Newer
Older
"# Making Complex Decisions\n",
"---\n",
"This Jupyter notebook acts as supporting material for topics covered in **Chapter 17 Making Complex Decisions** of the book* Artificial Intelligence: A Modern Approach*. We make use of the implementations in mdp.py module. This notebook also includes a brief summary of the main topics as a review. Let us import everything from the mdp module to get started."
"cell_type": "code",
"metadata": {},
"from notebook import psource, pseudocode, plot_pomdp_utility"
"## CONTENTS\n",
"\n",
"* Overview\n",
"* MDP\n",
"* Grid MDP\n",
"* Value Iteration\n",
" * Value Iteration Visualization\n",
"* Policy Iteration\n",
"* POMDPs\n",
"* POMDP Value Iteration\n",
" - Value Iteration Visualization"
"metadata": {},
"source": [
"## OVERVIEW\n",
SnShine
a validé
"\n",
"Before we start playing with the actual implementations let us review a couple of things about MDPs.\n",
"\n",
"- A stochastic process has the **Markov property** if the conditional probability distribution of future states of the process (conditional on both past and present states) depends only upon the present state, not on the sequence of events that preceded it.\n",
"\n",
" -- Source: [Wikipedia](https://en.wikipedia.org/wiki/Markov_property)\n",
"\n",
"Often it is possible to model many different phenomena as a Markov process by being flexible with our definition of state.\n",
" \n",
"\n",
"- MDPs help us deal with fully-observable and non-deterministic/stochastic environments. For dealing with partially-observable and stochastic cases we make use of generalization of MDPs named POMDPs (partially observable Markov decision process).\n",
"\n",
"Our overall goal to solve a MDP is to come up with a policy which guides us to select the best action in each state so as to maximize the expected sum of future rewards."
]
},
{
"metadata": {},
"source": [
"## MDP\n",
"\n",
"To begin with let us look at the implementation of MDP class defined in mdp.py The docstring tells us what all is required to define a MDP namely - set of states, actions, initial state, transition model, and a reward function. Each of these are implemented as methods. Do not close the popup so that you can follow along the description of code below."
Aman Deep Singh
a validé
"metadata": {},
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">MDP</span><span class=\"p\">:</span>\n",
"\n",
" <span class=\"sd\">"""A Markov Decision Process, defined by an initial state, transition model,</span>\n",
"<span class=\"sd\"> and reward function. We also keep track of a gamma value, for use by</span>\n",
"<span class=\"sd\"> algorithms. The transition model is represented somewhat differently from</span>\n",
"<span class=\"sd\"> the text. Instead of P(s' | s, a) being a probability number for each</span>\n",
"<span class=\"sd\"> state/state/action triplet, we instead have T(s, a) return a</span>\n",
"<span class=\"sd\"> list of (p, s') pairs. We also keep track of the possible states,</span>\n",
"<span class=\"sd\"> terminal states, and actions for each state. [page 646]"""</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">init</span><span class=\"p\">,</span> <span class=\"n\">actlist</span><span class=\"p\">,</span> <span class=\"n\">terminals</span><span class=\"p\">,</span> <span class=\"n\">transitions</span> <span class=\"o\">=</span> <span class=\"p\">{},</span> <span class=\"n\">reward</span> <span class=\"o\">=</span> <span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">states</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">gamma</span><span class=\"o\">=.</span><span class=\"mi\">9</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"p\">(</span><span class=\"mi\">0</span> <span class=\"o\"><</span> <span class=\"n\">gamma</span> <span class=\"o\"><=</span> <span class=\"mi\">1</span><span class=\"p\">):</span>\n",
" <span class=\"k\">raise</span> <span class=\"ne\">ValueError</span><span class=\"p\">(</span><span class=\"s2\">"An MDP must have 0 < gamma <= 1"</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">if</span> <span class=\"n\">states</span><span class=\"p\">:</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span> <span class=\"o\">=</span> <span class=\"n\">states</span>\n",
" <span class=\"k\">else</span><span class=\"p\">:</span>\n",
" <span class=\"c1\">## collect states from transitions table</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">get_states_from_transitions</span><span class=\"p\">(</span><span class=\"n\">transitions</span><span class=\"p\">)</span>\n",
" \n",
" \n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">init</span> <span class=\"o\">=</span> <span class=\"n\">init</span>\n",
" \n",
" <span class=\"k\">if</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">actlist</span><span class=\"p\">,</span> <span class=\"nb\">list</span><span class=\"p\">):</span>\n",
" <span class=\"c1\">## if actlist is a list, all states have the same actions</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actlist</span> <span class=\"o\">=</span> <span class=\"n\">actlist</span>\n",
" <span class=\"k\">elif</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">actlist</span><span class=\"p\">,</span> <span class=\"nb\">dict</span><span class=\"p\">):</span>\n",
" <span class=\"c1\">## if actlist is a dict, different actions for each state</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actlist</span> <span class=\"o\">=</span> <span class=\"n\">actlist</span>\n",
" \n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">terminals</span> <span class=\"o\">=</span> <span class=\"n\">terminals</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">transitions</span> <span class=\"o\">=</span> <span class=\"n\">transitions</span>\n",
" <span class=\"k\">if</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">transitions</span> <span class=\"o\">==</span> <span class=\"p\">{}:</span>\n",
" <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s2\">"Warning: Transition table is empty."</span><span class=\"p\">)</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">gamma</span> <span class=\"o\">=</span> <span class=\"n\">gamma</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">reward</span><span class=\"p\">:</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">reward</span> <span class=\"o\">=</span> <span class=\"n\">reward</span>\n",
" <span class=\"k\">else</span><span class=\"p\">:</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">reward</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">s</span> <span class=\"p\">:</span> <span class=\"mi\">0</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">}</span>\n",
" <span class=\"c1\">#self.check_consistency()</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">R</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Return a numeric reward for this state."""</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">reward</span><span class=\"p\">[</span><span class=\"n\">state</span><span class=\"p\">]</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">T</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Transition model. From a state and an action, return a list</span>\n",
"<span class=\"sd\"> of (probability, result-state) pairs."""</span>\n",
" <span class=\"k\">if</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">transitions</span> <span class=\"o\">==</span> <span class=\"p\">{}):</span>\n",
" <span class=\"k\">raise</span> <span class=\"ne\">ValueError</span><span class=\"p\">(</span><span class=\"s2\">"Transition model is missing"</span><span class=\"p\">)</span>\n",
" <span class=\"k\">else</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">transitions</span><span class=\"p\">[</span><span class=\"n\">state</span><span class=\"p\">][</span><span class=\"n\">action</span><span class=\"p\">]</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">actions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Set of actions that can be performed in this state. By default, a</span>\n",
"<span class=\"sd\"> fixed list of actions, except for terminal states. Override this</span>\n",
"<span class=\"sd\"> method if you need to specialize by state."""</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">state</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">terminals</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"p\">[</span><span class=\"bp\">None</span><span class=\"p\">]</span>\n",
" <span class=\"k\">else</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actlist</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">get_states_from_transitions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">transitions</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">transitions</span><span class=\"p\">,</span> <span class=\"nb\">dict</span><span class=\"p\">):</span>\n",
" <span class=\"n\">s1</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">transitions</span><span class=\"o\">.</span><span class=\"n\">keys</span><span class=\"p\">())</span>\n",
" <span class=\"n\">s2</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">([</span><span class=\"n\">tr</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"n\">actions</span> <span class=\"ow\">in</span> <span class=\"n\">transitions</span><span class=\"o\">.</span><span class=\"n\">values</span><span class=\"p\">()</span> \n",
" <span class=\"k\">for</span> <span class=\"n\">effects</span> <span class=\"ow\">in</span> <span class=\"n\">actions</span><span class=\"o\">.</span><span class=\"n\">values</span><span class=\"p\">()</span> <span class=\"k\">for</span> <span class=\"n\">tr</span> <span class=\"ow\">in</span> <span class=\"n\">effects</span><span class=\"p\">])</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">s1</span><span class=\"o\">.</span><span class=\"n\">union</span><span class=\"p\">(</span><span class=\"n\">s2</span><span class=\"p\">)</span>\n",
" <span class=\"k\">else</span><span class=\"p\">:</span>\n",
" <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">'Could not retrieve states from transitions'</span><span class=\"p\">)</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">check_consistency</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
" <span class=\"c1\"># check that all states in transitions are valid</span>\n",
" <span class=\"k\">assert</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">)</span> <span class=\"o\">==</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">get_states_from_transitions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">transitions</span><span class=\"p\">)</span>\n",
" <span class=\"c1\"># check that init is a valid state</span>\n",
" <span class=\"k\">assert</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">init</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span>\n",
" <span class=\"c1\"># check reward for each state</span>\n",
" <span class=\"c1\">#assert set(self.reward.keys()) == set(self.states)</span>\n",
" <span class=\"k\">assert</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">reward</span><span class=\"o\">.</span><span class=\"n\">keys</span><span class=\"p\">())</span> <span class=\"o\">==</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">)</span>\n",
" <span class=\"c1\"># check that all terminals are valid states</span>\n",
" <span class=\"k\">assert</span> <span class=\"nb\">all</span><span class=\"p\">([</span><span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span> <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">terminals</span><span class=\"p\">])</span>\n",
" <span class=\"c1\"># check that probability distributions for all actions sum to 1</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">s1</span><span class=\"p\">,</span> <span class=\"n\">actions</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">transitions</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">():</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">a</span> <span class=\"ow\">in</span> <span class=\"n\">actions</span><span class=\"o\">.</span><span class=\"n\">keys</span><span class=\"p\">():</span>\n",
" <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">o</span> <span class=\"ow\">in</span> <span class=\"n\">actions</span><span class=\"p\">[</span><span class=\"n\">a</span><span class=\"p\">]:</span>\n",
" <span class=\"n\">s</span> <span class=\"o\">+=</span> <span class=\"n\">o</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
" <span class=\"k\">assert</span> <span class=\"nb\">abs</span><span class=\"p\">(</span><span class=\"n\">s</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">)</span> <span class=\"o\"><</span> <span class=\"mf\">0.001</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
Aman Deep Singh
a validé
"psource(MDP)"
"metadata": {},
"source": [
"The **_ _init_ _** method takes in the following parameters:\n",
"\n",
"- init: the initial state.\n",
"- actlist: List of actions possible in each state.\n",
"- terminals: List of terminal states where only possible action is exit\n",
"- gamma: Discounting factor. This makes sure that delayed rewards have less value compared to immediate ones.\n",
"\n",
"**R** method returns the reward for each state by using the self.reward dict.\n",
"\n",
"**T** method is not implemented and is somewhat different from the text. Here we return (probability, s') pairs where s' belongs to list of possible state by taking action a in state s.\n",
"\n",
"**actions** method returns list of actions possible in each state. By default it returns all actions for states other than terminal states.\n"
]
},
{
"metadata": {},
"source": [
"Now let us implement the simple MDP in the image below. States A, B have actions X, Y available in them. Their probabilities are shown just above the arrows. We start with using MDP as base class for our CustomMDP. Obviously we need to make a few changes to suit our case. We make use of a transition matrix as our transitions are not very simple.\n",
"<img src=\"files/images/mdp-a.png\">"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": true
},
"# Transition Matrix as nested dict. State -> Actions in state -> List of (Probability, State) tuples\n",
" \"X\": [(0.3, \"A\"), (0.7, \"B\")],\n",
" \"Y\": [(1.0, \"A\")]\n",
" \"X\": {(0.8, \"End\"), (0.2, \"B\")},\n",
" \"Y\": {(1.0, \"A\")}\n",
" },\n",
" \"End\": {}\n",
"}\n",
"\n",
"init = \"A\"\n",
"\n",
"terminals = [\"End\"]\n",
"\n",
"rewards = {\n",
" \"A\": 5,\n",
" \"B\": -10,\n",
" \"End\": 100\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 4,
"source": [
"class CustomMDP(MDP):\n",
" def __init__(self, init, terminals, transition_matrix, reward = None, gamma=.9):\n",
" # All possible actions.\n",
" actlist = []\n",
" for state in transition_matrix.keys():\n",
" actlist.extend(transition_matrix[state])\n",
" MDP.__init__(self, init, actlist, terminals, transition_matrix, reward, gamma=gamma)\n",
"\n",
" def T(self, state, action):\n",
" if action is None:\n",
" return [(0.0, state)]\n",
" else: \n",
" return self.t[state][action]"
"metadata": {},
"source": [
"Finally we instantize the class with the parameters for our MDP in the picture."
