider a very similar problem, but this time, we do not have rewards _on_ states, \n",
"instead, we have rewards on the transitions between states. \n",
"This state diagram will make it clearer.\n",
"\n",
"\n",
"A very similar scenario as the previous problem, but we have different rewards for the same state depending on the action taken.\n",
"<br>\n",
"To deal with this, we just need to change the `R` method of the `MDP` class, but to prevent confusion, we will write a new similar class `DMDP`."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class DMDP:\n",
"\n",
" \"\"\"A Markov Decision Process, defined by an initial state, transition model,\n",
" and reward model. We also keep track of a gamma value, for use by\n",
" algorithms. The transition model is represented somewhat differently from\n",
" the text. Instead of P(s' | s, a) being a probability number for each\n",
" state/state/action triplet, we instead have T(s, a) return a\n",
" list of (p, s') pairs. The reward function is very similar.\n",
" We also keep track of the possible states,\n",
" terminal states, and actions for each state.\"\"\"\n",
"\n",
" def __init__(self, init, actlist, terminals, transitions={}, rewards={}, states=None, gamma=.9):\n",
" if not (0 < gamma <= 1):\n",
" raise ValueError(\"An MDP must have 0 < gamma <= 1\")\n",
"\n",
" if states:\n",
" self.states = states\n",
" else:\n",
" self.states = set()\n",
" self.init = init\n",
" self.actlist = actlist\n",
" self.terminals = terminals\n",
" self.transitions = transitions\n",
" self.rewards = rewards\n",
" self.gamma = gamma\n",
"\n",
" def R(self, state, action):\n",
" \"\"\"Return a numeric reward for this state and this action.\"\"\"\n",
" if (self.rewards == {}):\n",
" raise ValueError('Reward model is missing')\n",
" else:\n",
" return self.rewards[state][action]\n",
"\n",
" def T(self, state, action):\n",
" \"\"\"Transition model. From a state and an action, return a list\n",
" of (probability, result-state) pairs.\"\"\"\n",
" if(self.transitions == {}):\n",
" raise ValueError(\"Transition model is missing\")\n",
" else:\n",
" return self.transitions[state][action]\n",
"\n",
" def actions(self, state):\n",
" \"\"\"Set of actions that can be performed in this state. By default, a\n",
" fixed list of actions, except for terminal states. Override this\n",
" method if you need to specialize by state.\"\"\"\n",
" if state in self.terminals:\n",
" return [None]\n",
" else:\n",
" return self.actlist"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The transition model will be the same"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t = {\n",
" 'leisure': {\n",
" 'facebook': {'leisure':0.9, 'class1':0.1},\n",
" 'quit': {'leisure':0.1, 'class1':0.9},\n",
" 'study': {},\n",
" 'sleep': {},\n",
" 'pub': {}\n",
" },\n",
" 'class1': {\n",
" 'study': {'class2':0.6, 'leisure':0.4},\n",
" 'facebook': {'class2':0.4, 'leisure':0.6},\n",
" 'quit': {},\n",
" 'sleep': {},\n",
" 'pub': {}\n",
" },\n",
" 'class2': {\n",
" 'study': {'class3':0.5, 'end':0.5},\n",
" 'sleep': {'end':0.5, 'class3':0.5},\n",
" 'facebook': {},\n",
" 'quit': {},\n",
" 'pub': {},\n",
" },\n",
" 'class3': {\n",
" 'study': {'end':0.6, 'class1':0.08, 'class2':0.16, 'class3':0.16},\n",
" 'pub': {'end':0.4, 'class1':0.12, 'class2':0.24, 'class3':0.24},\n",
" 'facebook': {},\n",
" 'quit': {},\n",
" 'sleep': {}\n",
" },\n",
" 'end': {}\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The reward model will be a dictionary very similar to the transition dictionary with a reward for every action for every state."
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"r = {\n",
" 'leisure': {\n",
" 'facebook':-1,\n",
" 'quit':0,\n",
" 'study':0,\n",
" 'sleep':0,\n",
" 'pub':0\n",
" },\n",
" 'class1': {\n",
" 'study':-2,\n",
" 'facebook':-1,\n",
" 'quit':0,\n",
" 'sleep':0,\n",
" 'pub':0\n",
" },\n",
" 'class2': {\n",
" 'study':-2,\n",
" 'sleep':0,\n",
" 'facebook':0,\n",
" 'quit':0,\n",
" 'pub':0\n",
" },\n",
" 'class3': {\n",
" 'study':10,\n",
" 'pub':1,\n",
" 'facebook':0,\n",
" 'quit':0,\n",
" 'sleep':0\n",
" },\n",
" 'end': {\n",
" 'study':0,\n",
" 'pub':0,\n",
" 'facebook':0,\n",
" 'quit':0,\n",
" 'sleep':0\n",
" }\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The MDP has only one terminal state"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"terminals = ['end']"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's now set the initial state to Class 1."
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"init = 'class1'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will write a CustomDMDP class to extend the DMDP class for the problem at hand.\n",
"This class will implement everything that the previous CustomMDP class implements along with a new reward model."
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class CustomDMDP(DMDP):\n",
" \n",
" def __init__(self, transition_matrix, rewards, terminals, init, gamma=.9):\n",
" actlist = []\n",
" for state in transition_matrix.keys():\n",
" actlist.extend(transition_matrix[state])\n",
" actlist = list(set(actlist))\n",
" print(actlist)\n",
" \n",
" DMDP.__init__(self, init, actlist, terminals=terminals, gamma=gamma)\n",
" self.t = transition_matrix\n",
" self.rewards = rewards\n",
" for state in self.t:\n",
" self.states.add(state)\n",
" \n",
" \n",
" def T(self, state, action):\n",
" if action is None:\n",
" return [(0.0, state)]\n",
" else:\n",
" return [(prob, new_state) for new_state, prob in self.t[state][action].items()]\n",
" \n",
" def R(self, state, action):\n",
" if action is None:\n",
" return 0\n",
" else:\n",
" return self.rewards[state][action]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One thing we haven't thought about yet is that the `value_iteration` algorithm won't work now that the reward model is changed.\n",
"It will be quite similar to the one we currently have nonetheless."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The Bellman update equation now is defined as follows\n",
"\n",
"$$U(s)=\\max_{a\\epsilon A(s)}\\bigg[R(s, a) + \\gamma\\sum_{s'}P(s'\\ |\\ s,a)U(s')\\bigg]$$\n",
"\n",
"It is not difficult to see that the update equation we have been using till now is just a special case of this more generalized equation. \n",
"We also need to max over the reward function now as the reward function is action dependent as well.\n",
"<br>\n",
"We will use this to write a function to carry out value iteration, very similar to the one we are familiar with."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def value_iteration_dmdp(dmdp, epsilon=0.001):\n",
" U1 = {s: 0 for s in dmdp.states}\n",
" R, T, gamma = dmdp.R, dmdp.T, dmdp.gamma\n",
" while True:\n",
" U = U1.copy()\n",
" delta = 0\n",
" for s in dmdp.states:\n",
" U1[s] = max([(R(s, a) + gamma*sum([(p*U[s1]) for (p, s1) in T(s, a)])) for a in dmdp.actions(s)])\n",
" delta = max(delta, abs(U1[s] - U[s]))\n",
" if delta < epsilon * (1 - gamma) / gamma:\n",
" return U"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We're all set.\n",
"Let's instantiate our class."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['quit', 'sleep', 'study', 'pub', 'facebook']\n"
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
]
}
],
"source": [
"dmdp = CustomDMDP(t, r, terminals, init, gamma=.9)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Calculate utility values by calling `value_iteration_dmdp`."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'class1': 2.0756895004431364,\n",
" 'class2': 5.772550326127298,\n",
" 'class3': 12.827904448229472,\n",
" 'end': 0.0,\n",
" 'leisure': 1.8474896554396596}"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"value_iteration_dmdp(dmdp)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These are the expected utility values for our new MDP.\n",
"<br>\n",
"As you might have guessed, we cannot use the old `best_policy` function to find the best policy.\n",
"So we will write our own.\n",
"But, before that we need a helper function to calculate the expected utility value given a state and an action."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def expected_utility_dmdp(a, s, U, dmdp):\n",
" return dmdp.R(s, a) + dmdp.gamma*sum([(p*U[s1]) for (p, s1) in dmdp.T(s, a)])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now we write our modified `best_policy` function."
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from utils import argmax\n",
"def best_policy_dmdp(dmdp, U):\n",
" pi = {}\n",
" for s in dmdp.states:\n",
" pi[s] = argmax(dmdp.actions(s), key=lambda a: expected_utility_dmdp(a, s, U, dmdp))\n",
" return pi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Find the best policy."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'class2': 'sleep', 'class3': 'study', 'end': None, 'class1': 'facebook', 'leisure': 'quit'}\n"
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
]
}
],
"source": [
"pi = best_policy_dmdp(dmdp, value_iteration_dmdp(dmdp, .01))\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"From this, we can infer that `value_iteration_dmdp` tries to minimize the negative reward. \n",
"Since we don't have rewards for states now, the algorithm takes the action that would try to avoid getting negative rewards and take the lesser of two evils if all rewards are negative.\n",
"You might also want to have state rewards alongside transition rewards. \n",
"Perhaps you can do that yourself now that the difficult part has been done.\n",
"<br>"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### State, action and next-state dependent reward function\n",
"\n",
"For truly stochastic environments, \n",
"we have noticed that taking an action from a particular state doesn't always do what we want it to. \n",
"Instead, for every action taken from a particular state, \n",
"it might be possible to reach a different state each time depending on the transition probabilities. \n",
"What if we want different rewards for each state, action and next-state triplet? \n",
"Mathematically, we now want a reward function of the form R(s, a, s') for our MDP. \n",
"This section shows how we can tweak the MDP class to achieve this.\n",
"<br>\n",
"\n",
"Let's now take a different problem statement. \n",
"The one we are working with is a bit too simple.\n",
"Consider a taxi that serves three adjacent towns A, B, and C.\n",
"Each time the taxi discharges a passenger, the driver must choose from three possible actions:\n",
"1. Cruise the streets looking for a passenger.\n",
"2. Go to the nearest taxi stand.\n",
"3. Wait for a radio call from the dispatcher with instructions.\n",
"<br>\n",
"Subject to the constraint that the taxi driver cannot do the third action in town B because of distance and poor reception.\n",
"\n",
"Let's model our MDP.\n",
"<br>\n",
"The MDP has three states, namely A, B and C.\n",
"<br>\n",
"It has three actions, namely 1, 2 and 3.\n",
"<br>\n",
"Action sets:\n",
"<br>\n",
"$K_{a}$ = {1, 2, 3}\n",
"<br>\n",
"$K_{b}$ = {1, 2}\n",
"<br>\n",
"$K_{c}$ = {1, 2, 3}\n",
"<br>\n",
"\n",
"We have the following transition probability matrices:\n",
"<br>\n",
"<br>\n",
" P^{1} = \n",
" \\left[ {\\begin{array}{ccc}\n",
" \\frac{1}{2} & \\frac{1}{4} & \\frac{1}{4} \\\\\n",
" \\frac{1}{2} & 0 & \\frac{1}{2} \\\\\n",
" \\frac{1}{4} & \\frac{1}{4} & \\frac{1}{2} \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
"Action 2: Waiting at the taxi stand \n",
" P^{2} = \n",
" \\left[ {\\begin{array}{ccc}\n",
" \\frac{1}{16} & \\frac{3}{4} & \\frac{3}{16} \\\\\n",
" \\frac{1}{16} & \\frac{7}{8} & \\frac{1}{16} \\\\\n",
" \\frac{1}{8} & \\frac{3}{4} & \\frac{1}{8} \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
"<br>\n",
"<br>\n",
"Action 3: Waiting for dispatch \n",
"<br>\n",
" P^{3} =\n",
" \\left[ {\\begin{array}{ccc}\n",
" \\frac{1}{4} & \\frac{1}{8} & \\frac{5}{8} \\\\\n",
" 0 & 1 & 0 \\\\\n",
" \\frac{3}{4} & \\frac{1}{16} & \\frac{3}{16} \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
"<br>\n",
"<br>\n",
"For the sake of readability, we will call the states A, B and C and the actions 'cruise', 'stand' and 'dispatch'.\n",
"We will now build the transition model as a dictionary using these matrices."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"t = {\n",
" 'A': {\n",
" 'cruise': {'A':0.5, 'B':0.25, 'C':0.25},\n",
" 'stand': {'A':0.0625, 'B':0.75, 'C':0.1875},\n",
" 'dispatch': {'A':0.25, 'B':0.125, 'C':0.625}\n",
" },\n",
" 'B': {\n",
" 'cruise': {'A':0.5, 'B':0, 'C':0.5},\n",
" 'stand': {'A':0.0625, 'B':0.875, 'C':0.0625},\n",
" 'dispatch': {'A':0, 'B':1, 'C':0}\n",
" },\n",
" 'C': {\n",
" 'cruise': {'A':0.25, 'B':0.25, 'C':0.5},\n",
" 'stand': {'A':0.125, 'B':0.75, 'C':0.125},\n",
" 'dispatch': {'A':0.75, 'B':0.0625, 'C':0.1875}\n",
" }\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The reward matrices for the problem are as follows:\n",
"<br>\n",
"<br>\n",
"Action 1: Cruising streets \n",
"<br>\n",
" R^{1} = \n",
" \\left[ {\\begin{array}{ccc}\n",
" 10 & 4 & 8 \\\\\n",
" 14 & 0 & 18 \\\\\n",
" 10 & 2 & 8 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
"<br>\n",
"<br>\n",
"Action 2: Waiting at the taxi stand \n",
"<br>\n",
" R^{2} = \n",
" \\left[ {\\begin{array}{ccc}\n",
" 8 & 2 & 4 \\\\\n",
" 8 & 16 & 8 \\\\\n",
" 6 & 4 & 2\\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
"<br>\n",
"<br>\n",
"Action 3: Waiting for dispatch \n",
"<br>\n",
" R^{3} = \n",
" \\left[ {\\begin{array}{ccc}\n",
" 4 & 6 & 4 \\\\\n",
" 0 & 0 & 0 \\\\\n",
" 4 & 0 & 8\\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
"<br>\n",
"<br>\n",
"We now build the reward model as a dictionary using these matrices."