]
},
{
"cell_type": "code",
"execution_count": 5,
"our_mdp = CustomMDP(init, terminals, t, rewards, gamma=.9)"
"With this we have successfully represented our MDP. Later we will look at ways to solve this MDP."
"Now we look at a concrete implementation that makes use of the MDP as base class. The GridMDP class in the mdp module is used to represent a grid world MDP like the one shown in in **Fig 17.1** of the AIMA Book. We assume for now that the environment is _fully observable_, so that the agent always knows where it is. The code should be easy to understand if you have gone through the CustomMDP example."
Aman Deep Singh
a validé
"metadata": {},
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">GridMDP</span><span class=\"p\">(</span><span class=\"n\">MDP</span><span class=\"p\">):</span>\n",
"\n",
" <span class=\"sd\">"""A two-dimensional grid MDP, as in [Figure 17.1]. All you have to do is</span>\n",
"<span class=\"sd\"> specify the grid as a list of lists of rewards; use None for an obstacle</span>\n",
"<span class=\"sd\"> (unreachable state). Also, you should specify the terminal states.</span>\n",
"<span class=\"sd\"> An action is an (x, y) unit vector; e.g. (1, 0) means move east."""</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">grid</span><span class=\"p\">,</span> <span class=\"n\">terminals</span><span class=\"p\">,</span> <span class=\"n\">init</span><span class=\"o\">=</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">0</span><span class=\"p\">),</span> <span class=\"n\">gamma</span><span class=\"o\">=.</span><span class=\"mi\">9</span><span class=\"p\">):</span>\n",
" <span class=\"n\">grid</span><span class=\"o\">.</span><span class=\"n\">reverse</span><span class=\"p\">()</span> <span class=\"c1\"># because we want row 0 on bottom, not on top</span>\n",
" <span class=\"n\">reward</span> <span class=\"o\">=</span> <span class=\"p\">{}</span>\n",
" <span class=\"n\">states</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">rows</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">grid</span><span class=\"p\">)</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">cols</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">grid</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">grid</span> <span class=\"o\">=</span> <span class=\"n\">grid</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">x</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">cols</span><span class=\"p\">):</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">y</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">rows</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">grid</span><span class=\"p\">[</span><span class=\"n\">y</span><span class=\"p\">][</span><span class=\"n\">x</span><span class=\"p\">]</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
" <span class=\"n\">states</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">((</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">y</span><span class=\"p\">))</span>\n",
" <span class=\"n\">reward</span><span class=\"p\">[(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">y</span><span class=\"p\">)]</span> <span class=\"o\">=</span> <span class=\"n\">grid</span><span class=\"p\">[</span><span class=\"n\">y</span><span class=\"p\">][</span><span class=\"n\">x</span><span class=\"p\">]</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span> <span class=\"o\">=</span> <span class=\"n\">states</span>\n",
" <span class=\"n\">actlist</span> <span class=\"o\">=</span> <span class=\"n\">orientations</span>\n",
" <span class=\"n\">transitions</span> <span class=\"o\">=</span> <span class=\"p\">{}</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">states</span><span class=\"p\">:</span>\n",
" <span class=\"n\">transitions</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"p\">{}</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">a</span> <span class=\"ow\">in</span> <span class=\"n\">actlist</span><span class=\"p\">:</span>\n",
" <span class=\"n\">transitions</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">][</span><span class=\"n\">a</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">calculate_T</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">)</span>\n",
" <span class=\"n\">MDP</span><span class=\"o\">.</span><span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">init</span><span class=\"p\">,</span> <span class=\"n\">actlist</span><span class=\"o\">=</span><span class=\"n\">actlist</span><span class=\"p\">,</span>\n",
" <span class=\"n\">terminals</span><span class=\"o\">=</span><span class=\"n\">terminals</span><span class=\"p\">,</span> <span class=\"n\">transitions</span> <span class=\"o\">=</span> <span class=\"n\">transitions</span><span class=\"p\">,</span> \n",
" <span class=\"n\">reward</span> <span class=\"o\">=</span> <span class=\"n\">reward</span><span class=\"p\">,</span> <span class=\"n\">states</span> <span class=\"o\">=</span> <span class=\"n\">states</span><span class=\"p\">,</span> <span class=\"n\">gamma</span><span class=\"o\">=</span><span class=\"n\">gamma</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">calculate_T</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">action</span> <span class=\"ow\">is</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"p\">[(</span><span class=\"mf\">0.0</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">)]</span>\n",
" <span class=\"k\">else</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"p\">[(</span><span class=\"mf\">0.8</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">go</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">)),</span>\n",
" <span class=\"p\">(</span><span class=\"mf\">0.1</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">go</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">turn_right</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">))),</span>\n",
" <span class=\"p\">(</span><span class=\"mf\">0.1</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">go</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">turn_left</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">)))]</span>\n",
" \n",
" <span class=\"k\">def</span> <span class=\"nf\">T</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">action</span> <span class=\"ow\">is</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"p\">[(</span><span class=\"mf\">0.0</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">)]</span>\n",
" <span class=\"k\">else</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">transitions</span><span class=\"p\">[</span><span class=\"n\">state</span><span class=\"p\">][</span><span class=\"n\">action</span><span class=\"p\">]</span>\n",
" \n",
" <span class=\"k\">def</span> <span class=\"nf\">go</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">direction</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Return the state that results from going in this direction."""</span>\n",
" <span class=\"n\">state1</span> <span class=\"o\">=</span> <span class=\"n\">vector_add</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">direction</span><span class=\"p\">)</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">state1</span> <span class=\"k\">if</span> <span class=\"n\">state1</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span> <span class=\"k\">else</span> <span class=\"n\">state</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">to_grid</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">mapping</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Convert a mapping from (x, y) to v into a [[..., v, ...]] grid."""</span>\n",
" <span class=\"k\">return</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"nb\">reversed</span><span class=\"p\">([[</span><span class=\"n\">mapping</span><span class=\"o\">.</span><span class=\"n\">get</span><span class=\"p\">((</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">y</span><span class=\"p\">),</span> <span class=\"bp\">None</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">x</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">cols</span><span class=\"p\">)]</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">y</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">rows</span><span class=\"p\">)]))</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">to_arrows</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">policy</span><span class=\"p\">):</span>\n",
" <span class=\"n\">chars</span> <span class=\"o\">=</span> <span class=\"p\">{</span>\n",
" <span class=\"p\">(</span><span class=\"mi\">1</span><span class=\"p\">,</span> <span class=\"mi\">0</span><span class=\"p\">):</span> <span class=\"s1\">'>'</span><span class=\"p\">,</span> <span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">):</span> <span class=\"s1\">'^'</span><span class=\"p\">,</span> <span class=\"p\">(</span><span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">,</span> <span class=\"mi\">0</span><span class=\"p\">):</span> <span class=\"s1\">'<'</span><span class=\"p\">,</span> <span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">):</span> <span class=\"s1\">'v'</span><span class=\"p\">,</span> <span class=\"bp\">None</span><span class=\"p\">:</span> <span class=\"s1\">'.'</span><span class=\"p\">}</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">to_grid</span><span class=\"p\">({</span><span class=\"n\">s</span><span class=\"p\">:</span> <span class=\"n\">chars</span><span class=\"p\">[</span><span class=\"n\">a</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"n\">policy</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">()})</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
Aman Deep Singh
a validé
"psource(GridMDP)"
"metadata": {},
"source": [
"The **_ _init_ _** method takes **grid** as an extra parameter compared to the MDP class. The grid is a nested list of rewards in states.\n",
"\n",
"**go** method returns the state by going in particular direction by using vector_add.\n",
"\n",
"**T** method is not implemented and is somewhat different from the text. Here we return (probability, s') pairs where s' belongs to list of possible state by taking action a in state s.\n",
"\n",
"**actions** method returns list of actions possible in each state. By default it returns all actions for states other than terminal states.\n",
"\n",
"**to_arrows** are used for representing the policy in a grid like format."
]
},
{
"metadata": {},
"source": [
"We can create a GridMDP like the one in **Fig 17.1** as follows: \n",
"\n",
" GridMDP([[-0.04, -0.04, -0.04, +1],\n",
" [-0.04, None, -0.04, -1],\n",
" [-0.04, -0.04, -0.04, -0.04]],\n",
" terminals=[(3, 2), (3, 1)])\n",
" \n",
"In fact the **sequential_decision_environment** in mdp module has been instantized using the exact same code."
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"<mdp.GridMDP at 0x1d384953fd0>"
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sequential_decision_environment"
"metadata": {
"collapsed": true
},
"source": [
"\n",
"Now that we have looked how to represent MDPs. Let's aim at solving them. Our ultimate goal is to obtain an optimal policy. We start with looking at Value Iteration and a visualisation that should help us understanding it better.\n",
"\n",
"We start by calculating Value/Utility for each of the states. The Value of each state is the expected sum of discounted future rewards given we start in that state and follow a particular policy $\\pi$. The value or the utility of a state is given by\n",
"\n",
"$$U(s)=R(s)+\\gamma\\max_{a\\epsilon A(s)}\\sum_{s'} P(s'\\ |\\ s,a)U(s')$$\n",
"\n",
"This is called the Bellman equation. The algorithm Value Iteration (**Fig. 17.4** in the book) relies on finding solutions of this Equation. The intuition Value Iteration works is because values propagate through the state space by means of local updates. This point will we more clear after we encounter the visualisation. For more information you can refer to **Section 17.2** of the book. \n"
]
},
{
"cell_type": "code",
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">value_iteration</span><span class=\"p\">(</span><span class=\"n\">mdp</span><span class=\"p\">,</span> <span class=\"n\">epsilon</span><span class=\"o\">=</span><span class=\"mf\">0.001</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Solving an MDP by value iteration. [Figure 17.4]"""</span>\n",
" <span class=\"n\">U1</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">s</span><span class=\"p\">:</span> <span class=\"mi\">0</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">}</span>\n",
" <span class=\"n\">R</span><span class=\"p\">,</span> <span class=\"n\">T</span><span class=\"p\">,</span> <span class=\"n\">gamma</span> <span class=\"o\">=</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">R</span><span class=\"p\">,</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">T</span><span class=\"p\">,</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">gamma</span>\n",
" <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
" <span class=\"n\">U</span> <span class=\"o\">=</span> <span class=\"n\">U1</span><span class=\"o\">.</span><span class=\"n\">copy</span><span class=\"p\">()</span>\n",
" <span class=\"n\">delta</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">:</span>\n",
" <span class=\"n\">U1</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">R</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">gamma</span> <span class=\"o\">*</span> <span class=\"nb\">max</span><span class=\"p\">([</span><span class=\"nb\">sum</span><span class=\"p\">([</span><span class=\"n\">p</span> <span class=\"o\">*</span> <span class=\"n\">U</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">,</span> <span class=\"n\">s1</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"n\">T</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">)])</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">a</span> <span class=\"ow\">in</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)])</span>\n",
" <span class=\"n\">delta</span> <span class=\"o\">=</span> <span class=\"nb\">max</span><span class=\"p\">(</span><span class=\"n\">delta</span><span class=\"p\">,</span> <span class=\"nb\">abs</span><span class=\"p\">(</span><span class=\"n\">U1</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">U</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]))</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">delta</span> <span class=\"o\"><</span> <span class=\"n\">epsilon</span> <span class=\"o\">*</span> <span class=\"p\">(</span><span class=\"mi\">1</span> <span class=\"o\">-</span> <span class=\"n\">gamma</span><span class=\"p\">)</span> <span class=\"o\">/</span> <span class=\"n\">gamma</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">U</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"metadata": {},
"source": [
"It takes as inputs two parameters, an MDP to solve and epsilon, the maximum error allowed in the utility of any state. It returns a dictionary containing utilities where the keys are the states and values represent utilities. <br> Value Iteration starts with arbitrary initial values for the utilities, calculates the right side of the Bellman equation and plugs it into the left hand side, thereby updating the utility of each state from the utilities of its neighbors. \n",
"This is repeated until equilibrium is reached. \n",
"It works on the principle of _Dynamic Programming_ - using precomputed information to simplify the subsequent computation. \n",
"If $U_i(s)$ is the utility value for state $s$ at the $i$ th iteration, the iteration step, called Bellman update, looks like this:\n",
"\n",
"$$ U_{i+1}(s) \\leftarrow R(s) + \\gamma \\max_{a \\epsilon A(s)} \\sum_{s'} P(s'\\ |\\ s,a)U_{i}(s') $$\n",
"\n",
"As you might have noticed, `value_iteration` has an infinite loop. How do we decide when to stop iterating? \n",
"The concept of _contraction_ successfully explains the convergence of value iteration. \n",
"Refer to **Section 17.2.3** of the book for a detailed explanation. \n",
"In the algorithm, we calculate a value $delta$ that measures the difference in the utilities of the current time step and the previous time step. \n",
"\n",
"$$\\delta = \\max{(\\delta, \\begin{vmatrix}U_{i + 1}(s) - U_i(s)\\end{vmatrix})}$$\n",
"\n",
"This value of delta decreases as the values of $U_i$ converge.\n",
"We terminate the algorithm if the $\\delta$ value is less than a threshold value determined by the hyperparameter _epsilon_.\n",
"\n",
"$$\\delta \\lt \\epsilon \\frac{(1 - \\gamma)}{\\gamma}$$\n",
"\n",
"To summarize, the Bellman update is a _contraction_ by a factor of $gamma$ on the space of utility vectors. \n",
"Hence, from the properties of contractions in general, it follows that `value_iteration` always converges to a unique solution of the Bellman equations whenever $gamma$ is less than 1.\n",
"We then terminate the algorithm when a reasonable approximation is achieved.\n",
"In practice, it often occurs that the policy $pi$ becomes optimal long before the utility function converges. For the given 4 x 3 environment with $gamma = 0.9$, the policy $pi$ is optimal when $i = 4$ (at the 4th iteration), even though the maximum error in the utility function is stil 0.46. This can be clarified from **figure 17.6** in the book. Hence, to increase computational efficiency, we often use another method to solve MDPs called Policy Iteration which we will see in the later part of this notebook. \n",
"<br>For now, let us solve the **sequential_decision_environment** GridMDP using `value_iteration`."
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"{(0, 0): 0.2962883154554812,\n",
" (0, 1): 0.3984432178350045,\n",
" (0, 2): 0.5093943765842497,\n",
" (1, 0): 0.25386699846479516,\n",
" (1, 2): 0.649585681261095,\n",
" (2, 0): 0.3447542300124158,\n",
" (2, 1): 0.48644001739269643,\n",
" (2, 2): 0.7953620878466678,\n",
" (3, 0): 0.12987274656746342,\n",
" (3, 1): -1.0,\n",
" (3, 2): 1.0}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"value_iteration(sequential_decision_environment)"
]
},
"metadata": {},
"source": [
"The pseudocode for the algorithm:"
]
},
{
"cell_type": "code",
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"### AIMA3e\n",
"__function__ VALUE-ITERATION(_mdp_, _ε_) __returns__ a utility function \n",
" __inputs__: _mdp_, an MDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_), \n",
"      rewards _R_(_s_), discount _γ_ \n",
"   _ε_, the maximum error allowed in the utility of any state \n",
" __local variables__: _U_, _U′_, vectors of utilities for states in _S_, initially zero \n",
"        _δ_, the maximum change in the utility of any state in an iteration \n",
"\n",
" __repeat__ \n",
"   _U_ ← _U′_; _δ_ ← 0 \n",
"   __for each__ state _s_ in _S_ __do__ \n",
"     _U′_\\[_s_\\] ← _R_(_s_) + _γ_ max<sub>_a_ ∈ _A_(_s_)</sub> Σ _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] \n",
"     __if__ | _U′_\\[_s_\\] − _U_\\[_s_\\] | > _δ_ __then__ _δ_ ← | _U′_\\[_s_\\] − _U_\\[_s_\\] | \n",
" __until__ _δ_ < _ε_(1 − _γ_)/_γ_ \n",
" __return__ _U_ \n",
"\n",
"---\n",
"__Figure ??__ The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (__??__)."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pseudocode(\"Value-Iteration\")"
]
},
"metadata": {},
"source": [
"### AIMA3e\n",
"__function__ VALUE-ITERATION(_mdp_, _ε_) __returns__ a utility function \n",
" __inputs__: _mdp_, an MDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_), \n",
"      rewards _R_(_s_), discount _γ_ \n",
"   _ε_, the maximum error allowed in the utility of any state \n",
" __local variables__: _U_, _U′_, vectors of utilities for states in _S_, initially zero \n",
"        _δ_, the maximum change in the utility of any state in an iteration \n",
"\n",
" __repeat__ \n",
"   _U_ ← _U′_; _δ_ ← 0 \n",
"   __for each__ state _s_ in _S_ __do__ \n",
"     _U′_\\[_s_\\] ← _R_(_s_) + _γ_ max<sub>_a_ ∈ _A_(_s_)</sub> Σ _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] \n",
"     __if__ | _U′_\\[_s_\\] − _U_\\[_s_\\] | > _δ_ __then__ _δ_ ← | _U′_\\[_s_\\] − _U_\\[_s_\\] | \n",
" __until__ _δ_ < _ε_(1 − _γ_)/_γ_ \n",
" __return__ _U_ \n",
"\n",
"---\n",
"__Figure ??__ The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (__??__)."
"metadata": {},
"source": [
"## VALUE ITERATION VISUALIZATION\n",
"\n",
"To illustrate that values propagate out of states let us create a simple visualisation. We will be using a modified version of the value_iteration function which will store U over time. We will also remove the parameter epsilon and instead add the number of iterations we want."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"source": [
"def value_iteration_instru(mdp, iterations=20):\n",
" U_over_time = []\n",
" U1 = {s: 0 for s in mdp.states}\n",
" R, T, gamma = mdp.R, mdp.T, mdp.gamma\n",
" for _ in range(iterations):\n",
" U = U1.copy()\n",
" for s in mdp.states:\n",
" U1[s] = R(s) + gamma * max([sum([p * U[s1] for (p, s1) in T(s, a)])\n",
" for a in mdp.actions(s)])\n",
" U_over_time.append(U)\n",
" return U_over_time"
]
},
{
"metadata": {},
"source": [
"Next, we define a function to create the visualisation from the utilities returned by **value_iteration_instru**. The reader need not concern himself with the code that immediately follows as it is the usage of Matplotib with IPython Widgets. If you are interested in reading more about these visit [ipywidgets.readthedocs.io](http://ipywidgets.readthedocs.io)"
]
},
{
"cell_type": "code",
"source": [
"columns = 4\n",
"rows = 3\n",
"U_over_time = value_iteration_instru(sequential_decision_environment)"
]
},
{
"cell_type": "code",
"%matplotlib inline\n",
"from notebook import make_plot_grid_step_function\n",
"\n",
"plot_grid_step = make_plot_grid_step_function(columns, rows, U_over_time)"
]
},
{
"cell_type": "code",
"metadata": {
"scrolled": true
},