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"r = {\n",
" 'A': {\n",
" 'cruise': {'A':10, 'B':4, 'C':8},\n",
" 'stand': {'A':8, 'B':2, 'C':4},\n",
" 'dispatch': {'A':4, 'B':6, 'C':4}\n",
" },\n",
" 'B': {\n",
" 'cruise': {'A':14, 'B':0, 'C':18},\n",
" 'stand': {'A':8, 'B':16, 'C':8},\n",
" 'dispatch': {'A':0, 'B':0, 'C':0}\n",
" },\n",
" 'C': {\n",
" 'cruise': {'A':10, 'B':2, 'C':18},\n",
" 'stand': {'A':6, 'B':4, 'C':2},\n",
" 'dispatch': {'A':4, 'B':0, 'C':8}\n",
" }\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"The Bellman update equation now is defined as follows\n",
"\n",
"$$U(s)=\\max_{a\\epsilon A(s)}\\sum_{s'}P(s'\\ |\\ s,a)(R(s'\\ |\\ s,a) + \\gamma U(s'))$$\n",
"\n",
"It is not difficult to see that all the update equations we have used till now is just a special case of this more generalized equation. \n",
"If we did not have next-state-dependent rewards, the first term inside the summation exactly sums up to R(s, a) or the state-reward for a particular action and we would get the update equation used in the previous problem.\n",
"If we did not have action dependent rewards, the first term inside the summation sums up to R(s) or the state-reward and we would get the first update equation used in `mdp.ipynb`.\n",
"<br>\n",
"For example, as we have the same reward regardless of the action, let's consider a reward of **r** units for a particular state and let's assume the transition probabilities to be 0.1, 0.2, 0.3 and 0.4 for 4 possible actions for that state.\n",
"We will further assume that a particular action in a state leads to the same state every time we take that action.\n",
"The first term inside the summation for this case will evaluate to (0.1 + 0.2 + 0.3 + 0.4)r = r which is equal to R(s) in the first update equation.\n",
"<br>\n",
"There are many ways to write value iteration for this situation, but we will go with the most intuitive method.\n",
"One that can be implemented with minor alterations to the existing `value_iteration` algorithm.\n",
"<br>\n",
"Our `DMDP` class will be slightly different.\n",
"More specifically, the `R` method will have one more index to go through now that we have three levels of nesting in the reward model.\n",
"We will call the new class `DMDP2` as I have run out of creative names."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class DMDP2:\n",
"\n",
" \"\"\"A Markov Decision Process, defined by an initial state, transition model,\n",
" and reward model. We also keep track of a gamma value, for use by\n",
" algorithms. The transition model is represented somewhat differently from\n",
" the text. Instead of P(s' | s, a) being a probability number for each\n",
" state/state/action triplet, we instead have T(s, a) return a\n",
" list of (p, s') pairs. The reward function is very similar.\n",
" We also keep track of the possible states,\n",
" terminal states, and actions for each state.\"\"\"\n",
"\n",
" def __init__(self, init, actlist, terminals, transitions={}, rewards={}, states=None, gamma=.9):\n",
" if not (0 < gamma <= 1):\n",
" raise ValueError(\"An MDP must have 0 < gamma <= 1\")\n",
"\n",
" if states:\n",
" self.states = states\n",
" else:\n",
" self.states = set()\n",
" self.init = init\n",
" self.actlist = actlist\n",
" self.terminals = terminals\n",
" self.transitions = transitions\n",
" self.rewards = rewards\n",
" self.gamma = gamma\n",
"\n",
" def R(self, state, action, state_):\n",
" \"\"\"Return a numeric reward for this state, this action and the next state_\"\"\"\n",
" if (self.rewards == {}):\n",
" raise ValueError('Reward model is missing')\n",
" else:\n",
" return self.rewards[state][action][state_]\n",
"\n",
" def T(self, state, action):\n",
" \"\"\"Transition model. From a state and an action, return a list\n",
" of (probability, result-state) pairs.\"\"\"\n",
" if(self.transitions == {}):\n",
" raise ValueError(\"Transition model is missing\")\n",
" else:\n",
" return self.transitions[state][action]\n",
"\n",
" def actions(self, state):\n",
" \"\"\"Set of actions that can be performed in this state. By default, a\n",
" fixed list of actions, except for terminal states. Override this\n",
" method if you need to specialize by state.\"\"\"\n",
" if state in self.terminals:\n",
" return [None]\n",
" else:\n",
" return self.actlist\n",
" \n",
" def actions(self, state):\n",
" \"\"\"Set of actions that can be performed in this state. By default, a\n",
" fixed list of actions, except for terminal states. Override this\n",
" method if you need to specialize by state.\"\"\"\n",
" if state in self.terminals:\n",
" return [None]\n",
" else:\n",
" return self.actlist"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Only the `R` method is different from the previous `DMDP` class.\n",
"<br>\n",
"Our traditional custom class will be required to implement the transition model and the reward model.\n",
"<br>\n",
"We call this class `CustomDMDP2`."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class CustomDMDP2(DMDP2):\n",
" \n",
" def __init__(self, transition_matrix, rewards, terminals, init, gamma=.9):\n",
" actlist = []\n",
" for state in transition_matrix.keys():\n",
" actlist.extend(transition_matrix[state])\n",
" actlist = list(set(actlist))\n",
" print(actlist)\n",
" \n",
" DMDP2.__init__(self, init, actlist, terminals=terminals, gamma=gamma)\n",
" self.t = transition_matrix\n",
" self.rewards = rewards\n",
" for state in self.t:\n",
" self.states.add(state)\n",
" \n",
" def T(self, state, action):\n",
" if action is None:\n",
" return [(0.0, state)]\n",
" else:\n",
" return [(prob, new_state) for new_state, prob in self.t[state][action].items()]\n",
" \n",
" def R(self, state, action, state_):\n",
" if action is None:\n",
" return 0\n",
" else:\n",
" return self.rewards[state][action][state_]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can finally write value iteration for this problem.\n",
"The latest update equation will be used."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def value_iteration_taxi_mdp(dmdp2, epsilon=0.001):\n",
" U1 = {s: 0 for s in dmdp2.states}\n",
" R, T, gamma = dmdp2.R, dmdp2.T, dmdp2.gamma\n",
" while True:\n",
" U = U1.copy()\n",
" delta = 0\n",
" for s in dmdp2.states:\n",
" U1[s] = max([sum([(p*(R(s, a, s1) + gamma*U[s1])) for (p, s1) in T(s, a)]) for a in dmdp2.actions(s)])\n",
" delta = max(delta, abs(U1[s] - U[s]))\n",
" if delta < epsilon * (1 - gamma) / gamma:\n",
" return U"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These algorithms can be made more pythonic by using cleverer list comprehensions.\n",
"We can also write the variants of value iteration in such a way that all problems are solved using the same base class, regardless of the reward function and the number of arguments it takes.\n",
"Quite a few things can be done to refactor the code and reduce repetition, but we have done it this way for the sake of clarity.\n",
"Perhaps you can try this as an exercise.\n",
"<br>\n",
"We now need to define terminals and initial state."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"terminals = ['end']\n",
"init = 'A'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's instantiate our class."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
]
}
],
"source": [
"dmdp2 = CustomDMDP2(t, r, terminals, init, gamma=.9)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'A': 124.4881543573768, 'B': 137.70885410461636, 'C': 129.08041190693115}"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"value_iteration_taxi_mdp(dmdp2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These are the expected utility values for the states of our MDP.\n",
"Let's proceed to write a helper function to find the expected utility and another to find the best policy."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def expected_utility_dmdp2(a, s, U, dmdp2):\n",
" return sum([(p*(dmdp2.R(s, a, s1) + dmdp2.gamma*U[s1])) for (p, s1) in dmdp2.T(s, a)])"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from utils import argmax\n",
"def best_policy_dmdp2(dmdp2, U):\n",
" pi = {}\n",
" for s in dmdp2.states:\n",
" pi[s] = argmax(dmdp2.actions(s), key=lambda a: expected_utility_dmdp2(a, s, U, dmdp2))\n",
" return pi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Find the best policy."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'C': 'cruise', 'A': 'stand', 'B': 'stand'}\n"
]
}
],
"source": [
"pi = best_policy_dmdp2(dmdp2, value_iteration_taxi_mdp(dmdp2, .01))\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have successfully adapted the existing code to a different scenario yet again.\n",
"The takeaway from this section is that you can convert the vast majority of reinforcement learning problems into MDPs and solve for the best policy using simple yet efficient tools."
]
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## GRID MDP\n",
"---\n",
"### Pathfinding Problem\n",
"Markov Decision Processes can be used to find the best path through a maze. Let us consider this simple maze.\n",
"\n",
"\n",
"This environment can be formulated as a GridMDP.\n",
"<br>\n",
"To make the grid matrix, we will consider the state-reward to be -0.1 for every state.\n",
"<br>\n",
"State (1, 1) will have a reward of -5 to signify that this state is to be prohibited.\n",
"<br>\n",
"State (9, 9) will have a reward of +5.\n",
"This will be the terminal state.\n",
"<br>\n",
"The matrix can be generated using the GridMDP editor or we can write it ourselves."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"grid = [\n",
" [None, None, None, None, None, None, None, None, None, None, None], \n",
" [None, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, None, +5.0, None], \n",
" [None, -0.1, None, None, None, None, None, None, None, -0.1, None], \n",
" [None, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, None], \n",
" [None, -0.1, None, None, None, None, None, None, None, None, None], \n",
" [None, -0.1, None, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, None], \n",
" [None, -0.1, None, None, None, None, None, -0.1, None, -0.1, None], \n",
" [None, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, None, -0.1, None], \n",
" [None, None, None, None, None, -0.1, None, -0.1, None, -0.1, None], \n",
" [None, -5.0, -0.1, -0.1, -0.1, -0.1, None, -0.1, None, -0.1, None], \n",
" [None, None, None, None, None, None, None, None, None, None, None]\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have only one terminal state, (9, 9)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"terminals = [(9, 9)]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We define our maze environment below"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"maze = GridMDP(grid, terminals)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To solve the maze, we can use the `best_policy` function along with `value_iteration`."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"pi = best_policy(maze, value_iteration(maze))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This is the heatmap generated by the GridMDP editor using `value_iteration` on this environment\n",
"<br>\n",
"\n",
"<br>\n",
"Let's print out the best policy"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"None None None None None None None None None None None\n",
"None v < < < < < < None . None\n",
"None v None None None None None None None ^ None\n",
"None > > > > > > > > ^ None\n",
"None ^ None None None None None None None None None\n",
"None ^ None > > > > v < < None\n",
"None ^ None None None None None v None ^ None\n",
"None ^ < < < < < < None ^ None\n",
"None None None None None ^ None ^ None ^ None\n",
"None > > > > ^ None ^ None ^ None\n",
"None None None None None None None None None None None\n"
]
}
],
"source": [
"from utils import print_table\n",
"print_table(maze.to_arrows(pi))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As you can infer, we can find the path to the terminal state starting from any given state using this policy.\n",
"All maze problems can be solved by formulating it as a MDP."