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAATcAAADuCAYAAABcZEBhAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADYxJREFUeJzt211oW2eex/Hf2Xpb0onWrVkm1otL\nW2SmrNaVtzS2K8jCFhJPXsbtRWcTX4zbmUBINkMYw5jmYrYwhNJuMWTjaTCYDSW5cQK9iEOcpDad\nLAREVtBEF+OwoDEyWEdxirvjelw36cScubCi1PWLvK0lnfnP9wMGHz2P4dEf8fWRnDie5wkArPmb\nah8AAMqBuAEwibgBMIm4ATCJuAEwibgBMIm4ATCJuAEwibgBMKnm/7N5bk78dwagjDYHnGofwf88\nb11D4s4NgEnEDYBJxA2AScQNgEnEDYBJxA2AScQNgEnEDYBJxA2AScQNgEnEDYBJxA2AScQNgEnE\nDYBJxA2AScQNgEnEDYBJxA2AScQNgEnEDYBJxA2AScQNgEnEDYBJxA2AScQNgEnEDYBJxA2AScQN\ngEnEDYBJxA2AScQNgEm+jZvneerpOaJ4PKq2tueVTt9Ycd/Nm5+otbVJ8XhUPT1H5HnekvUTJ3oV\nCDianp6uxLErhvmUxoxW9zNJ35f0j6use5KOSIpKel7S1yd3WlJj4et0Gc/4Xfk2biMjlzU+nlE6\nnVFf34C6uw+tuK+7+5D6+gaUTmc0Pp7R6OiV4louN6mrV0fV0PBUpY5dMcynNGa0ujckXVlj/bKk\nTOFrQNKDyf2fpF9L+h9JqcL3fyjbKb8b38ZteHhInZ1dchxHLS1tmpmZ0dTU7SV7pqZua3Z2Vq2t\nL8lxHHV2dunixfPF9aNHu3Xs2HtyHKfSxy875lMaM1rdP0uqW2N9SFKXJEdSm6QZSbclfSRpe+Fn\nnyx8v1Ykq8m3ccvnXYXDDcXrcDiifN5dYU+keB0KPdwzPHxBoVBYTU3xyhy4wphPaczo23MlNXzt\nOlJ4bLXH/aim2gdYzTc/95C07Lfnanvm5+fV2/u2zp8fKdv5qo35lMaMvr3lU1m8i1vtcT/y1Z3b\nwMBJJRLNSiSaFQyG5LqTxTXXzSkYDC3ZHw5H5Lq54nU+v7gnmx3XxERWiURcsdjTct2ctm17QXfu\nTFXsuZQD8ymNGW2MiKTJr13nJIXWeNyPfBW3AwcOK5lMK5lMa8+eVzU4eEae5ymVuq7a2lrV1weX\n7K+vDyoQCCiVui7P8zQ4eEa7d7+iWKxJ2eynGhub0NjYhMLhiK5du6EtW+qr9Mw2BvMpjRltjA5J\nZ7R4p3ZdUq2koKR2SSNa/CPCHwrft1fpjKX49m1pe/sujYxcUjwe1aZNj6u//4PiWiLRrGQyLUk6\nfrxfBw++obt3v9T27Tu1Y8fOah25ophPacxodZ2S/lvStBbvxn4t6U+FtYOSdkm6pMV/CvK4pAeT\nq5P075K2Fq7f0tp/mKgmZ6XPHFYzN7fiW24AG2RzwK+fYPmI561rSL56WwoAG4W4ATCJuAEwibgB\nMIm4ATCJuAEwibgBMIm4ATCJuAEwibgBMIm4ATCJuAEwibgBMIm4ATCJuAEwibgBMIm4ATCJuAEw\nibgBMIm4ATCJuAEwibgBMIm4ATCJuAEwibgBMIm4ATCJuAEwibgBMIm4ATCJuAEwibgBMKmm2gew\nZPP3vGofwffmvnCqfQRfc8RrqJT1Tog7NwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAmETcAJhE3\nACYRNwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAmETcA\nJhE3ACYRNwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAm+TZunuepp+eI4vGo2tqeVzp9Y8V9N29+\notbWJsXjUfX0HJHneUvWT5zoVSDgaHp6uhLHrpgrV67oB889p2hjo959991l6/fu3dPeffsUbWxU\na1ubJiYmimvvvPOOoo2N+sFzz+mjjz6q4Kkri9dQKf8r6SVJj0nqXWNfVlKrpEZJeyV9VXj8XuE6\nWlifKNdBvxXfxm1k5LLGxzNKpzPq6xtQd/ehFfd1dx9SX9+A0umMxsczGh29UlzL5SZ19eqoGhqe\nqtSxK2JhYUGHf/5zXb50SbfGxjR49qxu3bq1ZM+pU6f05BNP6PeZjLp/8Qu9efSoJOnWrVs6e+6c\nxn73O125fFn/dviwFhYWqvE0yo7XUCl1kvok/bLEvjcldUvKSHpS0qnC46cK178vrL9ZnmN+S76N\n2/DwkDo7u+Q4jlpa2jQzM6OpqdtL9kxN3dbs7KxaW1+S4zjq7OzSxYvni+tHj3br2LH35DhOpY9f\nVqlUStFoVM8++6weffRR7du7V0NDQ0v2DF24oNdff12S9Nprr+njjz+W53kaGhrSvr179dhjj+mZ\nZ55RNBpVKpWqxtMoO15DpXxf0lZJf7vGHk/SbyW9Vrh+XdKD+QwVrlVY/7iw3x98G7d83lU43FC8\nDocjyufdFfZEiteh0MM9w8MXFAqF1dQUr8yBK8h1XTVEHj7vSCQi13WX72lYnF9NTY1qa2v12Wef\nLXlckiLh8LKftYLX0Eb4TNITkmoK1xFJD2boSnow3xpJtYX9/lBTekt1fPNzD0nLfnuutmd+fl69\nvW/r/PmRsp2vmr7LbNbzs1bwGtoIK92JOetYqz5f3bkNDJxUItGsRKJZwWBIrjtZXHPdnILB0JL9\n4XBErpsrXufzi3uy2XFNTGSVSMQViz0t181p27YXdOfOVMWeSzlFIhFN5h4+71wup1AotHzP5OL8\n7t+/r88//1x1dXVLHpeknOsu+9m/ZLyGSjkpqbnwlV/H/r+XNCPpfuE6J+nBDCOSHsz3vqTPtfg5\nnj/4Km4HDhxWMplWMpnWnj2vanDwjDzPUyp1XbW1taqvDy7ZX18fVCAQUCp1XZ7naXDwjHbvfkWx\nWJOy2U81NjahsbEJhcMRXbt2Q1u21FfpmW2srVu3KpPJKJvN6quvvtLZc+fU0dGxZE/Hj36k06dP\nS5I+/PBDvfzyy3IcRx0dHTp77pzu3bunbDarTCajlpaWajyNsuA1VMphSenC13p+qTmS/kXSh4Xr\n05JeKXzfUbhWYf1l+enOzbdvS9vbd2lk5JLi8ag2bXpc/f0fFNcSiWYlk2lJ0vHj/Tp48A3dvful\ntm/fqR07dlbryBVTU1Oj93/zG7X/8IdaWFjQz376U8ViMb311lt68cUX1dHRof379+snXV2KNjaq\nrq5OZwcHJUmxWEz/+uMf6x9iMdXU1Ojk++/rkUceqfIzKg9eQ6VMSXpR0qwW73P+U9ItSX8naZek\n/9JiAP9D0j5Jv5L0T5L2F35+v6SfaPGfgtRJOlvBs5fmrPSZw2rm5nz0pxAf2vw9xlPK3Bf++c3u\nR4FAtU/gf563vttDX70tBYCNQtwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwA\nmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAmETcAJhE3ACYRNwAmETcAJhE3ACY\nRNwAmETcAJhE3ACYRNwAmETcAJhE3ACYVFPtA1gy94VT7SPgL9wf/1jtE9jBnRsAk4gbAJOIGwCT\niBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOI\nGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gb\nAJN8GzfP89TTc0TxeFRtbc8rnb6x4r6bNz9Ra2uT4vGoenqOyPO8JesnTvQqEHA0PT1diWNXDPMp\njRmtzfp8fBu3kZHLGh/PKJ3OqK9vQN3dh1bc1919SH19A0qnMxofz2h09EpxLZeb1NWro2poeKpS\nx64Y5lMaM1qb9fn4Nm7Dw0Pq7OyS4zhqaWnTzMyMpqZuL9kzNXVbs7Ozam19SY7jqLOzSxcvni+u\nHz3arWPH3pPjOJU+ftkxn9KY0dqsz8e3ccvnXYXDDcXrcDiifN5dYU+keB0KPdwzPHxBoVBYTU3x\nyhy4wphPacxobdbnU1PtA6zmm+/rJS377bDanvn5efX2vq3z50fKdr5qYz6lMaO1WZ+Pr+7cBgZO\nKpFoViLRrGAwJNedLK65bk7BYGjJ/nA4ItfNFa/z+cU92ey4JiaySiTiisWeluvmtG3bC7pzZ6pi\nz6UcmE9pzGhtf03z8VXcDhw4rGQyrWQyrT17XtXg4Bl5nqdU6rpqa2tVXx9csr++PqhAIKBU6ro8\nz9Pg4Bnt3v2KYrEmZbOfamxsQmNjEwqHI7p27Ya2bKmv0jPbGMynNGa0tr+m+fj2bWl7+y6NjFxS\nPB7Vpk2Pq7//g+JaItGsZDItSTp+vF8HD76hu3e/1PbtO7Vjx85qHbmimE9pzGht1ufjrPSeejVz\nc1r/ZgAog82bta4/zfrqbSkAbBTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTi\nBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIG\nwCTiBsAk4gbAJOIGwCTiBsAk4gbAJOIGwCTH87xqnwEANhx3bgBMIm4ATCJuAEwibgBMIm4ATCJu\nAEwibgBMIm4ATCJuAEwibgBM+jPdN0cNjYpeKAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x1d38c9c67f0>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"The installed widget Javascript is the wrong version. It must satisfy the semver range ~2.1.4.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "77e9849e074841e49d8b0ebc8191507c"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import ipywidgets as widgets\n",
"from IPython.display import display\n",
"iteration_slider = widgets.IntSlider(min=1, max=15, step=1, value=0)\n",
"w=widgets.interactive(plot_grid_step,iteration=iteration_slider)\n",
"\n",
"visualize_callback = make_visualize(iteration_slider)\n",
"\n",
"visualize_button = widgets.ToggleButton(description = \"Visualize\", value = False)\n",
"time_select = widgets.ToggleButtons(description='Extra Delay:',options=['0', '0.1', '0.2', '0.5', '0.7', '1.0'])\n",
"a = widgets.interactive(visualize_callback, Visualize = visualize_button, time_step=time_select)\n",
"display(a)"
"metadata": {},
"source": [
Aman Deep Singh
a validé
"Move the slider above to observe how the utility changes across iterations. It is also possible to move the slider using arrow keys or to jump to the value by directly editing the number with a double click. The **Visualize Button** will automatically animate the slider for you. The **Extra Delay Box** allows you to set time delay in seconds upto one second for each time step. There is also an interactive editor for grid-world problems `grid_mdp.py` in the gui folder for you to play around with."
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
"metadata": {
"collapsed": true
},
"source": [
"# POLICY ITERATION\n",
"\n",
"We have already seen that value iteration converges to the optimal policy long before it accurately estimates the utility function. \n",
"If one action is clearly better than all the others, then the exact magnitude of the utilities in the states involved need not be precise. \n",
"The policy iteration algorithm works on this insight. \n",
"The algorithm executes two fundamental steps:\n",
"* **Policy evaluation**: Given a policy _πᵢ_, calculate _Uᵢ = U(πᵢ)_, the utility of each state if _πᵢ_ were to be executed.\n",
"* **Policy improvement**: Calculate a new policy _πᵢ₊₁_ using one-step look-ahead based on the utility values calculated.\n",
"\n",
"The algorithm terminates when the policy improvement step yields no change in the utilities. \n",
"Refer to **Figure 17.6** in the book to see how this is an improvement over value iteration.\n",
"We now have a simplified version of the Bellman equation\n",
"\n",
"$$U_i(s) = R(s) + \\gamma \\sum_{s'}P(s'\\ |\\ s, \\pi_i(s))U_i(s')$$\n",
"\n",
"An important observation in this equation is that this equation doesn't have the `max` operator, which makes it linear.\n",
"For _n_ states, we have _n_ linear equations with _n_ unknowns, which can be solved exactly in time _**O(n³)**_.\n",
"For more implementational details, have a look at **Section 17.3**.\n",
"Let us now look at how the expected utility is found and how `policy_iteration` is implemented."
]
},
{
"cell_type": "code",
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">expected_utility</span><span class=\"p\">(</span><span class=\"n\">a</span><span class=\"p\">,</span> <span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">U</span><span class=\"p\">,</span> <span class=\"n\">mdp</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""The expected utility of doing a in state s, according to the MDP and U."""</span>\n",
" <span class=\"k\">return</span> <span class=\"nb\">sum</span><span class=\"p\">([</span><span class=\"n\">p</span> <span class=\"o\">*</span> <span class=\"n\">U</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">,</span> <span class=\"n\">s1</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">T</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">)])</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(expected_utility)"
]
},
{
"cell_type": "code",
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">policy_iteration</span><span class=\"p\">(</span><span class=\"n\">mdp</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Solve an MDP by policy iteration [Figure 17.7]"""</span>\n",
" <span class=\"n\">U</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">s</span><span class=\"p\">:</span> <span class=\"mi\">0</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">}</span>\n",
" <span class=\"n\">pi</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">s</span><span class=\"p\">:</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">))</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">}</span>\n",
" <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
" <span class=\"n\">U</span> <span class=\"o\">=</span> <span class=\"n\">policy_evaluation</span><span class=\"p\">(</span><span class=\"n\">pi</span><span class=\"p\">,</span> <span class=\"n\">U</span><span class=\"p\">,</span> <span class=\"n\">mdp</span><span class=\"p\">)</span>\n",
" <span class=\"n\">unchanged</span> <span class=\"o\">=</span> <span class=\"bp\">True</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">:</span>\n",
" <span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">),</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"k\">lambda</span> <span class=\"n\">a</span><span class=\"p\">:</span> <span class=\"n\">expected_utility</span><span class=\"p\">(</span><span class=\"n\">a</span><span class=\"p\">,</span> <span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">U</span><span class=\"p\">,</span> <span class=\"n\">mdp</span><span class=\"p\">))</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">a</span> <span class=\"o\">!=</span> <span class=\"n\">pi</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]:</span>\n",
" <span class=\"n\">pi</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">a</span>\n",
" <span class=\"n\">unchanged</span> <span class=\"o\">=</span> <span class=\"bp\">False</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">unchanged</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">pi</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(policy_iteration)"
]
},
{
"metadata": {},
"source": [
"<br>Fortunately, it is not necessary to do _exact_ policy evaluation. \n",
"The utilities can instead be reasonably approximated by performing some number of simplified value iteration steps.\n",
"The simplified Bellman update equation for the process is\n",
"\n",
"$$U_{i+1}(s) \\leftarrow R(s) + \\gamma\\sum_{s'}P(s'\\ |\\ s,\\pi_i(s))U_{i}(s')$$\n",
"\n",
"and this is repeated _k_ times to produce the next utility estimate. This is called _modified policy iteration_."
]
},
{
"cell_type": "code",
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">policy_evaluation</span><span class=\"p\">(</span><span class=\"n\">pi</span><span class=\"p\">,</span> <span class=\"n\">U</span><span class=\"p\">,</span> <span class=\"n\">mdp</span><span class=\"p\">,</span> <span class=\"n\">k</span><span class=\"o\">=</span><span class=\"mi\">20</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Return an updated utility mapping U from each state in the MDP to its</span>\n",
"<span class=\"sd\"> utility, using an approximation (modified policy iteration)."""</span>\n",
" <span class=\"n\">R</span><span class=\"p\">,</span> <span class=\"n\">T</span><span class=\"p\">,</span> <span class=\"n\">gamma</span> <span class=\"o\">=</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">R</span><span class=\"p\">,</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">T</span><span class=\"p\">,</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">gamma</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">k</span><span class=\"p\">):</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">mdp</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">:</span>\n",
" <span class=\"n\">U</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">R</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"n\">gamma</span> <span class=\"o\">*</span> <span class=\"nb\">sum</span><span class=\"p\">([</span><span class=\"n\">p</span> <span class=\"o\">*</span> <span class=\"n\">U</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">,</span> <span class=\"n\">s1</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"n\">T</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">pi</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">])])</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">U</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(policy_evaluation)"
]
},
{
"metadata": {},
"source": [
"Let us now solve **`sequential_decision_environment`** using `policy_iteration`."
]
},
{
"cell_type": "code",
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
"outputs": [
{
"data": {
"text/plain": [
"{(0, 0): (0, 1),\n",
" (0, 1): (0, 1),\n",
" (0, 2): (1, 0),\n",
" (1, 0): (1, 0),\n",
" (1, 2): (1, 0),\n",
" (2, 0): (0, 1),\n",
" (2, 1): (0, 1),\n",
" (2, 2): (1, 0),\n",
" (3, 0): (-1, 0),\n",
" (3, 1): None,\n",
" (3, 2): None}"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"policy_iteration(sequential_decision_environment)"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/markdown": [
"### AIMA3e\n",
"__function__ POLICY-ITERATION(_mdp_) __returns__ a policy \n",
" __inputs__: _mdp_, an MDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_) \n",
" __local variables__: _U_, a vector of utilities for states in _S_, initially zero \n",
"        _π_, a policy vector indexed by state, initially random \n",
"\n",
" __repeat__ \n",
"   _U_ ← POLICY\\-EVALUATION(_π_, _U_, _mdp_) \n",
"   _unchanged?_ ← true \n",
"   __for each__ state _s_ __in__ _S_ __do__ \n",
"     __if__ max<sub>_a_ ∈ _A_(_s_)</sub> Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] > Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _π_\\[_s_\\]) _U_\\[_s′_\\] __then do__ \n",
"       _π_\\[_s_\\] ← argmax<sub>_a_ ∈ _A_(_s_)</sub> Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] \n",
"       _unchanged?_ ← false \n",
" __until__ _unchanged?_ \n",
" __return__ _π_ \n",
"\n",
"---\n",
"__Figure ??__ The policy iteration algorithm for calculating an optimal policy."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pseudocode('Policy-Iteration')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### AIMA3e\n",
"__function__ POLICY-ITERATION(_mdp_) __returns__ a policy \n",
" __inputs__: _mdp_, an MDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_) \n",
" __local variables__: _U_, a vector of utilities for states in _S_, initially zero \n",
"        _π_, a policy vector indexed by state, initially random \n",
"\n",
" __repeat__ \n",
"   _U_ ← POLICY\\-EVALUATION(_π_, _U_, _mdp_) \n",
"   _unchanged?_ ← true \n",
"   __for each__ state _s_ __in__ _S_ __do__ \n",
"     __if__ max<sub>_a_ ∈ _A_(_s_)</sub> Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] > Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _π_\\[_s_\\]) _U_\\[_s′_\\] __then do__ \n",
"       _π_\\[_s_\\] ← argmax<sub>_a_ ∈ _A_(_s_)</sub> Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] \n",
"       _unchanged?_ ← false \n",
" __until__ _unchanged?_ \n",
" __return__ _π_ \n",
"\n",
"---\n",
"__Figure ??__ The policy iteration algorithm for calculating an optimal policy."
"metadata": {
"collapsed": true
},
"source": [
"## Sequential Decision Problems\n",
"\n",
"Now that we have the tools required to solve MDPs, let us see how Sequential Decision Problems can be solved step by step and how a few built-in tools in the GridMDP class help us better analyse the problem at hand. \n",
"As always, we will work with the grid world from **Figure 17.1** from the book.\n",
"\n",
"<br>This is the environment for our agent.\n",
"We assume for now that the environment is _fully observable_, so that the agent always knows where it is.\n",
"We also assume that the transitions are **Markovian**, that is, the probability of reaching state $s'$ from state $s$ depends only on $s$ and not on the history of earlier states.\n",
"Almost all stochastic decision problems can be reframed as a Markov Decision Process just by tweaking the definition of a _state_ for that particular problem.\n",
"<br>\n",
"However, the actions of our agent in this environment are unreliable. In other words, the motion of our agent is stochastic. \n",
"<br><br>\n",
"More specifically, the agent may - \n",
"* move correctly in the intended direction with a probability of _0.8_, \n",
"* move $90^\\circ$ to the right of the intended direction with a probability 0.1\n",
"* move $90^\\circ$ to the left of the intended direction with a probability 0.1\n",
"<br><br>\n",
"The agent stays put if it bumps into a wall.\n",
""
]
},
{
"metadata": {},
"source": [
"These properties of the agent are called the transition properties and are hardcoded into the GridMDP class as you can see below."
]
},
{
"cell_type": "code",
"metadata": {},
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span> <span class=\"k\">def</span> <span class=\"nf\">T</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">action</span> <span class=\"ow\">is</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"p\">[(</span><span class=\"mf\">0.0</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">)]</span>\n",
" <span class=\"k\">else</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">transitions</span><span class=\"p\">[</span><span class=\"n\">state</span><span class=\"p\">][</span><span class=\"n\">action</span><span class=\"p\">]</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(GridMDP.T)"
]
},
{
"metadata": {},
"source": [
"To completely define our task environment, we need to specify the utility function for the agent. \n",
"This is the function that gives the agent a rough estimate of how good being in a particular state is, or how much _reward_ an agent receives by being in that state.\n",
"The agent then tries to maximize the reward it gets.\n",
"As the decision problem is sequential, the utility function will depend on a sequence of states rather than on a single state.\n",
"For now, we simply stipulate that in each state $s$, the agent receives a finite reward $R(s)$.\n",
"\n",
"For any given state, the actions the agent can take are encoded as given below:\n",
"- Move Up: (0, 1)\n",
"- Move Down: (0, -1)\n",
"- Move Left: (-1, 0)\n",
"- Move Right: (1, 0)\n",
"- Do nothing: `None`\n",
"\n",
"We now wonder what a valid solution to the problem might look like. \n",
"We cannot have fixed action sequences as the environment is stochastic and we can eventually end up in an undesirable state.\n",
"Therefore, a solution must specify what the agent shoulddo for _any_ state the agent might reach.\n",
"<br>\n",
"Such a solution is known as a **policy** and is usually denoted by $\\pi$.\n",
"The **optimal policy** is the policy that yields the highest expected utility an is usually denoted by $\\pi^*$.\n",
"<br>\n",
"The `GridMDP` class has a useful method `to_arrows` that outputs a grid showing the direction the agent should move, given a policy.\n",
"We will use this later to better understand the properties of the environment."
]
},
{
"cell_type": "code",
"metadata": {},
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span> <span class=\"k\">def</span> <span class=\"nf\">to_arrows</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">policy</span><span class=\"p\">):</span>\n",
" <span class=\"n\">chars</span> <span class=\"o\">=</span> <span class=\"p\">{</span>\n",
" <span class=\"p\">(</span><span class=\"mi\">1</span><span class=\"p\">,</span> <span class=\"mi\">0</span><span class=\"p\">):</span> <span class=\"s1\">'>'</span><span class=\"p\">,</span> <span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">):</span> <span class=\"s1\">'^'</span><span class=\"p\">,</span> <span class=\"p\">(</span><span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">,</span> <span class=\"mi\">0</span><span class=\"p\">):</span> <span class=\"s1\">'<'</span><span class=\"p\">,</span> <span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">):</span> <span class=\"s1\">'v'</span><span class=\"p\">,</span> <span class=\"bp\">None</span><span class=\"p\">:</span> <span class=\"s1\">'.'</span><span class=\"p\">}</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">to_grid</span><span class=\"p\">({</span><span class=\"n\">s</span><span class=\"p\">:</span> <span class=\"n\">chars</span><span class=\"p\">[</span><span class=\"n\">a</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"n\">policy</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">()})</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(GridMDP.to_arrows)"
]
},
{
"metadata": {},
"source": [
"This method directly encodes the actions that the agent can take (described above) to characters representing arrows and shows it in a grid format for human visalization purposes. \n",
"It converts the received policy from a `dictionary` to a grid using the `to_grid` method."
]
},
{
"cell_type": "code",
"metadata": {},
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span> <span class=\"k\">def</span> <span class=\"nf\">to_grid</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">mapping</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Convert a mapping from (x, y) to v into a [[..., v, ...]] grid."""</span>\n",
" <span class=\"k\">return</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"nb\">reversed</span><span class=\"p\">([[</span><span class=\"n\">mapping</span><span class=\"o\">.</span><span class=\"n\">get</span><span class=\"p\">((</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">y</span><span class=\"p\">),</span> <span class=\"bp\">None</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">x</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">cols</span><span class=\"p\">)]</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">y</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">rows</span><span class=\"p\">)]))</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(GridMDP.to_grid)"
]
},
{
"metadata": {},
"source": [
"Now that we have all the tools required and a good understanding of the agent and the environment, we consider some cases and see how the agent should behave for each case."
]
},
{
"metadata": {},
"source": [
"### Case 1\n",
"---\n",
"R(s) = -0.04 in all states except terminal states"
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"source": [
"# Note that this environment is also initialized in mdp.py by default\n",
"sequential_decision_environment = GridMDP([[-0.04, -0.04, -0.04, +1],\n",
" [-0.04, None, -0.04, -1],\n",
" [-0.04, -0.04, -0.04, -0.04]],\n",
" terminals=[(3, 2), (3, 1)])"
]
},
{
"metadata": {},
"source": [
"We will use the `best_policy` function to find the best policy for this environment.\n",
"But, as you can see, `best_policy` requires a utility function as well.\n",
"We already know that the utility function can be found by `value_iteration`.\n",
"Hence, our best policy is:"
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"source": [
"pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .001))"
]
},
{
"metadata": {},
"source": [
"We can now use the `to_arrows` method to see how our agent should pick its actions in the environment."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"> > > .\n",
"^ None ^ .\n",
"^ > ^ <\n"
]
}
],
"source": [
"from utils import print_table\n",
"print_table(sequential_decision_environment.to_arrows(pi))"
]
},
{
"metadata": {},
"source": [
"This is exactly the output we expected\n",
"<br>\n",
"\n",
"<br>\n",
"Notice that, because the cost of taking a step is fairly small compared with the penalty for ending up in `(4, 2)` by accident, the optimal policy is conservative. \n",
"In state `(3, 1)` it recommends taking the long way round, rather than taking the shorter way and risking getting a large negative reward of -1 in `(4, 2)`."