]
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## POMDP\n",
"### Two state POMDP\n",
"Let's consider a problem where we have two doors, one to our left and one to our right.\n",
"One of these doors opens to a room with a tiger in it, and the other one opens to an empty hall.\n",
"<br>\n",
"We will call our two states `0` and `1` for `left` and `right` respectively.\n",
"<br>\n",
"The possible actions we can take are as follows:\n",
"<br>\n",
"1. __Open-left__: Open the left door.\n",
"Represented by `0`.\n",
"2. __Open-right__: Open the right door.\n",
"Represented by `1`.\n",
"3. __Listen__: Listen carefully to one side and possibly hear the tiger breathing.\n",
"Represented by `2`.\n",
"\n",
"<br>\n",
"The possible observations we can get are as follows:\n",
"<br>\n",
"1. __TL__: Tiger seems to be at the left door.\n",
"2. __TR__: Tiger seems to be at the right door.\n",
"\n",
"<br>\n",
"The reward function is as follows:\n",
"<br>\n",
"We get +10 reward for opening the door to the empty hall and we get -100 reward for opening the other door and setting the tiger free.\n",
"<br>\n",
"Listening costs us -1 reward.\n",
"<br>\n",
"We want to minimize our chances of setting the tiger free.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Our transition probabilities can be defined as:\n",
"<br>\n",
"<br>\n",
"Action `0` (Open left door)\n",
"$\\\\\n",
" P(0) = \n",
" \\left[ {\\begin{array}{cc}\n",
" 0.5 & 0.5 \\\\\n",
" 0.5 & 0.5 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
" \n",
"Action `1` (Open right door)\n",
"$\\\\\n",
" P(1) = \n",
" \\left[ {\\begin{array}{cc}\n",
" 0.5 & 0.5 \\\\\n",
" 0.5 & 0.5 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
" \n",
"Action `2` (Listen)\n",
"$\\\\\n",
" P(2) = \n",
" \\left[ {\\begin{array}{cc}\n",
" 1.0 & 0.0 \\\\\n",
" 0.0 & 1.0 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
" \n",
"<br>\n",
"<br>\n",
"Our observation probabilities can be defined as:\n",
"<br>\n",
"<br>\n",
"$\\\\\n",
" O(0) = \n",
" \\left[ {\\begin{array}{ccc}\n",
" Open left & TL & TR \\\\\n",
" Tiger: left & 0.5 & 0.5 \\\\\n",
" Tiger: right & 0.5 & 0.5 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
"\n",
"$\\\\\n",
" O(1) = \n",
" \\left[ {\\begin{array}{ccc}\n",
" Open right & TL & TR \\\\\n",
" Tiger: left & 0.5 & 0.5 \\\\\n",
" Tiger: right & 0.5 & 0.5 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
"\n",
"$\\\\\n",
" O(2) = \n",
" \\left[ {\\begin{array}{ccc}\n",
" Listen & TL & TR \\\\\n",
" Tiger: left & 0.85 & 0.15 \\\\\n",
" Tiger: right & 0.15 & 0.85 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
"\n",
"<br>\n",
"<br>\n",
"The rewards of this POMDP are defined as:\n",
"<br>\n",
"<br>\n",
"$\\\\\n",
" R(0) = \n",
" \\left[ {\\begin{array}{cc}\n",
" Openleft & Reward \\\\\n",
" Tiger: left & -100 \\\\\n",
" Tiger: right & +10 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
" \n",
"$\\\\\n",
" R(1) = \n",
" \\left[ {\\begin{array}{cc}\n",
" Openright & Reward \\\\\n",
" Tiger: left & +10 \\\\\n",
" Tiger: right & -100 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
" \n",
"$\\\\\n",
" R(2) = \n",
" \\left[ {\\begin{array}{cc}\n",
" Listen & Reward \\\\\n",
" Tiger: left & -1 \\\\\n",
" Tiger: right & -1 \\\\\n",
" \\end{array}}\\right] \\\\\n",
" \\\\\n",
" $\n",
" \n",
"<br>\n",
"Based on these matrices, we will initialize our variables."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's first define our transition state."
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"t_prob = [[[0.5, 0.5], \n",
" [0.5, 0.5]], \n",
" \n",
" [[0.5, 0.5], \n",
" [0.5, 0.5]], \n",
" \n",
" [[1.0, 0.0], \n",
" [0.0, 1.0]]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Followed by the observation model."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [],
"source": [
"e_prob = [[[0.5, 0.5], \n",
" [0.5, 0.5]], \n",
" \n",
" [[0.5, 0.5], \n",
" [0.5, 0.5]], \n",
" \n",
" [[0.85, 0.15], \n",
" [0.15, 0.85]]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And the reward model."
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [],
"source": [
"rewards = [[-100, 10], \n",
" [10, -100], \n",
" [-1, -1]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's now define our states, observations and actions.\n",
"<br>\n",
"We will use `gamma` = 0.95 for this example.\n",
"<br>"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"# 0: open-left, 1: open-right, 2: listen\n",
"actions = ('0', '1', '2')\n",
"# 0: left, 1: right\n",
"states = ('0', '1')\n",
"\n",
"gamma = 0.95"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have all the required variables to instantiate an object of the `POMDP` class."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [],
"source": [
"pomdp = POMDP(actions, t_prob, e_prob, rewards, states, gamma)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now find the utility function by running `pomdp_value_iteration` on our `pomdp` object."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"defaultdict(list,\n",
" {'0': [array([-83.05169196, 26.94830804])],\n",
" '1': [array([ 26.94830804, -83.05169196])],\n",
" '2': [array([23.55049363, -0.76359097]),\n",
" array([23.55049363, -0.76359097]),\n",
" array([23.55049363, -0.76359097]),\n",
" array([23.55049363, -0.76359097]),\n",
" array([23.24120177, 1.56028929]),\n",
" array([23.24120177, 1.56028929]),\n",
" array([23.24120177, 1.56028929]),\n",
" array([20.0874279 , 15.03900771]),\n",
" array([20.0874279 , 15.03900771]),\n",
" array([20.0874279 , 15.03900771]),\n",
" array([20.0874279 , 15.03900771]),\n",
" array([17.91696135, 17.91696135]),\n",
" array([17.91696135, 17.91696135]),\n",
" array([17.91696135, 17.91696135]),\n",
" array([17.91696135, 17.91696135]),\n",
" array([17.91696135, 17.91696135]),\n",
" array([15.03900771, 20.0874279 ]),\n",
" array([15.03900771, 20.0874279 ]),\n",
" array([15.03900771, 20.0874279 ]),\n",
" array([15.03900771, 20.0874279 ]),\n",