"metadata": {},
"source": [
"### Case 2\n",
"---\n",
"R(s) = -0.4 in all states except in terminal states"
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"source": [
"sequential_decision_environment = GridMDP([[-0.4, -0.4, -0.4, +1],\n",
" [-0.4, None, -0.4, -1],\n",
" [-0.4, -0.4, -0.4, -0.4]],\n",
" terminals=[(3, 2), (3, 1)])"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"> > > .\n",
"^ None ^ .\n",
"^ > ^ <\n"
]
}
],
"source": [
"pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .001))\n",
"from utils import print_table\n",
"print_table(sequential_decision_environment.to_arrows(pi))"
]
},
{
"metadata": {},
"source": [
"This is exactly the output we expected\n",
""
]
},
{
"metadata": {},
"source": [
"As the reward for each state is now more negative, life is certainly more unpleasant.\n",
"The agent takes the shortest route to the +1 state and is willing to risk falling into the -1 state by accident."
]
},
{
"metadata": {},
"source": [
"### Case 3\n",
"---\n",
"R(s) = -4 in all states except terminal states"
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"source": [
"sequential_decision_environment = GridMDP([[-4, -4, -4, +1],\n",
" [-4, None, -4, -1],\n",
" [-4, -4, -4, -4]],\n",
" terminals=[(3, 2), (3, 1)])"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"> > > .\n",
"^ None > .\n",
"> > > ^\n"
]
}
],
"source": [
"pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .001))\n",
"from utils import print_table\n",
"print_table(sequential_decision_environment.to_arrows(pi))"
]
},
{
"metadata": {},
"source": [
"This is exactly the output we expected\n",
""
]
},
{
"The living reward for each state is now lower than the least rewarding terminal. Life is so _painful_ that the agent heads for the nearest exit as even the worst exit is less painful than any living state."
"metadata": {},
"source": [
"### Case 4\n",
"---\n",
"R(s) = 4 in all states except terminal states"
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"source": [
"sequential_decision_environment = GridMDP([[4, 4, 4, +1],\n",
" [4, None, 4, -1],\n",
" [4, 4, 4, 4]],\n",
" terminals=[(3, 2), (3, 1)])"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"> > < .\n",
"> None < .\n",
"> > > v\n"
]
}
],
"source": [
"pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .001))\n",
"from utils import print_table\n",
"print_table(sequential_decision_environment.to_arrows(pi))"
]
},
{
"metadata": {},
"source": [
"In this case, the output we expect is\n",
"\n",
"<br>\n",
"As life is positively enjoyable and the agent avoids _both_ exits.\n",
"Even though the output we get is not exactly what we want, it is definitely not wrong.\n",
"The scenario here requires the agent to anything but reach a terminal state, as this is the only way the agent can maximize its reward (total reward tends to infinity), and the program does just that.\n",
"<br>\n",
"Currently, the GridMDP class doesn't support an explicit marker for a \"do whatever you like\" action or a \"don't care\" condition.\n",
"You can however, extend the class to do so.\n",
"<br>\n",
"For in-depth knowledge about sequential decision problems, refer **Section 17.1** in the AIMA book."
]
},
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## POMDP\n",
"---\n",
"Partially Observable Markov Decision Problems\n",
"\n",
"In retrospect, a Markov decision process or MDP is defined as:\n",
"- a sequential decision problem for a fully observable, stochastic environment with a Markovian transition model and additive rewards.\n",
"\n",
"An MDP consists of a set of states (with an initial state $s_0$); a set $A(s)$ of actions\n",
"in each state; a transition model $P(s' | s, a)$; and a reward function $R(s)$.\n",
"\n",
"The MDP seeks to make sequential decisions to occupy states so as to maximise some combination of the reward function $R(s)$.\n",
"\n",
"The characteristic problem of the MDP is hence to identify the optimal policy function $\\pi^*(s)$ that provides the _utility-maximising_ action $a$ to be taken when the current state is $s$.\n",
"\n",
"### Belief vector\n",
"\n",
"**Note**: The book refers to the _belief vector_ as the _belief state_. We use the latter terminology here to retain our ability to refer to the belief vector as a _probability distribution over states_.\n",
"\n",
"The solution of an MDP is subject to certain properties of the problem which are assumed and justified in [Section 17.1]. One critical assumption is that the agent is **fully aware of its current state at all times**.\n",
"\n",
"A tedious (but rewarding, as we will see) way of expressing this is in terms of the **belief vector** $b$ of the agent. The belief vector is a function mapping states to probabilities or certainties of being in those states.\n",
"\n",
"Consider an agent that is fully aware that it is in state $s_i$ in the statespace $(s_1, s_2, ... s_n)$ at the current time.\n",
"\n",
"Its belief vector is the vector $(b(s_1), b(s_2), ... b(s_n))$ given by the function $b(s)$:\n",
"\\begin{align*}\n",
"b(s) &= 0 \\quad \\text{if }s \\neq s_i \\\\ &= 1 \\quad \\text{if } s = s_i\n",
"\\end{align*}\n",
"\n",
"Note that $b(s)$ is a probability distribution that necessarily sums to $1$ over all $s$.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"### POMDPs - a conceptual outline\n",
"\n",
"The POMDP really has only two modifications to the **problem formulation** compared to the MDP.\n",
"\n",
"- **Belief state** - In the real world, the current state of an agent is often not known with complete certainty. This makes the concept of a belief vector extremely relevant. It allows the agent to represent different degrees of certainty with which it _believes_ it is in each state.\n",
"\n",
"- **Evidence percepts** - In the real world, agents often have certain kinds of evidence, collected from sensors. They can use the probability distribution of observed evidence, conditional on state, to consolidate their information. This is a known distribution $P(e\\ |\\ s)$ - $e$ being an evidence, and $s$ being the state it is conditional on.\n",
"\n",
"Consider the world we used for the MDP. \n",
"\n",
"\n",
"\n",
"#### Using the belief vector\n",
"An agent beginning at $(1, 1)$ may not be certain that it is indeed in $(1, 1)$. Consider a belief vector $b$ such that:\n",
"\\begin{align*}\n",
" b((1,1)) &= 0.8 \\\\\n",
" b((2,1)) &= 0.1 \\\\\n",
" b((1,2)) &= 0.1 \\\\\n",
" b(s) &= 0 \\quad \\quad \\forall \\text{ other } s\n",
"\\end{align*}\n",
"\n",
"By horizontally catenating each row, we can represent this as an 11-dimensional vector (omitting $(2, 2)$).\n",
"\n",
"Thus, taking $s_1 = (1, 1)$, $s_2 = (1, 2)$, ... $s_{11} = (4,3)$, we have $b$:\n",
"\n",
"$b = (0.8, 0.1, 0, 0, 0.1, 0, 0, 0, 0, 0, 0)$ \n",
"\n",
"This fully represents the certainty to which the agent is aware of its state.\n",
"\n",
"#### Using evidence\n",
"The evidence observed here could be the number of adjacent 'walls' or 'dead ends' observed by the agent. We assume that the agent cannot 'orient' the walls - only count them.\n",
"\n",
"In this case, $e$ can take only two values, 1 and 2. This gives $P(e\\ |\\ s)$ as:\n",
"\\begin{align*}\n",
" P(e=2\\ |\\ s) &= \\frac{1}{7} \\quad \\forall \\quad s \\in \\{s_1, s_2, s_4, s_5, s_8, s_9, s_{11}\\}\\\\\n",
" P(e=1\\ |\\ s) &= \\frac{1}{4} \\quad \\forall \\quad s \\in \\{s_3, s_6, s_7, s_{10}\\} \\\\\n",
" P(e\\ |\\ s) &= 0 \\quad \\forall \\quad \\text{ other } s, e\n",
"\\end{align*}\n",
"\n",
"Note that the implications of the evidence on the state must be known **a priori** to the agent. Ways of reliably learning this distribution from percepts are beyond the scope of this notebook."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### POMDPs - a rigorous outline\n",
"\n",
"A POMDP is thus a sequential decision problem for for a *partially* observable, stochastic environment with a Markovian transition model, a known 'sensor model' for inferring state from observation, and additive rewards. \n",
"\n",
"Practically, a POMDP has the following, which an MDP also has:\n",
"- a set of states, each denoted by $s$\n",
"- a set of actions available in each state, $A(s)$\n",
"- a reward accrued on attaining some state, $R(s)$\n",
"- a transition probability $P(s'\\ |\\ s, a)$ of action $a$ changing the state from $s$ to $s'$\n",
"\n",
"And the following, which an MDP does not:\n",
"- a sensor model $P(e\\ |\\ s)$ on evidence conditional on states\n",
"\n",
"Additionally, the POMDP is now uncertain of its current state hence has:\n",
"- a belief vector $b$ representing the certainty of being in each state (as a probability distribution)\n",
"\n",
"\n",
"#### New uncertainties\n",
"\n",
"It is useful to intuitively appreciate the new uncertainties that have arisen in the agent's awareness of its own state.\n",
"\n",
"- At any point, the agent has belief vector $b$, the distribution of its believed likelihood of being in each state $s$.\n",
"- For each of these states $s$ that the agent may **actually** be in, it has some set of actions given by $A(s)$.\n",
"- Each of these actions may transport it to some other state $s'$, assuming an initial state $s$, with probability $P(s'\\ |\\ s, a)$\n",
"- Once the action is performed, the agent receives a percept $e$. $P(e\\ |\\ s)$ now tells it the chances of having perceived $e$ for each state $s$. The agent must use this information to update its new belief state appropriately.\n",
"\n",
"#### Evolution of the belief vector - the `FORWARD` function\n",
"\n",
"The new belief vector $b'(s')$ after an action $a$ on the belief vector $b(s)$ and the noting of evidence $e$ is:\n",
"$$ b'(s') = \\alpha P(e\\ |\\ s') \\sum_s P(s'\\ | s, a) b(s)$$ \n",
"\n",
"where $\\alpha$ is a normalising constant (to retain the interpretation of $b$ as a probability distribution.\n",
"\n",
"This equation is just counts the sum of likelihoods of going to a state $s'$ from every possible state $s$, times the initial likelihood of being in each $s$. This is multiplied by the likelihood that the known evidence actually implies the new state $s'$. \n",
"\n",
"This function is represented as `b' = FORWARD(b, a, e)`\n",
"\n",
"#### Probability distribution of the evolving belief vector\n",
"\n",
"The goal here is to find $P(b'\\ |\\ b, a)$ - the probability that action $a$ transforms belief vector $b$ into belief vector $b'$. The following steps illustrate this -\n",
"\n",
"The probability of observing evidence $e$ when action $a$ is enacted on belief vector $b$ can be distributed over each possible new state $s'$ resulting from it:\n",
"\\begin{align*}\n",
" P(e\\ |\\ b, a) &= \\sum_{s'} P(e\\ |\\ b, a, s') P(s'\\ |\\ b, a) \\\\\n",
" &= \\sum_{s'} P(e\\ |\\ s') P(s'\\ |\\ b, a) \\\\\n",
" &= \\sum_{s'} P(e\\ |\\ s') \\sum_s P(s'\\ |\\ s, a) b(s)\n",
"\\end{align*}\n",
"\n",
"The probability of getting belief vector $b'$ from $b$ by application of action $a$ can thus be summed over all possible evidences $e$:\n",
"\\begin{align*}\n",
" P(b'\\ |\\ b, a) &= \\sum_{e} P(b'\\ |\\ b, a, e) P(e\\ |\\ b, a) \\\\\n",
" &= \\sum_{e} P(b'\\ |\\ b, a, e) \\sum_{s'} P(e\\ |\\ s') \\sum_s P(s'\\ |\\ s, a) b(s)\n",
"\\end{align*}\n",
"\n",
"where $P(b'\\ |\\ b, a, e) = 1$ if $b' = $ `FORWARD(b, a, e)` and $= 0$ otherwise.\n",
"\n",
"Given initial and final belief states $b$ and $b'$, the transition probabilities still depend on the action $a$ and observed evidence $e$. Some belief states may be achievable by certain actions, but have non-zero probabilities for states prohibited by the evidence $e$. Thus, the above condition thus ensures that only valid combinations of $(b', b, a, e)$ are considered.\n",
"\n",
"#### A modified rewardspace\n",
"\n",
"For MDPs, the reward space was simple - one reward per available state. However, for a belief vector $b(s)$, the expected reward is now:\n",
"$$\\rho(b) = \\sum_s b(s) R(s)$$\n",
"\n",
"Thus, as the belief vector can take infinite values of the distribution over states, so can the reward for each belief vector vary over a hyperplane in the belief space, or space of states (planes in an $N$-dimensional space are formed by a linear combination of the axes)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we know the basics, let's have a look at the `POMDP` class."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">POMDP</span><span class=\"p\">(</span><span class=\"n\">MDP</span><span class=\"p\">):</span>\n",
"\n",
" <span class=\"sd\">"""A Partially Observable Markov Decision Process, defined by</span>\n",
"<span class=\"sd\"> a transition model P(s'|s,a), actions A(s), a reward function R(s),</span>\n",
"<span class=\"sd\"> and a sensor model P(e|s). We also keep track of a gamma value,</span>\n",