" array([ 1.56028929, 23.24120177]),\n",
" array([ 1.56028929, 23.24120177]),\n",
" array([ 1.56028929, 23.24120177]),\n",
" array([-0.76359097, 23.55049363]),\n",
" array([-0.76359097, 23.55049363]),\n",
" array([-0.76359097, 23.55049363]),\n",
" array([-0.76359097, 23.55049363])]})"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"utility = pomdp_value_iteration(pomdp, epsilon=3)\n",
"utility"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"\n",
"def plot_utility(utility):\n",
" open_left = utility['0'][0]\n",
" open_right = utility['1'][0]\n",
" listen_left = utility['2'][0]\n",
" listen_right = utility['2'][-1]\n",
" left = (open_left[0] - listen_left[0]) / (open_left[0] - listen_left[0] + listen_left[1] - open_left[1])\n",
" right = (open_right[0] - listen_right[0]) / (open_right[0] - listen_right[0] + listen_right[1] - open_right[1])\n",
" \n",
" colors = ['g', 'b', 'k']\n",
" for action in utility:\n",
" for value in utility[action]:\n",
" plt.plot(value, color=colors[int(action)])\n",
" plt.vlines([left, right], -10, 35, linestyles='dashed', colors='c')\n",
" plt.ylim(-10, 35)\n",
" plt.xlim(0, 1)\n",
" plt.text(left/2 - 0.35, 30, 'open-left')\n",
" plt.text((right + left)/2 - 0.04, 30, 'listen')\n",
" plt.text((right + 1)/2 + 0.22, 30, 'open-right')\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXlcVNX7xz9nZthXWRSU1Q0UJBREQITUci/XMpc0yg03yi3zq4ZkmltuZWaWmfnT1EpLLS0zFTUVRRQXElkURUUUBVkHnt8fA8Q4wzZzZwHO+/WalzJz7znPXc793HOec56HERE4HA6H0zgR6doADofD4egOLgIcDofTiOEiwOFwOI0YLgIcDofTiOEiwOFwOI0YLgIcDofTiFFbBBhjxoyxs4yxeMbYFcbYorLvv2WMpTDGLpZ9fNU3l8PhcDhCIhGgjEIAPYgolzFmACCGMfZb2W+ziWiPAHVwOBwORwOoLQIkW22WW/anQdmHr0DjcDicegATYsUwY0wM4DyA1gA+J6L3GWPfAgiCrKdwBMBcIipUsu8EABMAwMzMzM/T01NtexoKiXl5AAAPU1MdW8Lh6Ae8TSjn/PnzD4nIXpV9BRGBisIYswbwM4BpALIA3ANgCGATgJtEFF3d/v7+/hQbGyuYPfWdF+PiAAB/d+yoY0s4HP2AtwnlMMbOE5G/KvsKOjuIiLIB/A2gDxFlkIxCAFsABAhZF4fD4XDUR22fAGPMHkAxEWUzxkwAvARgGWPMkYgyGGMMwCAACerW1diY7+qqaxM4HL2CtwnhEWJ2kCOArWV+ARGAXUS0nzH2V5lAMAAXAUwSoK5GxUs2Nro2gcPRK3ibEB4hZgddAqAwQEdEPdQtu7FzMScHAOBrYaFjSzgc/YC3CeERoifA0RDvJiUB4E4wDqcc3iaEh4eN4HA4nEYMFwEOh8NpxHAR4HA4nEYMFwEOh8NpxHDHsB6zpGVLXZvA4egVvE0IDxcBPSbYykrXJnA4egVvE8LDh4P0mFNPnuDUkye6NoPD0Rt4mxAe3hPQY+YlJwPgc6I5nHJ4mxAe3hPgcDicRgwXAQ6Hw2nEcBFQg7feegt79lSfPfP69evw9fVFx44dcf78eWzYsEFL1nGqw9zcHABw9+5dDBs2rMrtsrOz+TXjqMTGjRvx3XffVbvNt99+i6lTpyr9bcmSJZowSwEuAhpm7969GDhwIOLi4mBra8sfKHpG8+bNqxVyLgIcVZBKpZg0aRLGjBmjchlcBFTk008/hbe3N7y9vbFmzRqkpqbC09MTY8eOhY+PD4YNG4a8shR158+fR1hYGPz8/NC7d29kZGQAAF588UW8//77CAgIQNu2bXHixIka61VW1sGDB7FmzRps3rwZ3bt3x9y5c3Hz5k34+vpi9uzZNZa5pnVrrGndWr0TwqmW1NRUeHt7AwCuXLmCgIAA+Pr6wsfHBzdu3FB6zVasWIHOnTvDx8cHH374YUU57dq1w/jx4+Hl5YVevXohPz9fZ8fVUKlrm9Dm8+DFF1/EvHnzEBYWhrVr1yIqKgorV64EAJw7dw4+Pj4ICgrC7NmzK+45QNYb7dOnD9q0aYM5c+YAAObOnYv8/Hz4+vpi1KhRKp2rWkNEevPx8/MjdYiNjSVvb2/Kzc2lnJwcat++PV24cIEAUExMDBERhYeH04oVK6ioqIiCgoLowYMHRES0c+dOCg8PJyKisLAwmjFjBhERHThwgHr27Km0vrFjx9Lu3burLevDDz+kFStWEBFRSkoKeXl5qXWMHGEwMzMjIvlrMnXqVPr++++JiKiwsJDy8vIUrtmhQ4do/PjxVFpaSiUlJdS/f386duwYpaSkkFgspri4OCIieu2112jbtm1aPipOZbT9PAgLC6OIiIiKvyu3fS8vLzp58iQREb3//vsV99SWLVvI3d2dsrOzKT8/n1xcXOjWrVtE9N89WhsAxJKKz10hMosZAzgOwAiyKad7iOhDxpg7gJ0AbABcAPAmERWpW191xMTEYPDgwTAzMwMADBkyBCdOnICzszO6du0KABg9ejTWrVuHPn36ICEhAS+//DIAoKSkBI6OjhVlDRkyBADg5+eH1NTUautNTEystixV+fPRIwA8kYa2CAoKwscff4z09HQMGTIEbdq0Udjm8OHDOHz4MDqWTVHMzc3FjRs34OLiAnd3d/j6+gKo3X3DqTt1aRO6eB4MHz5c4bvs7Gzk5OQgODgYADBy5Ejs37+/4veePXvCqmwRXPv27ZGWlgZnZ+caj08ohFgnUAigBxHlMsYMAMQwxn4DMAPAaiLayRjbCOAdAF8IUF+VyARREVmGS/m/iQheXl44ffq00n2MjIwAAGKxGFKpFAAQHh6OuLg4NG/eHAcPHpSrt7qyVGVxWhoALgLaYuTIkejSpQsOHDiA3r17Y/PmzWj5XJgCIsIHH3yAiRMnyn2fmppacc8AsvuGDwcJT13ahC6eB+WCUxs7ni/7+fK1hdo+gbLeSG7ZnwZlHwLQA0C5x20rZHmGNUpoaCj27t2LvLw8PHv2DD///DO6deuGW7duVVzcHTt2ICQkBB4eHsjMzKz4vri4GFeuXKm2/C1btuDixYtyAgCg1mVZWFggpywzEkf/SE5ORsuWLTF9+nS8+uqruHTpksI16927N7755hvk5spu+Tt37uDBgwe6MplTDbp6HjxPkyZNYGFhgX/++QcAsHPnzlrZb2BggOLi4lptqw6COIYZY2LG2EUADwD8AeAmgGwiKpe0dAAthKirOjp16oS33noLAQEB6NKlC8aNG4cmTZqgXbt22Lp1K3x8fPDo0SNERETA0NAQe/bswfvvv48XXngBvr6+OHXqlEr11rYsW1tbdO3aFd7e3rVyDHO0yw8//ABvb2/4+vri+vXrGDNmjMI169WrF0aOHImgoCB06NABw4YN48Kup+jqeaCMr7/+GhMmTEBQUBCIqGL4pzomTJgAHx8fjTuGWU1dlToVxpg1gJ8BLASwhYhal33vDOAgEXVQss8EABMAwMXFxS+trLsnFKmpqRgwYAASEhIELVcbvBgXB4AvkedwylG3TejqeZCbm1uxNuWTTz5BRkYG1q5dK1j5jLHzROSvyr6CThElomwAfwMIBGDNGCv3OTgBuFvFPpuIyJ+I/O3t7YU0h8PhcPSCAwcOwNfXF97e3jhx4gTmz5+va5MqULsnwBizB1BMRNmMMRMAhwEsAzAWwI+VHMOXiKjaVTf+/v4UGxurlj0NicSy+csepqY6toTD0Q94m1COOj0BIWYHOQLYyhgTQ9az2EVE+xljVwHsZIwtBhAH4GsB6mpU8Budw5GHtwnhUVsEiOgSAIUBOiJKBhCgbvmNmV8fPgQAvGJnp2NLOBz9gLcJ4eH5BPSYVbdvA+A3PIdTDm8TwtPgYgdxOBwOp/ZwEeBwOJxGDBcBDofDacRwEeBwOJxGDHcM6zHb2rXTtQkcjl7B24TwcBHQY5yNjXVtAoejV/A2ITx8OEiP+eHBA/zAI1RyOBXwNiE8etUTuHdP1xboF1/cuQMAGN60qY4t4XD0A94mFPm/y/+n1v561RO4cweoRTpfDofD4QC4m3MXEQci1CpDr0TA0BCYMAEoLNS1JRwOh6P/RP4eiUKpeg9MvRIBFxfg+nVg2TJdW8LhcDj6zf5/92PP1T1YGLZQrXL0SgSsrIA33gA+/hhITNS1NRwOh6Of5BblYvKByfCy98Ks4FlqlaVXjmEAWLMG+P13YOJE4OhR4Lmc0I2KPV5eujaBw9EreJuQseCvBbj99DZOvn0ShmJDtcrSq54AADRrBixfDhw7BmzZomtrdIudoSHsDNW7wBxOQ4K3CeD83fNYd3YdJvlNQrBzsNrl6Z0IAMA77wDdugGzZgGNeUrwtxkZ+DYjQ9dmcDh6Q2NvE9JSKcb/Oh7NzJph6UtLBSlTbRFgjDkzxo4yxq4xxq4wxiLLvo9ijN1hjF0s+/SrtVEi4MsvgdxcYMYMdS2sv3x77x6+5YsnOJwKGnubWHdmHeLuxWFd33WwNrYWpEwhegJSADOJqB1kCeanMMbal/22moh8yz4H61Jou3bABx8A27cDhw4JYCWHw+HUY1KzU7Hg6AIMaDsAQ9sNFaxctUWAiDKI6ELZ/3MAXAPQQt1yAZkItG0LREQAZfmlORwOp9FBRJhycAoYGD7v9zmYgDNmBPUJMMbcIMs3fKbsq6mMsUuMsW8YY02q2GcCYyyWMRabmZkp95uxMbBpE5CSAkRHC2kph8Ph1B92X92NgzcOYnGPxXCxchG0bMFEgDFmDuBHAO8S0VMAXwBoBcAXQAaAVcr2I6JNRORPRP729vYKv4eFAW+/DaxcCVy6JJS1HA6HUz94nP8Y03+bDj9HP0wLmCZ4+YyI1C+EMQMA+wEcIqJPlfzuBmA/EXlXV46/vz/FxsYqfP/oEeDpCbi7A6dOAWKx2ibXC/JKSgAApo3lgDmcGmiMbWLirxOxOW4zzo0/h06OnZRuwxg7T0T+qpQvxOwgBuBrANcqCwBjzLHSZoMBJKhah40NsHo1cPYs8MUXqtta3zAVixvVzc7h1ERjaxMxt2Kw6cImvNvl3SoFQF3U7gkwxkIAnABwGUBp2dfzAIyAbCiIAKQCmEhE1U7wraonAABEQJ8+wOnTwLVrQAtBXM/6zYaysLmTG8PBcji1oDG1iaKSInT8siOeFT1DwuQEmBuaV7mtOj0BtcNGEFEMAGWu6jpNCQWA/Pz8Kn9jTNYL8PYGpk0DfvqprqXXP3aVrZRrDDc8h1MbGlObWH5yOa5mXsWBkQeqFYCHDx+qVY9erRi+evUqJBIJunbtintKFoS0bAl8+CHw88/A3r06MJDD4XC0wL9Z/2Lx8cV43et19GujuM62oKAAw4cPh7GxMZRNqKkLeiUCAFBSUoJTp07B0dERhoaGGDx4MHJzcyt+nzED8PEBpk4Fnj7VoaEcDoejAYgIk/ZPgrHEGGv7rK34XiqV4t1334W5uTlMTEywa9cuFAqQfEXvRKAyxcXF2Lt3LywsLGBqaoqIiAgwJsVXXwF37wLz5+vaQg6HwxGWrfFbcTT1KJa/vBwO5g5Ys2YNbG1tYWBggLVr1+LZs2eC1qdXIuDp6YnQ0FAYGRkp/Jafn4+NGzfCwMAAvXs3QUDAx/jsM9mMIQ6Hw2kIZD7LxMzDM+Fp6omoV6PAGMN7772HR48eKWwrkUjQoUMH7Nq1S606BVknIBSVZwfdunULM2bMwOHDh5GTk1PlPmJxM3z11XKEh4/RlpkcDocjOKdPn0bvL3sjxyUH2AggU3EbIyMjdOnSBcuWLUNgYGDF9zpdJ6ApXFxcsGfPHjx9+hQ5OTmYOnUq7OzsFLYrKbmPt98eC5FIhFatWuH48eM6sJbD4XDqTmpqKgICAiAWixE8Ohg57jlADOQEwMLCAkOHDkVaWhoKCgpw7NgxOQFQF70VgcqYm5tj/fr1yMzMhFQqxSeffAJXV1e5IEpEhOTkZISFhYExBl9fXyTW8xyVK2/dwspbt3RtBoejNzSENpGdnY0+ffrAwMAA7u7uOHfuHEpFpcAAAFkATgB2dnaYOnUqcnJy8PTpU+zZswcuLsLGDCqnXohAZcRiMd5//32kpqaitLQUn322E4x5A5BfRRgfHw9PT08wxtCjRw+159Lqgv1ZWdiflaVrMzgcvaG+tgmpVIoxY8bAxMQETZo0waFDhyCVSv/bIAyADTDeYTykBVJkZmZi/fr1MDeven2AUNQ7EXieKVOGY+3aywCkWLToNEJCQmD4XPq5o0ePwt7eHgYGBhg+fDgKCgp0YyyHw2lU/O9//4OlpSUMDAywbds2hWePt7c3ln+7HJIwCd7yfQub5m2CWMthMeq9CADA5MlAQADw2WeB2LfvBAoLC5GcnIxBgwbBzMysYjupVIpdu3bBxMQEJiYmmDlzprwaczgcjpps2rQJtra2YIxhyZIlchNbxGIxQkJCcPr0aRAR4i/F4yfpT7A2tsbKl1fqxN4GIQJiMfDVV7Joo3PmyL5zd3fHzz//jNzcXGRnZyMiIgLW1v+lYysoKMCnn34KAwODCp8Dh8PhqMLvv/8OBwcHMMYwceJEuSmdRkZGGDRoEJKTkyGVSnHixIkKx+7G2I34J/0frO69GramtjqxvUGIACBbRTxzJvD118CxY/K/WVlZYcOGDXj8+DGkUik++ugjuZlGz549w/Tp08EYg4WFBXbv3q1l65VjIhbDpBFFTORwakKf2sSlS5fg7OwMxhj69u2L+/fvV/xWvrg1OzsbBQUF+Pnnn+Hu7i63/52nd/DBkQ/wcsuXMarDKG2b/x9EpDcfPz8/Uodnz4jc3Yk8PIgKCmq3z7Zt28jBwYEgi3Yq97G0tKQ//vhDLZs4HE7DIT09nVxdXZU+L8zMzOjDDz8kqVRaq7KG/DCEjBcbU1JWktp2AYglFZ+7DaYnAACmprJIo4mJwNKltdtn9OjRyMjIABHh2LFjaFEpOuHTp0/x8ssvgzGGJk2a4OTJkxqynMPh6Cv37t2Du7s7GGNwcnJCWlpaxW8WFhb46quvQETIzc1FVFRUrRy7vyT+gp+u/YSFoQvRyqaVJs2vGVXVQxMfdXsC5YwcSWRoSHTtmuplXL9+nZycnJQqvrW1NR0+fFgQW6sjOiWFolNSNF4Ph1Nf0FabuHnzJrm5uVU5QrBv3z6Vy35a8JScPnUi7w3eVCQtEsRe6LInwBhzZowdZYxdY4xdYYxFln1vwxj7gzF2o+xfpYnmNcHq1YCZGTBhAlBaWvP2yvDw8MDt27dBREhNTYWTk1PFb9nZ2ejVq1dFD2Hnzp0CWS7PkcePceTxY42UzeHURzTZJs6ePQs3NzcwxtCqVSukpqZW/GZpaYnDhw+DiPDkyRO8+uqrKtez4OgC3Hl6B1+98hUMxAYCWK4eQgwHSQHMJKJ2AAIBTGGMtQcwF8ARImoD4EjZ39Vy/fp1DBs2DPPmzcPOnTuV5hSoDU2bAitWACdOAN98o1IRcri6ulYIwvXr1+Ho+F/mzOzsbIwYMQKMMVhbW2P58uUoKcuDyuFw9Jvdu3fDyckJjDF06dJFYajnl19+qXjwv/zyy2rXd+7OOaw7sw4R/hEIdFIt9EN2djb27duHRYsWYcSIEejWrZtaNgkeQI4xtg/AZ2WfF4kooyzf8N9E5FHDvtUawxiDSCSCRCKBkZERTE1NYWVlhWbNmsHZ2Rnt2rVDQEAAgoKCYGZmju7dgfh44Pp1oFkz4Y6xnNOnT2Pw4MFyswLKMTc3x1tvvYWlS5eqvOrvxbg4AMDfHTuqZSeH01BQt02UlJRgzZo1WLFihdJ2a2Zmhs8//xxjx45Vy05lSEul6PxVZ9zPvY9rU67BCEaIjY3FmTNncOXKFdy6dQv37t3D48eP8ezZMxQWFqK4uBilpaWoxXNa5QBygooAY8wNwHEA3gBuEZF1pd8eE5HCkBBjbAKACQBgbm7u161bN9y7dw9ZWVnIyclBQUEBiouLUVJSUpsTUZVlEItFMDAwgLGxMczMzGBjYwNHR0e4urqiQ4cOCAwMRMeOHSGRqJZxc8+ePQrzg8sxMTFB//79sWbNGjnHc01wEeBw5FGlTeTn52Pu3Ln4/vvvq2yf//vf//C///1PJZukUikSExNx8uRJXL58GcnJycjIyEBWVhZyc3ORn5+P4uJiSAOkQC8APwC4Vrc6yl+An3+GNWvWDO7u7vjqq690LwKMMXMAxwB8TEQ/McayayMClaku0fzzFBQU4OzZszhz5gyuXbuG1NRU3L9/H9nZ2cjNzUVhYSGkUilKSkoh8+fUHZFIBLFYXHHiLS0tYWNjAycnJ7i7u8PX1xchISFo3bq13H6rVq3CRx99hCdPniiUaWhoiKCgICxfvhwBAQHV1j80IQEA8KO3t0r2czgNjdq2iTt37uDdd9/FwYMHkZeXp/C7kZERwsPDsX79erkXv3v37uHvv//GpUuX8O+//+L27dvIysrCkydPkJ+fj6KiIpSUlKC0rs5GawCTASQDot0iSMSy0QwzMzNYWlqiWbNmcHFxgYeHBzp37oyQkJA6jSCoE0paEBFgjBkA2A/gEBF9WvZdIuo4HFQXEagthYWAry9QUAAkJAD5+Q9x8uRJnD9/Hjdu3MCtW7eQmZmJJ0+eIC8vD0VFRZBKpRWe87rCGANjDBKJBAYGBigtLUV+fr7SbcViMby8vLBw4UIMHTpU3UPlcBo158+fx+zZs3HixIkqw8EYGBhAIpGgtLQUUqm0tkMtSil/STQ0NISJiQksLS1hZ2cHZ2dntGrVCh07dkRISAhatGiBfv/XDzG3YnB18lU4Wzmrc5hK0akIMFk8560AHhHRu5W+XwEgi4g+YYzNBWBDRHOqK0sTIgAAx48DYWHA7NnA8uWqlZGUlIRTp04hPj4eSUlJuHv3Lh4+fIicnJyK7p5KbwjPIZFIYGpqCjMzMzRp0gT29vZwc3ODl5cX/Pz8EBwcDGNjY7Xq4HDqC1KpFHFxcfjnn39w+fJlpKWlISMjA48ePcKzZ8/w7NkzFBcXq1UHY0yux29hYQFbW1s4ODigVatWFcPF7du3V2m4eGfCToz4cQTW9F6DyMBItWytCl2LQAiAEwAuAyh/As4DcAbALgAuAG4BeI2IFAfkKqEpEQCA8eOBLVuA2FhZz0AblN/AZ8+eRUJCApKTk3Hv3j08fPgQ9+/fF2QW0fM3sLm5OWxsbNC8eXO4ubnBx8cHwcHBKt/AHI5QJCUlISYmBhcvXkRKSgrS09PlfH9FRUUoLS1V+0UKQMX0bUdHRzRt2rTiRapz584ICAjQ2ovU4/zH8PzcEy5WLvjnnX8gFmkm5IXOh4OEQpMi8Pgx4OkJuLoCp0/Lgs7pA1euXMGoUaNw+fLlKm9+kUgEMzMzGBsbo7CwsMLfIWRX1sLCAnZ2dnBycqroyoaGhsqtj+BwAODhw4c4fvw4Ll68iMTERNy+fRsPHz5EdnZ2xbi5UEOqhoaGMDIyQklJCXJzc6uN+uvi4oLPP/8cAwYMUOfwBGXCrxPwTdw3iJ0QC18Hzb19chGoJTt2ACNHAmvXAtOna6walfnrr78wbtw4pKamVtl4jI2NERwcjFWrVsH3uS7NvXv3EBMTgwsXLuDGjRtIT0/Hw4cP5fwd6gxZlc9QKBcPMzMzWFlZoWnTpnBxcUHbtm3h5+eHkJAQuYitHP2koKAAp06dwvnz53HlyhWkpqYiMzNTboqiUC8bBgYGCi8bLVu2xAsvvIDg4GCFyRX37t3Du+++i99++w1Pnz6tsnw7Ozt89NFHmDRpkkr2aZITaScQ+m0oZgXNwopeKzRaFxeBWkIE9OsHxMQAV68CzsL7ZwTju+++wzvvvQepkilt5UgkEnh7e2PRokUqr2CUSqW4efMmYmJicOnSJSQnJ1f4OypPb1Nnim7l6W3lMyLKp7e5ubnB29sb/v7+CAwM5ENWKiCVSnH16lWcOnUKly5dQmpqKu7evYtHjx4hNzdXkGnWz09RLB92dHBwQMuWLeHt7Y2AgAC1pllfvHgRM2fOxKlTp6pN/CQyNcX7kZFYsmSJSvVog0JpIXy/9EV+cT6uTL4CM0OzmndSAy4CdSAlBfDyAnr1Avbu1WhValM+J7rn/v1YtWqV0imn5YhEIri5uWHatGmYNm2axrMTFRQUIC4uDmfOnEFCQgLS0tJw7949PHr0CHl5eRUPHnXeIiv7O0xMTGBubg47Ozs4ODigdevW8PHxQWBgIDw8PBqMeKSnp+P48eOIi4vDzZs3K3pz5RMQhOrNVV5wWT4BwdXVFe3bt4efnx+CgoK0ktpw//79WLhwIS5fvlztUI+xsTFee+01JE+bBolEovdrZ6KPRePDvz/EwZEH0bdNX43X12BEoKYVwxwOh6P32AKIgGxB2I9aq1VlEWhQoaQ5HA5H57wCoBjA77o2pHbolQj4+flpLWz12bMExghTpug+hLa6n9u3byMoKEhhCKi8218ZY2Nj9OzZE/Hx8Tq3W9Of4uJixMfH44svvsCkSZMqFu6Ym5tDLBZDtsRFeMpntpiamsLBwQEBAQEIDw/H6tWrcerUKeTn5+v83Gj6k5GRgZEjR8LKykrpuXn+u7Zt2+LUqVM6t1vdz9cXvgbcgE2vbQLlaq9ete5XdQsQEm34BCoTGQmsXw+cOgUEqhbQT6O8e+MGAGBNmza13ufChQt48803ce3aNbmbo3ylZOXVyxKJBD4+Pli0aJFeTaurCWWzoDIzM/H06VPBZkEp+xBRhY9D3bns1YUkad26NTp06KA0JIk+c+nSJcycORMnT56Uu88MDAwgFosVnL3NmzfH2rVrMWzYsFrXoUqb0BYPnj2A52ee8G7qjb/f+hsipr137AbjE9C2COTkAO3bA02aAOfPAwa6D+0th7oB5Pbv34/Jkyfj9u3bct+bmZnB0NAQjyvFZReJRGjZsiUiIyMRERGhcccyAOTm5uL06dM4e/YsEhMTkZaWhvv371dMadXEeghLS0vY2trCyckJbdq0qZii6ObmpvbxPHz4X0iSxMTECnHS1Px5ExMTWFtbw97eHk5OTvDw8ICfnx+6du0ql0Nbkxw8eBALFizApUuX5By75b2tp0+fyh2rjY0N5s2bh5kzZ6pUnz4HVRz902jsurIL8ZPi0c6+nVbr5iKgBvv2AYMGydJRzq0x44F2EfKG37hxIxYsWICHDx9WfMcYg52dHYyMjHD37l25t1sHBwe8+eabWLx4MQwNDastu6qV0c9PURRqplBDWxldvpL28uXLciFJnj59Kje9U6gZQeUhScqDlnl5eaFLly61WklbUlKCTZs24dNPP0VycrKcTfb29jA0NMS9e/fkVsObmZlh3LhxWLlypdrXRl9F4FDSIfTZ3gcLQxdiUfdFWq+fi4CaDB0KHDwoCzDXSsfpPiujqRv+/fffx4YNG5Cbm1vxnUgkQquyg09KSpJ7WDPGKrr0ssis+vFAasxUjqlz9erVivDFjx8/Flx4RSIRGGMV5VX+3dHREba2trh+/bpcDB8jIyMMHDgQW7duFfQ66qMI5BXnwXvenOb2AAAgAElEQVSDNwzEBoifFA9jifbvW3VEoH69MmmIdeuAP/4AIiKAQ4cADfkLtUp2djaOHTtWbbRUkUhU0ahLS0txo2y89XmICEVFRQrflz/MKw9NlEdR9PDwgK+vL0JDQ7U2NNGYkEgk6Ny5Mzp37lyn/Wo7BFe+sKy6uftEhLt37+Lu3bsKv5WWluLAgQNwdnZWOgTXkEKSRB+LRkp2Cv4e+7dOBEBdeE+gjM8/B6ZOBb7/Hhg1SicmKDAhMRHSggK89eRJjXkT1B03LxeE59/wRSIROnXqBAcHB5w4cUJuwZqBgQF8fHwQHR2Nfv36qXWsHN2TkJCAWbNm4fjx43KOXRMTE/j7+8PMzAxHjx5FYWGh3H7ls6wYYxoLSeLp6YmOHTtil709jK2tscmj2qj0WuPS/Uvo9GUnjH1hLL4e+LXO7ODDQQJQUgJ07QrcvClLR2lrK2z55Uv7y0Pi3rx5U/AMalVlH6prBrWkpCSMGDECFy5ckGvUlpaWiIiIQGlpKbZt2yaXA7p8OGnmzJmYOHGiSvZztM+hQ4cwf/58xMfHyw3nWFlZ4ZVXXkFwcDCio6PlrjVjDG5ubti8eTN69OhRZdnlGbf++ecfXLp0CUlJSRVRdDURksTY2BimpqYV4SxcXV01GpKkpLQEwd8EI+VxCq5PvQ4bExtBy68LXAQE4tIlwM8PePPN6hPUp6enIyYmBnFxcbhx4wbu3LlT4cjT1NL+qnIpa3ppf0xMDN5++20FP4G9vT0WL16MoqIirF27VsFJ6OjoiLFjx2LRokU1OpY52uXLL7/EqlWrcPPmTaWTAXr27InJkycjJSVF7po3a9YMy5cvx5gxYzRqX0FBAWJjYxEbG4uEhISK3m95DoE65t5VSlUhSZo3b46WLVvCx8cHISEhaNWqVZXi8dnZzzDtt2n4fvD3GOWj2+EDLgIqkpubi5iYGJw7dw6JiYm4desWrly5j0ePnsLU9Bmk0sKKh7lQUxStrKxga2sLZ2dntG3btuJmUzY+OiExEQD0puu7Z88eREZGKowBu7i44Msvv4RUKlUaB8ba2hqvvvoqVq9eDRsb3b0tNVaKioqwaNEifPvtt3LXrvK04B49emD06NGIj4+XEwYrKyvMnDkTCxYs0IXpClTXJrKzsytezq5fv45bt27hwYMHePLkCZ49eyb3cqZue5bYSFDwTgGMHxrD55IPnJ2c0aZNG3Tq1AkhISFwcHBQ6zjris5FgDH2DYABAB4QkXfZd1EAxgPILNtsHhEdrK4cVUVAKpXi3LlzOHPmDK5evYqUlBTcu3evIiSupoKZ2drawtHREa1bt4aXlxe6du0qaDAzfZwJUc6qVavw8ccfy601YIzBy8sL27dvR2lpKWbNmoWTJ0/KLRIyNTVFaGgoPv30U7Rrp9251I2JR48eYcaMGfjll1/krpFEIkGHDh0QHR2NwMBAvP766zh+/LjclE4TExOMHj0aGzZs0LvptppoE6mpqTh16lTdgvYNB9AawAYAj6souIyagvZ5eHio3bPXBxEIBZAL4LvnRCCXiFbWthx/f3/avn17xZzpmzdv4u7duwrZh4QOa9ykSRM4ODhUTFEUibpgxgx/LFhgjOholaoRBH0WgXKkUilmzZqFzZs349mzZxXfi8ViBAUFYffu3QCAGTNm4ODBgwqOZV9fX3z88cd4+eWXtW57Q+PatWuYMWMGjh8/Lpdc3djYGF27dsXKlSvh6emJ8PBw/Pzzz3IOXgMDA/Tt2xfbt2/XSvRQVdGHNrH3+l4M/mEwIr0i4fnQUy/CdxsYGKgsAkLGrnADkFDp7ygAs+pYBtX2wxgjkUhEhoaGZG5uTk2bNqW2bdtSSEgIvfHGGxQVFUW//vorPX78mFRh9GgiAwOiK1dU2l0Qwi5coLALF3RnQB3Jz8+nYcOGkaGhody1MjQ0pMGDB1N+fj7l5eXRe++9R82aNZPbRiQSUdu2bWnz5s26Pox6xZEjRyggIEDhnFtZWdGIESMoIyODiouLacaMGWRmZia3jVgspqCgILp9+7auD6PW6LpNPCl4Qi1WtSCfL3yoSFpU5/3z8/PpyJEjtHz5cho7dix1796d2rdvT46OjmRpaUlGRkYkFoupLKJyXT6xpOqzW9UdFQpSLgKpAC4B+AZAkyr2mwAgFkAsY4xsbW3J3d2d/P39adCgQTRr1izaunUrpaSk1PmEq8ODB0Q2NkQhIUQlJVqtugJd3/DqkJmZSWFhYSQWi+VuVlNTU4qIiKDi4mKSSqW0evVqatmyJYlEIrntWrRoQfPnz6fCwkJdH4resXnzZvLw8FA4Z82aNaP33nuP8vLyiIho3bp1ZGNjo/Dy1L59ezp//ryOj0I1dN0mph2cRiyK0T+3/9FqvZmZmfTjjz/SggUL6PXXX6egoCBq06YN2dvbk7m5ud6KQDMAYsgilX4M4JuayvDz89PUOVSJb76RnaFNm3RTf+S//1Lkv//qpnIBSUhIIB8fH4W3G2tra1q6dGnFdj/99BP5+vqSRCKR265JkyYUHh5OWVlZOjwK3VFYWEgLFy6kFi1aKPSeWrZsSatXryapVEpERD/++CM1b95c4U3R2dmZfv31Vx0fifrosk2cST9DLIrR1ANTdVJ/deilCNT2t8offROB0lKiF18ksrIiysjQtTUNgyNHjpC7u7uCIDg4OND27dsrtouNjaXu3buTsbGxQk+iX79+lJiYqMOj0DxZWVn09ttvK7zJSyQS8vX1pZ9++qli27Nnz1Lbtm0VzqmdnR198cUXOjyKhkORtIh8vvChFqta0JOCJ7o2RwG9FAEAjpX+/x6AnTWVoW8iQESUmEhkZEQ0fLiuLWl4bNmyhZo2baowXNGqVSs6duxYxXbp6en0+uuvk6WlpYKvITAwkI4cOaLDoxCOxMRE6t+/P5mamsodp7GxMXXv3p1iY2Mrtk1JSaHOnTsrDAmZm5vTnDlzdHgUDZNlMcsIUaCfrv5U88Y6QOciAGAHgAzI8umkA3gHwDYAl8t8Ar9UFoWqPvooAkRE0dGyM3XwoHbrHXXlCo3SpWdai0RHR5OVlZXCcEfHjh3p+vXrFdvl5eVRZGSkgniIRCLy9PSkLVu26O4gVODo0aMUGBio4Ni1tLSk119/ndLT0yu2zcnJob59+5KBgYGCSLz55ptUXFyswyPRDrpoE8mPkslksQkN2jlIq/XWBZ2LgFAffRWBwkKidu2IXF2JcnO1V6+unWC6oLi4mMaPH08mJiYKwyA9e/akzMzMim2lUimtXLmS3Nzc5IZCGGPUokULWrhwYcVYuT6xdetW8vT0VHCaN23alCIjIyscu0Sy8zF27FiFYTGJREK9evVSefZbfUXbbaK0tJR6b+tNFkss6PYT/Z1FxUVAC5w4ITtbM2dqr87GKAKVycnJoQEDBii8+RoZGdEbb7xB+fn5ctvv2bOHfHx8FBzLNjY2NG7cOMrOztbJcUilUoqKiiInJycFsXJzc6OVK1cqiNWCBQsUhr9EIhH5+/vTjRs3dHIc+oC228T2S9sJUaB1/6zTWp2qwEVAS0yYQCQWE2nrHmzsIlCZ27dvU1BQkMLbs7m5Oc2aNUth+zNnzlBYWBgZGRnJbW9mZkYDBgygpKQkjdqbnZ1N48aNU+rY9fHxoT179ijss3nzZrK3t1fwkbRt25ZOnTqlUXvrC9psE1l5WWS/3J4CvgogaYn+9Sgrw0VASzx6RNSsGZG/P5E2Rhm4CCjn/Pnz1K5dO4XZMDY2NrRuneIbW1paGg0bNowsLCwUHMvBwcFyTmh1SEpKoldffVVhUZaRkRGFhYXRmTNnFPb57bffyMXFRWFKZ/PmzWn37t2C2NWQ0GabeGffOyReJKaLGRe1Up86cBHQIjt3ys7amjWar2vuzZs09+ZNzVdUj/n111/J2dlZ4SHaokUL2rt3r8L2OTk5NHXqVIU3brFYTO3ataNt27bVqf5jx45RcHCwgmPXwsKChg0bRmlpaQr7xMfHk7e3t4KINWnShFauXKnyuWgMaKtN/J3yNyEKNOdw/ZhpxUVAi5SWEvXtS2RmRqSkfXN0yGeffUa2trZKh1POnj2rsL1UKqVly5YpdSw7OztTdHS0Usfytm3bqF27dgpDU/b29jR16lTKyclR2CcjI4NCQkIU9jEzM6PIyMhGMbOnvlBQXEAe6z3IfY07PSt6pmtzagUXAS2TkkJkakr0yisyUeDoH3PmzClfTi/nWA0ICKgyBMmuXbvI29tb4UFtbW1N/v7+1KJFC6WO3WXLlikVi/z8fBo8eLDSWErDhg1TcGxz9IMPj35IiAL9fuN3XZtSa7gI6ICVK2VnT4l/TzCGXL5MQy5f1lwFjYDi4mJ68803FaZYGhgYUN++fZW+tRMR/fHHH+Tg4KAwzFQ+1LN+/foq64uIiFBY8CUWiyksLExuiiun7mi6TVzLvEaGHxnSyB9HaqwOTcBFQAcUFxN17Ejk6EikqZmH3DEsLI8fP6ZevXopTCE1Njam8PBwunHjBg0cOFChB2FoaEi2trYKaxcMDQ2pa9euFBMTQ0uXLiVra2uFoSgfHx9KSEjQ9aE3GDTZJkpKS6jbN92oySdN6H7ufY3UoSm4COiIc+eIRCKiiAjNlM9FQHPcuHGD/P39lb7pl7/tDxkyhJKTk+X2y8nJoYiICLKzs6tyX3d39wYTykLf0GSb+Or8V4Qo0Obz9S+cuToiIAJHZfz9genTgY0bgdOndW0Np7b88MMPGDx4MOLKEpQoIycnBydOnMBff/0l9/2FCxdw+PBhZGVlVblvamoqwsPDsXTpUrmMXRz95X7ufcz+YzZCXUPxdse3dW2OVuEioCYffQQ4OQETJgDFxbq2hqOMkpISLFu2DK6urhCJRHjjjTeQkJCA0tJSuLi4YMmSJZBKpSAi7NixA46OjgCAzMxMjBs3DowxGBoaQiQSISwsDDdv3gQRwcrKCtHR0RVvVNu3b4e3tzdEIhFu3bqFefPmQSKRwN7eHpMnT0Zubq6OzwSnKt479B7yivPw5YAvwRjTtTnaRdUuhCY+9W04qJxffpENrC1ZImy50SkpFK3lZDoNhZycHJoyZYrCsI1YLCZvb2+5sNXKyMzMpFatWikd7rG2tq4xKUtMTAx17dpV6fqBIUOGKF0/wKkZTbSJ3278RogCRR2NErRcbQLuE9A9w4bJQk434rAuOictLY2GDBmidGVwuQO3OvLz8+mNN95QCDVhYGBAbm5uCt+LxWLq1q0bZdSQbCIpKUmpw9nIyIi6detGp0+fFvI0cOpAbmEuua1xI8/PPKmguEDX5qgMFwE94M4dIktLop49+doBbXL69Gnq1q2bwgPa3NycBg4cWKsYQbNmzVJ4QFeVf7c2eZSrIzs7myZOnKiwqK28h7Jr1y61zgenbsw+PJsQBTqWKkzoEF3BRUBP2LBBdka/+06Y8vrEx1Of+HhhCmtA7Nq1izp06KAw1dPW1pYmTpxYq2ihVeXfbdeuXa3z72ZkZFBoaKjSPMpTp06tcRWwVCql6OhocnZ2rtMitMaMkG0iLiOOxIvENG7fOEHK0yU6FwHIEsk/gHxmMRsAfwC4Ufav0kTzlT/1XQRKSoiCgojs