"<span class=\"sd\"> for use by algorithms. The transition and the sensor models</span>\n",
"<span class=\"sd\"> are defined as matrices. We also keep track of the possible states</span>\n",
"<span class=\"sd\"> and actions for each state. [page 659]."""</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">actions</span><span class=\"p\">,</span> <span class=\"n\">transitions</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">evidences</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">rewards</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">states</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">gamma</span><span class=\"o\">=</span><span class=\"mf\">0.95</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Initialize variables of the pomdp"""</span>\n",
"\n",
" <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"p\">(</span><span class=\"mi\">0</span> <span class=\"o\"><</span> <span class=\"n\">gamma</span> <span class=\"o\"><=</span> <span class=\"mi\">1</span><span class=\"p\">):</span>\n",
" <span class=\"k\">raise</span> <span class=\"ne\">ValueError</span><span class=\"p\">(</span><span class=\"s1\">'A POMDP must have 0 < gamma <= 1'</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">states</span> <span class=\"o\">=</span> <span class=\"n\">states</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actions</span> <span class=\"o\">=</span> <span class=\"n\">actions</span>\n",
"\n",
" <span class=\"c1\"># transition model cannot be undefined</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">t_prob</span> <span class=\"o\">=</span> <span class=\"n\">transitions</span> <span class=\"ow\">or</span> <span class=\"p\">{}</span>\n",
" <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">t_prob</span><span class=\"p\">:</span>\n",
" <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">'Warning: Transition model is undefined'</span><span class=\"p\">)</span>\n",
" \n",
" <span class=\"c1\"># sensor model cannot be undefined</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">e_prob</span> <span class=\"o\">=</span> <span class=\"n\">evidences</span> <span class=\"ow\">or</span> <span class=\"p\">{}</span>\n",
" <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">e_prob</span><span class=\"p\">:</span>\n",
" <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">'Warning: Sensor model is undefined'</span><span class=\"p\">)</span>\n",
" \n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">gamma</span> <span class=\"o\">=</span> <span class=\"n\">gamma</span>\n",
" <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">rewards</span> <span class=\"o\">=</span> <span class=\"n\">rewards</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">remove_dominated_plans</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">input_values</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""</span>\n",
"<span class=\"sd\"> Remove dominated plans.</span>\n",
"<span class=\"sd\"> This method finds all the lines contributing to the</span>\n",
"<span class=\"sd\"> upper surface and removes those which don't.</span>\n",
"<span class=\"sd\"> """</span>\n",
"\n",
" <span class=\"n\">values</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">val</span> <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">input_values</span> <span class=\"k\">for</span> <span class=\"n\">val</span> <span class=\"ow\">in</span> <span class=\"n\">input_values</span><span class=\"p\">[</span><span class=\"n\">action</span><span class=\"p\">]]</span>\n",
" <span class=\"n\">values</span><span class=\"o\">.</span><span class=\"n\">sort</span><span class=\"p\">(</span><span class=\"n\">key</span><span class=\"o\">=</span><span class=\"k\">lambda</span> <span class=\"n\">x</span><span class=\"p\">:</span> <span class=\"n\">x</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">],</span> <span class=\"n\">reverse</span><span class=\"o\">=</span><span class=\"bp\">True</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"n\">best</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">values</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]]</span>\n",
" <span class=\"n\">y1_max</span> <span class=\"o\">=</span> <span class=\"nb\">max</span><span class=\"p\">(</span><span class=\"n\">val</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"n\">val</span> <span class=\"ow\">in</span> <span class=\"n\">values</span><span class=\"p\">)</span>\n",
" <span class=\"n\">tgt</span> <span class=\"o\">=</span> <span class=\"n\">values</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
" <span class=\"n\">prev_b</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"n\">prev_ix</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"k\">while</span> <span class=\"n\">tgt</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">!=</span> <span class=\"n\">y1_max</span><span class=\"p\">:</span>\n",
" <span class=\"n\">min_b</span> <span class=\"o\">=</span> <span class=\"mi\">1</span>\n",
" <span class=\"n\">min_ix</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">prev_ix</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">,</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">values</span><span class=\"p\">)):</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">values</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">][</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">tgt</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">tgt</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">values</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">][</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">!=</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
" <span class=\"n\">trans_b</span> <span class=\"o\">=</span> <span class=\"p\">(</span><span class=\"n\">values</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">][</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">tgt</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span> <span class=\"o\">/</span> <span class=\"p\">(</span><span class=\"n\">values</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">][</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">tgt</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">tgt</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">values</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">][</span><span class=\"mi\">1</span><span class=\"p\">])</span>\n",
" <span class=\"k\">if</span> <span class=\"mi\">0</span> <span class=\"o\"><=</span> <span class=\"n\">trans_b</span> <span class=\"o\"><=</span> <span class=\"mi\">1</span> <span class=\"ow\">and</span> <span class=\"n\">trans_b</span> <span class=\"o\">></span> <span class=\"n\">prev_b</span> <span class=\"ow\">and</span> <span class=\"n\">trans_b</span> <span class=\"o\"><</span> <span class=\"n\">min_b</span><span class=\"p\">:</span>\n",
" <span class=\"n\">min_b</span> <span class=\"o\">=</span> <span class=\"n\">trans_b</span>\n",
" <span class=\"n\">min_ix</span> <span class=\"o\">=</span> <span class=\"n\">i</span>\n",
" <span class=\"n\">prev_b</span> <span class=\"o\">=</span> <span class=\"n\">min_b</span>\n",
" <span class=\"n\">prev_ix</span> <span class=\"o\">=</span> <span class=\"n\">min_ix</span>\n",
" <span class=\"n\">tgt</span> <span class=\"o\">=</span> <span class=\"n\">values</span><span class=\"p\">[</span><span class=\"n\">min_ix</span><span class=\"p\">]</span>\n",
" <span class=\"n\">best</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">tgt</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">generate_mapping</span><span class=\"p\">(</span><span class=\"n\">best</span><span class=\"p\">,</span> <span class=\"n\">input_values</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">remove_dominated_plans_fast</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">input_values</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""</span>\n",
"<span class=\"sd\"> Remove dominated plans using approximations.</span>\n",
"<span class=\"sd\"> Resamples the upper boundary at intervals of 100 and</span>\n",
"<span class=\"sd\"> finds the maximum values at these points.</span>\n",
"<span class=\"sd\"> """</span>\n",
"\n",
" <span class=\"n\">values</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">val</span> <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">input_values</span> <span class=\"k\">for</span> <span class=\"n\">val</span> <span class=\"ow\">in</span> <span class=\"n\">input_values</span><span class=\"p\">[</span><span class=\"n\">action</span><span class=\"p\">]]</span>\n",
" <span class=\"n\">values</span><span class=\"o\">.</span><span class=\"n\">sort</span><span class=\"p\">(</span><span class=\"n\">key</span><span class=\"o\">=</span><span class=\"k\">lambda</span> <span class=\"n\">x</span><span class=\"p\">:</span> <span class=\"n\">x</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">],</span> <span class=\"n\">reverse</span><span class=\"o\">=</span><span class=\"bp\">True</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"n\">best</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
" <span class=\"n\">sr</span> <span class=\"o\">=</span> <span class=\"mi\">100</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">sr</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">):</span>\n",
" <span class=\"n\">x</span> <span class=\"o\">=</span> <span class=\"n\">i</span> <span class=\"o\">/</span> <span class=\"nb\">float</span><span class=\"p\">(</span><span class=\"n\">sr</span><span class=\"p\">)</span>\n",
" <span class=\"n\">maximum</span> <span class=\"o\">=</span> <span class=\"p\">(</span><span class=\"n\">values</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">][</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">values</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">][</span><span class=\"mi\">0</span><span class=\"p\">])</span> <span class=\"o\">*</span> <span class=\"n\">x</span> <span class=\"o\">+</span> <span class=\"n\">values</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">][</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
" <span class=\"n\">tgt</span> <span class=\"o\">=</span> <span class=\"n\">values</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">value</span> <span class=\"ow\">in</span> <span class=\"n\">values</span><span class=\"p\">:</span>\n",
" <span class=\"n\">val</span> <span class=\"o\">=</span> <span class=\"p\">(</span><span class=\"n\">value</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">-</span> <span class=\"n\">value</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span> <span class=\"o\">*</span> <span class=\"n\">x</span> <span class=\"o\">+</span> <span class=\"n\">value</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">val</span> <span class=\"o\">></span> <span class=\"n\">maximum</span><span class=\"p\">:</span>\n",
" <span class=\"n\">maximum</span> <span class=\"o\">=</span> <span class=\"n\">val</span>\n",
" <span class=\"n\">tgt</span> <span class=\"o\">=</span> <span class=\"n\">value</span>\n",
"\n",
" <span class=\"k\">if</span> <span class=\"nb\">all</span><span class=\"p\">(</span><span class=\"nb\">any</span><span class=\"p\">(</span><span class=\"n\">tgt</span> <span class=\"o\">!=</span> <span class=\"n\">v</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">v</span> <span class=\"ow\">in</span> <span class=\"n\">best</span><span class=\"p\">):</span>\n",
" <span class=\"n\">best</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">tgt</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">generate_mapping</span><span class=\"p\">(</span><span class=\"n\">best</span><span class=\"p\">,</span> <span class=\"n\">input_values</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">generate_mapping</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">best</span><span class=\"p\">,</span> <span class=\"n\">input_values</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Generate mappings after removing dominated plans"""</span>\n",
"\n",
" <span class=\"n\">mapping</span> <span class=\"o\">=</span> <span class=\"n\">defaultdict</span><span class=\"p\">(</span><span class=\"nb\">list</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">value</span> <span class=\"ow\">in</span> <span class=\"n\">best</span><span class=\"p\">:</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">input_values</span><span class=\"p\">:</span>\n",
" <span class=\"k\">if</span> <span class=\"nb\">any</span><span class=\"p\">(</span><span class=\"nb\">all</span><span class=\"p\">(</span><span class=\"n\">value</span> <span class=\"o\">==</span> <span class=\"n\">v</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">v</span> <span class=\"ow\">in</span> <span class=\"n\">input_values</span><span class=\"p\">[</span><span class=\"n\">action</span><span class=\"p\">]):</span>\n",