7IiEWBPEp4jKUDW8w/Ps3btXIU8vIEz+3drmUa6OrVu31jkcRWNDqDYhLZFS502dqemKpvQo75EAlukWfRCBUACdnhOB5QDmlv1/LoBlNZVT30WAiOjyZSKJhGjsWPXLaswiUFOgt61bt9aqHF3k3z18+DC5ubkpiI2DgwPt2LGjVmUcPXq0ysB0Q4cObbSOZaHaxNp/1hKiQP936f8EsEr36FwEZDYo5BhORFlKSQCOABJrKqMhiAAR0bx5sjOr7nqhxiYC6enpNGzYMKW5hIODg+no0aO1KiclJYUCAgL0Iv9ubfMoV4cqIaobKkK0iVvZt8h8iTn13tabShuIA09fRSD7ud8fV7HfBACxAGJdXFw0dY60Sl4eUevWRG3aEKkTI6wxiEBsbGyVyV9effXVWid/qQ/5d6OiopRmC+vUqVOts4WpkqymISFEmxi4YyCZLDah5EfJNW9cT6jXIlD501B6AkREf/4pO7vz56texoq0NFrRALv9QqWBLC4upvDw8HqXf7e4uJjeeeedKvMo19ZuVdJW1nfUbRM/Xf2JEAVaHrNcQKt0j76KQKMdDipnzBiZf6Cxxw+TSqW0atUqcnd3V3hYOTk5UVRUVJ0eVg0p/251eZRHjhxZpx7Mli1byNPTU2EYTFkC+8ZIdn42NV/VnF744gUqkhbp2hxB0VcRWPGcY3h5TWU0NBHIzCSytSUKDpbNHGpM5OXlUWRkpMJ4uEgkIk9PT9qyZUudyqsq/26bNm3oxIkTmjkILVPXPMrVceTIEQoMDFRwLFtaWtLrr79O6enpGjoK/WXKgSnEohidSW94PhSdiwCAHQAyABQDSAfwDgBbAEcgmyJ6BIBNTeU0NBEgIvr2W9lZ3rix7vvWN59Aeno6vf7660odu4GBgXWOrHn48GFydXVVmGXj6OhY61k29ZXq8ih/9tlndSorMTGR+vfvr5DjwNjYmLp3705xcXEaOgrhUbVNnL59mlgUo+kHp2vAKt2jcxEQ6tMQRaC0lKhHDyIrK6K7d+u2b30Qgbi4OOrRo4fCuLypqSn179+fEhMT61Redfl3ly9vWOO4taWueZSrIysri8LDw6lJkyYK/ghfX1/at2+fho5CGFRpE0XSIuqwoQM5fepETwueasgy3cJFQM/5919ZXKHXXqvbfvoqAvv27SNfX18Fx26TJk0oPDycsrKy6lReRkYGdevWTWn+3enTp+vFzB59oao8yh4eHkrzKFdHYWEhzZ8/X2EBnUgkopYtW9Lq1av1zrGsSptYemIpIQq091rdBLM+wUWgHrB4sexs799f+330RQSkUimtW7eOWrZsqeB0bNGiBc2fP58KCwvrVCbPv6s+yvIoi8XiavMoV8emTZvIw8ND4Ro3a9aMZs6cqReO5bq2iaSsJDJebEyDdw7WoFW6h4tAPaCwkMjLi8jFhai2q/91KQJ5eXk0c+ZMatasmcJbooeHB23atKnOZRYXF9PUqVOV5t8NDQ2tMRonRznFxcU0atQopXmU+/Xrp1K4icOHD1Pnzp0VZi1ZWVnRiBEjdHat6tImSktL6eXvXiaLJRaU/qRhO8K5CNQTYmJkZ3zGjNpt/3l6On2uxVkcGRkZNGLECLKyslJ4mHTu3JkOHz6sUrk8/672qCqPsomJCYWHh6s0tHb16lXq06ePUsdyz549tepYrkub+D7+e0IU6LMzdXOk10e4CNQjJk2S5SWOjdW1JTLi4+OpZ8+eSh27ffr0oatXr6pU7o4dO8jBwUHBmenm5qaymHDqxo0bN6hTp04KwzuWlpa0YMEClcp88OABjR07VqljuWPHjmoH4hOKh88ekt1yO+ryVReSluiXX0MTcBGoRzx+TOTgQNSpE1FNL2XPpFJ6pgHH3K+//kqdOnVS6tgdO3YsPXjwQKVyjx07Rq1atVKY2dO0adM6rwvgCMuJEyeodevWCtfG3t6eNm9WLbF6YWEhzZ07lxwdHRWGDFu3bk3r168X3LFc2zYRvjecJNESir/XOEKxcxGoZ+zaJTvzn35a/XaChc2VSmn9+vXUunVrhbdCR0dHmjt3bp0du+VU97YZFRWltu0c4dmxY4fCgxsAubq6qtVL27hxI7Vp00bhXnBwcKDZs2erfI9VpjZt4mjKUUIUaO4fc9Wur77ARaCeUVpK1L8/kZkZUWpq1dupIwKFhYU0e/ZshSEZkUhEbdq0oY2qrF4r4/Hjx9SzZ0+l487jx4/nUzrrEcuXL1fqr+nQoYNa/prff/+d/P39lTqWR48erXJvs6Y2kV+cT23Xt6WWa1tSXpHuZzNpCy4C9ZDUVJkI9O9fdTrKuorAgwcPaPTo0QqN2sDAgPz9/en3339X2d7i4mIaOXKk0vy7AwYM4AlP6jnFxcU0ffp0hXDVtc2jXB2XL1+m3r17KwTMMzExoV69etHly5drXVZNbWLBXwsIUaDDSY3L78RFoJ7y6aeyK1BVWtnaiMDly5epV69eShtY796969TAlFGX/LuchkF+fj4NHTpU6RqOoUOHqrWGo7oXFT8/Pzpw4EC1+1fXJq48uEIG0QY06sdRKttXX+EiUE8pLpY5iB0cZA7j56nqhj9w4AD5+fkpdLWtra3V6mqXI0T+XU7DQN08ytVRWFhIc+bMUepYrmrIsqo2UVJaQiHfhJDNMhu6n3tfZZvqK1wE6jHnz8umjE6apPjblrt3aUtZwKGqnG6Ojo40Z84ctZ1umsy/y2kYJCQkUIcOHZTmUVY3rpNUKqUNGzbUOHmhcpuozKbYTYQo0DcXvlHLjvoKF4F6zowZsisRE/PfdzVNv9uwYYPa0+/Onj1LHh4eCo3a1ta2zpEqOY0LIfIoV0dV05itra1pzJgxcr3djJwMslpqRS9++2KDSRdZV7gI1HNycmThJDw8smjUqDEK46USiYQ6deokyBu5PuXf5TQMqsr10Lp1a0FyPcTHx9NLL71Upd+r79d9yfAjQ7qeeV2Ao6mfcBGox5QvyTcyMlW4wa27dCG/nTvVriMnJ4f69eunNP/uqFGj+JROjmAIkUe5OoIOHSL7Pn3+C23SGoQokKi7SK3QJvUdvRYBAKkALgO4WJOhjUUEqgrOJZFYEWMj6ORJ2XQ8ddYJlOffVZbHVp/z73IaBtXlUX7ppZdUvv8qt4nM7EyyXGhJ4uliglhedNq2batSkMP6Sn0QAbvabNuQRWDz5s3Utm3basP03r0rSz7Tvbts7YAqIlBV/l2h3sQ4nLoiZB7lym1i5qGZhCjQibQTFeHOW7VqpdDGmjdvrlK48/oEFwE9pLqEHa1ataJ169Ypdexu3Ci7Kt9+W3sR0PSYLIcjFLdv36bAwECleZRr45MqbxMX7l4g8SIxjf9lvNLthE58pO/ouwikALgA4DyACUp+nwAgFkCsi4uLps6RVhAidV9JCVHXrmUJ6o/EVykCjTn/LqdhcPbs2TrnUQ67cIFCz58j/03+1GxFM3qU96jGeqpLgdqvX786p0DVR/RdBJqX/dsUQDyA0Kq2rY89gcTEROrXr5/SWOs9evRQKdZ6QgKRgQFR6Ot5tPP+/Urfa26eNoejS/bu3UtOTk4KLzVOTk5yeZR33r9PY/74iBAF2nm57pMm0tPTafjw4QpDpoaGhhQYGEhHjhwR8rC0hl6LgFxlQBSAWVX9Xl9E4MiRIxQYGKiwrN7S0pKGDx9O6QIkgpk/X3Z1duzg+Xc5jYvq8ij/cuwXMvvYjPp+31ftNQF5eXkUGRlJTZs2VRiy9fT0rFfhz/VWBACYAbCo9P9TAPpUtb0+i8CWLVvI09NTwenUtGlTioyMFDT/an5+Pg0aNJQA4WO3cDj1CYXYVSNAmAfy7e4raOwqqVRKq1atInd3d7meNmOMWrRoQQsXLhQ8N4KQ6LMItCwbAooHcAXA/6rbXp9EQCqV0sKFC6lFixYKN4W7uzutWrVK0Juiqvy7gJicnXn+XU7jpri4mLpN7EaIAiFIPvCcqnmUq2PPnj30wgsvKDiWbWxsaNy4cZSdnS1ofeqityJQ14+uRSA7O5vGjRunEDxNIpHQCy+8QHv27BG8zuriufvt3k3NXnlIEgmRmsFAOZx6TXZ+NjmudCTz1Z4UfOQPeumll5Tms3jnnXcEHyI9c+YMhYWFKYRRNzMzowEDBlBSUpKg9akCFwE1SEpKogEDBijEUTcyMqKwsDA6c+aM4HXWNv9u2IULFHwknuzsiIKCZDOHOJzGSMT+CBItElGnv76XmzGn7cx2aWlpNGzYMKWO5aCgIDp69KjgddYGLgJ15NixYxQcHKzUsTts2DBKS0sTvE5VcryWz4n+7jvZldqwQXCzOBy959StU8SiGEX+Flnt2pnq2pgmnLw5OTk0ffp0BceyWCymdu3a0datWwWvsyq4CNSCrVu3Urt27RRm2TRt2pSmT5+ukcxY6r6llN/wpaVEPXsSWVoS3bkjuJkcjt5SJC0i7w3e5PypMz0teFrrBZS17W0LhVQqpWXLlpGbm5uCD9HZ2Zmio6M16ljmIqAEqVRK0dHR5OzsrHBR3NzcaNmyZRq5KI8fPxZsvPKXzEz6JTOTiIhu3CAyNiYaNkxwkzkcvWXJ8SWEKNAv138hIvk2UVs0lUe5Onbt2kUdOnRQeA7Y2trS+PHjBXcscxEoIzs7m8aPH68wx1gikVCHDh1oV1V5HNVEW/l3lyyRXbFffhGkOA5Hr7mRdYOMPjKioT8MFaS88hl4yvIoh4aGUmYdxaW2nD59mkJDQxWeD+bm5jRw4EBKTk5Wu45GLQLJyck0cOBAhTy4RkZGFBoaSqdPn65zmbVlzpw5SvPvBgYGCjKH+fqzZ3T92bOKv4uKiLy9iZydZTkIOJyGSmlpKfXc2pMsl1rSnaf/jYE+3yZURZN5lKsjLS2NhgwZQhYWFgr1du3alWIqZ5aqA41OBGJiYqhr164KF9DCwoKGDBmiEcduOZ999lmV+XfPnj0raF3Kxj9PnSJijOjddwWtisPRK767+B0hCrThrPxsCHXCq1dFRoZuVuXn5OTQlClTyM7OTuFF0svLi7Zv317rshqFCGzfvp28vLwULpSdnR1NmTJFI47dcmob10RoqrrhIyJkeYnPndNY1RyOzsh8lkl2y+0oaHMQlZTKz4vWhAhURlfxuaRSKX3yySfk6uqq4MN0cXGhJUuWVOvDbJAiIJVKacmSJeTi4qJwUlxdXemTTz7RqLddH/LvVnXDZ2cTOToS+foS8dBBnIbG2J/HkiRaQpfvK66Q1LQIVEaXkXp37txJ3t7eSl96IyIiFF56G4wIdFLhXSoAABI+SURBVOzYkSIiIpR2j7y9vWmnAKkWq6O6WOezZs3SaN3KqO6G37NHdvVWrtSyURyOBjmSfIQQBfrgzw+U/q5NEaiMLnN2xMTEUEhIiFLH8qBBgyg5ObnhiMDzjt2QkBCVHSW1RZ/z71Z3w5eWEr3yCpGpKVFKinbt4nA0QX5xPrVZ14ZarW1FeUXKAzLqSgQqo8vsfcnJyTRo0CCFCSkNRgREIlGFsmkSTeU/FZo/srLoj2oyIKWlEZmZEfXtKxMFDqc+M//IfEIU6M+bf1a5TU1tQpvo+jmSnZ1NERER5VPiG4YIaDpsRFRUVIPLv7tmjewqanikjMPRKAn3E0gSLaE3f3pT16aohK5HFLgIVMOWLVvqbf7duKdPKe7p02q3kUqJ/P2JmjUjelRzpj0OR+8oKS2h4K+DyXaZLT3IfVDttrVpE7pG3TzKqsBF4DkOHz5Mbm5uOvHqC0ltxz8vXCASi4kmTNCCURyOwGw8t5EQBfo27tsat9UHn0Bd0NYsQ3VEQAQNwxjrwxhLZIwlMcbmaqqeK1euwMfHByKRCL169UJqaioAwNraGsuXLwcR4e7du3jjjTc0ZYLO6NgReO89YNMmICZG19ZwOLUnIycD7//5Pnq498CYF8bo2hzB6dy5M65fv47S0lLs3bsXTk5OAICsrCxMnToVjDE4Oztj3759OrNRoyLAGBMD+BxAXwDtAYxgjLUXqvyHDx8iLCwMEokE3t7euHz5MogIZmZmmDp1KoqLi/H48WPMnj1bqCr1lqgowNUVmDABKCzUtTUcTu2I/D0SBdICbOy/EYwxXZujUQYOHIjbt2+DiLBu3TrY2NgAANLT0zFo0CCIRCK0b98eFy5c0Kpdmu4JBABIIqJkIioCsBPAQHUKLCgowLBhw2BkZAR7e3scP34cJSUlMDQ0xNChQ5Gfn4/c3FysX78eEolEkIOoD5iZAV98AVy7BixfrmtrOJyaOfDvAey+uhvzQ+ejjW0bXZujVaZNm4asrCwQEWbNmgVzc3MQEa5duwY/Pz9IJBIEBQUhPT1d47ZoWgRaALhd6e/0su8qYIxNYIzFMsZiMzMzlRYilUoxbdo0mJubw8TEBD/++COKioogFovRrVs3ZGRkoLCwEHv27IGxsbHmjkbP6dsXGD4c+Phj4N9/dW0Nh1M1uUW5mHxwMtrbt8ecrnN0bY5OWbFiBXJyclBcXIyRI0fCyMgIJSUl+Oeff+Ds7AxDQ0O88soryM3N1YwBqjoTavMB8BqAzZX+fhPA+qq2f94xrIs44PrEyexsOlnHuOMZGUTW1kQvvsjXDnD0lxm/zyBEgWLS6rYYVJU2UR/JzMyknj171jovCfR1dhCAIACHKv39AYAPqtrez8+PduzYQY6Ojgoze1xdXTWSEaghsmmT7Mp+842uLeFwFIm9E0uiRSKa+OtEXZtSL6hNhkJ1RIDJ9tcMjDEJgH8B9ARwB8A5ACOJ6EoV28sZY29vj6VLl+Kdd97RmI36zKknTwAAwVZWddqvtBQICwOuXgWuXwfs7TVhHYdTd6SlUnTZ3AV3c+7i2pRrsDa2rtP+qraJhsLx48fx9ttvIzk5Gc89u88Tkb8qZWrUJ0BEUgBTARwCcA3ArqoEoBxLS0ssWLAARIQHDx40WgEAgHnJyZiXnFzn/UQi2XTRnBxgxgwNGMbhqMj6M+txIeMC1vVZV2cBAFRvEw2F0NBQJCUlobS0FNu3b4eDg4PaZWq0J1BX/Pz86Pz587o2Q294MS4OAPB3x44q7f/hh0B0NHD4MPDyy0JaxuHUnbTsNHht8MKLbi/i1xG/qjQlVN020VBhjOlnT6CuNPR5wtrmgw+Atm2BSZOAvDxdW8NpzBARphycAgLh836f87auR+iVCHCExdgY+PJLIDkZ+OgjXVvDaczsuboHB24cwEfdP4KrtauuzeFUgotAA+fFF4HwcGDlSuDyZV1bw2mMZBdkY/rv09HJsROmd5mua3M4z9F4ltTWQ9a0bi1IOStWAPv3A+PHAydPAmKxIMVyOLXigz8/wINnD3Bg5AFIROo9coRqE5z/4D0BPcbXwgK+FhZql2NrC6xeDZw5A2zcKIBhHE4tOXnrJDae34jILpHo5NhJ7fKEahOc/9Cr2UH+/v4UGxurazP0hj8fPQIAvFQWaEodiIA+fYDTp2XxhVq0qHkfDkcdikqK0PHLjsgtysWVyVdgbmiudplCtomGRIOZHcSRZ3FaGhanpQlSFmPAhg1AcTEwnQ/LcrTAipMrcDXzKjb02yCIAADCtgmODC4CjYhWrWQhp3/6CdBh+HJOI+BG1g18dPwjvNb+NfRv21/X5nCqgYtAI2PGDMDHB5g6VbaimMMRGiLCxP0TYSwxxto+a3VtDqcGuAg0MgwMZCEl7twB5s/XtTWchsh38d/haOpRfPLSJ3C0cNS1OZwa4CLQCOnSBZg8GVi/Hjh3TtfWcBoSD/MeYubhmQh2DsYEvwm6NodTC/g6AT3mSw8PjZW9ZAmwd69s7cC5c7IeAoejLjMPz8TTwqfYNGATREz4d0xNtonGCu8J6DEepqbwMDXVSNmWlrKeQHw8sGaNRqrgNDL+TP4T38V/hzld58CrqZdG6tBkm2is8HUCesyvDx8CAF6xs9NYHYMGyaKMXrkCuLtrrBpOAye/OB8dvugAxhguTboEEwMTjdSjjTZRH+HrBBooq27fxqrbt2veUA3Wr5eFkZg8WbagjMNRhcXHF+Pm45v4csCXGhMAQDttorGhMRFgjEUxxu4wxi6Wffppqi6O6jg7y/wDv/8O/PCDrq3h1EcSHiRg+anlGPvCWPRw76Frczh1RNM9gdVE5Fv2OajhujgqMnkyEBAAREYCZavyOZxaUUqlmPDrBFgZWWFlr5W6NoejAnw4iPP/7d17cBX1FcDx7zEYGFCoEkvRgtApVMFHFWSktlQeUygMMFSpMKMtFc1AgVFsOgYZrRYYlPoYsbyCj9Q6KMgfCCjyUBF0CJSpaYAgDgJieDSGolWp4eHpH7+tydCLWXNz97d37/nMZLibu3f3cNi9h939PcjLc30HjhyBu+/2HY3JJgu2LmBT1SYeHfgoBS3tPn02ynQRmCgiFSLytIicl+F9mTRceaXrTfzkk7Bxo+9oTDY4+OlBil8rpn/n/txyxS2+wzGNlFbrIBFZB6Sa6XgqUAbUAApMA9qr6q0ptlEIFAJ07Nixxwc2ONRXPvziCwA6tGgRyf4+/xwuvxyaN4fycvenMWcy8sWRrHxvJdvGb+P750czzn/U50S2SKd1UFqdxVR1QJj1RGQhsPIM2ygBSsA1EU0nnqSJ+kBv1QrmzXNDTj/4oJuo3phUVuxawdLKpczoNyOyAgD25Z8JmWwdVH/QkBHA9kztK6kWV1ezuLo60n0OHAijR7sWQ+++G+muTZb47PhnTHhlAt0v6E7Rj4oi3bePcyLpMvlMYJaIbBORCqAvMDmD+0qkeQcOMO/Agcj3+9hj0LIljBtnfQfM/7v39Xup+ncVC4cuJD8vP9J9+zonkixjRUBVb1HVy1X1ClUdpqqHMrUv07TatXMT07/5JjzzjO9oTJxsPbiV2VtmM67nOHp36O07HNMErImoSenWW6FPHygqArv6NgAnvzzJ7Stup12rdszsP9N3OKaJWBEwKYnAggWuxdBku5FngMfLHqf8cDmzfz6bNi3a+A7HNBErAuaMLrkEpkyBRYtg9Wrf0Rif9n28j/vW38fQrkO54dIbfIdjmpCNIhpjNcePA1CQH+3Dt/pqa11HsuPHYft298DY5BZVZciiIWz4YAOVEyrp2Kajt1jicE7EkY0imlAF+fneD/bmzd2QEnv3wgMPeA3FeLJkxxJW7V7F9H7TvRYAiMc5kTRWBGKs9NAhSg/5b1TVpw+MHQuPPOImoTG54+h/jnLHq3fQo30PJvWa5Duc2JwTSWJFIMZKDx+m9PBh32EAMGsWtG0LhYVw6pTvaExUitcVU3OshoVDF5J3Vp7vcGJ1TiSFFQETyvnnu2kot2xxQ0uY5Htr/1uU/L2EO6+9k6vaX+U7HJMhVgRMaKNGuWElpkyBqirf0ZhMqj1ZS+GKQi5uczEPXG8Pg5LMioAJTcRdBZw6BZP83x42GTTr7VnsrNnJ3CFzaZXfync4JoOsCJhvpHNnuP9+WLbM/Zjkee/Ie8zYOIObut/E4C42K2zSWT+BGDsWPIFtmef/gVx9J07ANddATQ1UVkLr1r4jMk1FVen3bD/KD5ezc8JOvnNOqulC/InrOeGb9RNIqJZ5ebE82M8+2/UdOHgQpk71HY1pSqXlpazft56HBjwUuwIA8T0nspkVgRibe+AAc2M6bG6vXjBxIsyZA5s3+47GNIWPPv+IorVFXNfhOm67+jbf4aQU53MiW1kRiLEl1dUsifEQntOnw4UXur4DJ074jsak6641d/Fp7aeUDC3hLInnV0Pcz4lsFM9/aZMVWrd2VwIVFW4iGpO91r6/lucqnqP4x8V0u6Cb73BMhNIqAiIyUkR2iMiXItLztPemiMhuEdklIgPTC9PE1fDhMGKEazG0Z4/vaExjHDtxjHEvj6Nr267c85N7fIdjIpbulcB24BfAhvq/FJFuwCigOzAImCsi9jQnoZ54Apo1g/HjbTrKbDTtzWnsObqH+UPm06KZTeSea9IqAqq6U1V3pXhrOPCCqtaq6l5gN9ArnX2Z+LroIpg5E9asgeef9x2N+Sa2/XMbD296mDE/HEPfzn19h2M8aJJ+AiKyHihS1a3B8p+BMlV9Llh+ClilqktTfLYQKAwWL8NdXRgoAGp8BxETlos6los6los6P1DVcxvzwWYNrSAi64BUDYanqupLZ/pYit+lrDaqWgKUBPva2tgOD0ljuahjuahjuahjuagjIo3uZdtgEVDVAY3YbhXQod7yd4GDjdiOMcaYDMpUE9HlwCgRaS4inYEuwJYM7csYY0wjpdtEdISIVAG9gZdFZDWAqu4AlgCVwKvABFUNMxVJSTrxJIzloo7loo7loo7lok6jcxGrAeSMMcZEy3oMG2NMDrMiYIwxOcxLERCRQcFwErtFpDjF+81FZHHw/mYR6RR9lNEIkYu7RKRSRCpE5DURudhHnFFoKBf11rtRRPT0oUqSJEwuROSXwbGxQ0QWRR1jVEKcIx1F5A0ReSc4TxI5E46IPC0i1SKSsi+VOLODPFWIyNWhNqyqkf4AecD7wPeAfOAfQLfT1vktMD94PQpYHHWcMcpFX6Bl8Hp8LuciWO9c3DAlZUBP33F7PC66AO8A5wXL3/Ydt8dclADjg9fdgH2+485QLvoAVwPbz/D+YGAVrp/WtcDmMNv1cSXQC9itqntU9TjwAm6YifqGA38JXi8F+otIqg5o2a7BXKjqG6p6LFgsw/W5SKIwxwXANGAW8EWUwUUsTC5uB+ao6lEAVU3q+MphcqHA/+a3a0NC+ySp6gbgX1+zynDgWXXKgG+JSPuGtuujCFwEfFhvuSr4Xcp1VPUk8AnQNpLoohUmF/WNxVX6JGowFyJyFdBBVVdGGZgHYY6LrkBXEXlbRMpEZFBk0UUrTC7uB24Omqu/AkyKJrTY+abfJ0CIHsMZEGZIidDDTmS50H9PEbkZ6An8NKMR+fO1uRCRs4DHgDFRBeRRmOOiGe6W0PW4q8ONInKZqn6c4diiFiYXo4FSVX1ERHoDfw1y8WXmw4uVRn1v+rgSCDOkxFfriEgz3CXe110GZatQw2uIyABgKjBMVWsjii1qDeXiXNwAg+tFZB/unufyhD4cDnuOvKSqJ9SN1LsLVxSSJkwuxuI6p6Kqm4AWuMHlck2jhuvxUQT+BnQRkc4iko978Lv8tHWWA78OXt8IvK7Bk4+EaTAXwS2QBbgCkNT7vtBALlT1E1UtUNVOqtoJ93xkmAYj1yZMmHNkGa7RACJSgLs9lMRpfcLkYj/QH0BELsUVgY8ijTIelgO/CloJXQt8oqqHGvpQ5LeDVPWkiEwEVuOe/D+tqjtE5I/AVlVdDjyFu6TbjbsCGBV1nFEImYs/AecALwbPxver6jBvQWdIyFzkhJC5WA38TEQqgVPA71X1iL+oMyNkLn4HLBSRybjbH2OS+J9GEXked/uvIHj+8QfgbABVnY97HjIYN3/LMeA3obabwFwZY4wJyXoMG2NMDrMiYIwxOcyKgDHG5DArAsYYk8OsCBhjTA6zImCMMTnMioAxxuSw/wJvKdH74RNWdQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x27bee9a5f60>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_utility(utility)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hence, we get a piecewise-continuous utility function consistent with the given POMDP."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
}
},
"nbformat": 4,
"nbformat_minor": 2
}