" <span class=\"n\">mapping</span><span class=\"p\">[</span><span class=\"n\">action</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">value</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">return</span> <span class=\"n\">mapping</span>\n",
"\n",
" <span class=\"k\">def</span> <span class=\"nf\">max_difference</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">U1</span><span class=\"p\">,</span> <span class=\"n\">U2</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Find maximum difference between two utility mappings"""</span>\n",
"\n",
" <span class=\"k\">for</span> <span class=\"n\">k</span><span class=\"p\">,</span> <span class=\"n\">v</span> <span class=\"ow\">in</span> <span class=\"n\">U1</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">():</span>\n",
" <span class=\"n\">sum1</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">element</span> <span class=\"ow\">in</span> <span class=\"n\">U1</span><span class=\"p\">[</span><span class=\"n\">k</span><span class=\"p\">]:</span>\n",
" <span class=\"n\">sum1</span> <span class=\"o\">+=</span> <span class=\"nb\">sum</span><span class=\"p\">(</span><span class=\"n\">element</span><span class=\"p\">)</span>\n",
" <span class=\"n\">sum2</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">element</span> <span class=\"ow\">in</span> <span class=\"n\">U2</span><span class=\"p\">[</span><span class=\"n\">k</span><span class=\"p\">]:</span>\n",
" <span class=\"n\">sum2</span> <span class=\"o\">+=</span> <span class=\"nb\">sum</span><span class=\"p\">(</span><span class=\"n\">element</span><span class=\"p\">)</span>\n",
" <span class=\"k\">return</span> <span class=\"nb\">abs</span><span class=\"p\">(</span><span class=\"n\">sum1</span> <span class=\"o\">-</span> <span class=\"n\">sum2</span><span class=\"p\">)</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(POMDP)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `POMDP` class includes all variables of the `MDP` class and additionally also stores the sensor model in `e_prob`.\n",
"<br>\n",
"<br>\n",
"`remove_dominated_plans`, `remove_dominated_plans_fast`, `generate_mapping` and `max_difference` are helper methods for `pomdp_value_iteration` which will be explained shortly."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To understand how we can model a partially observable MDP, let's take a simple example.\n",
"Let's consider a simple two state world.\n",
"The states are labelled 0 and 1, with the reward at state 0 being 0 and at state 1 being 1.\n",
"<br>\n",
"There are two actions:\n",
"<br>\n",
"`Stay`: stays put with probability 0.9 and\n",
"`Go`: switches to the other state with probability 0.9.\n",
"<br>\n",
"For now, let's assume the discount factor `gamma` to be 1.\n",
"<br>\n",
"The sensor reports the correct state with probability 0.6.\n",
"<br>\n",
"This is a simple problem with a trivial solution.\n",
"Obviously the agent should `Stay` when it thinks it is in state 1 and `Go` when it thinks it is in state 0.\n",
"<br>\n",
"The belief space can be viewed as one-dimensional because the two probabilities must sum to 1."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's model this POMDP using the `POMDP` class."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [],
"source": [
"# transition probability P(s'|s,a)\n",
"t_prob = [[[0.9, 0.1], [0.1, 0.9]], [[0.1, 0.9], [0.9, 0.1]]]\n",
"# evidence function P(e|s)\n",
"e_prob = [[[0.6, 0.4], [0.4, 0.6]], [[0.6, 0.4], [0.4, 0.6]]]\n",
"# reward function\n",
"rewards = [[0.0, 0.0], [1.0, 1.0]]\n",
"# discount factor\n",
"gamma = 0.95\n",
"# actions\n",
"actions = ('0', '1')\n",
"# states\n",
"states = ('0', '1')"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"pomdp = POMDP(actions, t_prob, e_prob, rewards, states, gamma)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have defined our `POMDP` object."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## POMDP VALUE ITERATION\n",
"Defining a POMDP is useless unless we can find a way to solve it. As POMDPs can have infinitely many belief states, we cannot calculate one utility value for each state as we did in `value_iteration` for MDPs.\n",
"<br>\n",
"Instead of thinking about policies, we should think about conditional plans and how the expected utility of executing a fixed conditional plan varies with the initial belief state.\n",
"<br>\n",
"If we bound the depth of the conditional plans, then there are only finitely many such plans and the continuous space of belief states will generally be divided inte _regions_, each corresponding to a particular conditional plan that is optimal in that region. The utility function, being the maximum of a collection of hyperplanes, will be piecewise linear and convex.\n",
"<br>\n",
"For the one-step plans `Stay` and `Go`, the utility values are as follows\n",
"<br>\n",
"<br>\n",
"$$\\alpha_{|Stay|}(0) = R(0) + \\gamma(0.9R(0) + 0.1R(1)) = 0.1$$\n",
"$$\\alpha_{|Stay|}(1) = R(1) + \\gamma(0.9R(1) + 0.1R(0)) = 1.9$$\n",
"$$\\alpha_{|Go|}(0) = R(0) + \\gamma(0.9R(1) + 0.1R(0)) = 0.9$$\n",
"$$\\alpha_{|Go|}(1) = R(1) + \\gamma(0.9R(0) + 0.1R(1)) = 1.1$$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The utility function can be found by `pomdp_value_iteration`.\n",
"<br>\n",
"To summarize, it generates a set of all plans consisting of an action and, for each possible next percept, a plan in U with computed utility vectors.\n",
"The dominated plans are then removed from this set and the process is repeated till the maximum difference between the utility functions of two consecutive iterations reaches a value less than a threshold value."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"### AIMA3e\n",
"__function__ POMDP-VALUE-ITERATION(_pomdp_, _ε_) __returns__ a utility function \n",
" __inputs__: _pomdp_, a POMDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_), \n",
"      sensor model _P_(_e_ | _s_), rewards _R_(_s_), discount _γ_ \n",
"     _ε_, the maximum error allowed in the utility of any state \n",
" __local variables__: _U_, _U′_, sets of plans _p_ with associated utility vectors _α<sub>p</sub>_ \n",
"\n",
" _U′_ ← a set containing just the empty plan \\[\\], with _α<sub>\\[\\]</sub>_(_s_) = _R_(_s_) \n",
" __repeat__ \n",
"   _U_ ← _U′_ \n",
"   _U′_ ← the set of all plans consisting of an action and, for each possible next percept, \n",
"     a plan in _U_ with utility vectors computed according to Equation(__??__) \n",
"   _U′_ ← REMOVE\\-DOMINATED\\-PLANS(_U′_) \n",
" __until__ MAX\\-DIFFERENCE(_U_, _U′_) < _ε_(1 − _γ_) ⁄ _γ_ \n",
" __return__ _U_ \n",
"\n",
"---\n",
"__Figure ??__ A high\\-level sketch of the value iteration algorithm for POMDPs. The REMOVE\\-DOMINATED\\-PLANS step and MAX\\-DIFFERENCE test are typically implemented as linear programs."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pseudocode('POMDP-Value-Iteration')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's have a look at the `pomdp_value_iteration` function."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">pomdp_value_iteration</span><span class=\"p\">(</span><span class=\"n\">pomdp</span><span class=\"p\">,</span> <span class=\"n\">epsilon</span><span class=\"o\">=</span><span class=\"mf\">0.1</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Solving a POMDP by value iteration."""</span>\n",
"\n",
" <span class=\"n\">U</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"s1\">''</span><span class=\"p\">:[[</span><span class=\"mi\">0</span><span class=\"p\">]</span><span class=\"o\">*</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">states</span><span class=\"p\">)]}</span>\n",
" <span class=\"n\">count</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
" <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
" <span class=\"n\">count</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span>\n",
" <span class=\"n\">prev_U</span> <span class=\"o\">=</span> <span class=\"n\">U</span>\n",
" <span class=\"n\">values</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">val</span> <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">U</span> <span class=\"k\">for</span> <span class=\"n\">val</span> <span class=\"ow\">in</span> <span class=\"n\">U</span><span class=\"p\">[</span><span class=\"n\">action</span><span class=\"p\">]]</span>\n",
" <span class=\"n\">value_matxs</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"n\">values</span><span class=\"p\">:</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">j</span> <span class=\"ow\">in</span> <span class=\"n\">values</span><span class=\"p\">:</span>\n",
" <span class=\"n\">value_matxs</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">([</span><span class=\"n\">i</span><span class=\"p\">,</span> <span class=\"n\">j</span><span class=\"p\">])</span>\n",
"\n",
" <span class=\"n\">U1</span> <span class=\"o\">=</span> <span class=\"n\">defaultdict</span><span class=\"p\">(</span><span class=\"nb\">list</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">:</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">u</span> <span class=\"ow\">in</span> <span class=\"n\">value_matxs</span><span class=\"p\">:</span>\n",
" <span class=\"n\">u1</span> <span class=\"o\">=</span> <span class=\"n\">Matrix</span><span class=\"o\">.</span><span class=\"n\">matmul</span><span class=\"p\">(</span><span class=\"n\">Matrix</span><span class=\"o\">.</span><span class=\"n\">matmul</span><span class=\"p\">(</span><span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">t_prob</span><span class=\"p\">[</span><span class=\"nb\">int</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">)],</span> <span class=\"n\">Matrix</span><span class=\"o\">.</span><span class=\"n\">multiply</span><span class=\"p\">(</span><span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">e_prob</span><span class=\"p\">[</span><span class=\"nb\">int</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">)],</span> <span class=\"n\">Matrix</span><span class=\"o\">.</span><span class=\"n\">transpose</span><span class=\"p\">(</span><span class=\"n\">u</span><span class=\"p\">))),</span> <span class=\"p\">[[</span><span class=\"mi\">1</span><span class=\"p\">],</span> <span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]])</span>\n",
" <span class=\"n\">u1</span> <span class=\"o\">=</span> <span class=\"n\">Matrix</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">(</span><span class=\"n\">Matrix</span><span class=\"o\">.</span><span class=\"n\">scalar_multiply</span><span class=\"p\">(</span><span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">gamma</span><span class=\"p\">,</span> <span class=\"n\">Matrix</span><span class=\"o\">.</span><span class=\"n\">transpose</span><span class=\"p\">(</span><span class=\"n\">u1</span><span class=\"p\">)),</span> <span class=\"p\">[</span><span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">rewards</span><span class=\"p\">[</span><span class=\"nb\">int</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">)]])</span>\n",
" <span class=\"n\">U1</span><span class=\"p\">[</span><span class=\"n\">action</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">u1</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span>\n",
"\n",
" <span class=\"n\">U</span> <span class=\"o\">=</span> <span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">remove_dominated_plans_fast</span><span class=\"p\">(</span><span class=\"n\">U1</span><span class=\"p\">)</span>\n",
" <span class=\"c1\"># replace with U = pomdp.remove_dominated_plans(U1) for accurate calculations</span>\n",
" \n",
" <span class=\"k\">if</span> <span class=\"n\">count</span> <span class=\"o\">></span> <span class=\"mi\">10</span><span class=\"p\">:</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">max_difference</span><span class=\"p\">(</span><span class=\"n\">U</span><span class=\"p\">,</span> <span class=\"n\">prev_U</span><span class=\"p\">)</span> <span class=\"o\"><</span> <span class=\"n\">epsilon</span> <span class=\"o\">*</span> <span class=\"p\">(</span><span class=\"mi\">1</span> <span class=\"o\">-</span> <span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">gamma</span><span class=\"p\">)</span> <span class=\"o\">/</span> <span class=\"n\">pomdp</span><span class=\"o\">.</span><span class=\"n\">gamma</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">U</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(pomdp_value_iteration)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This function uses two aptly named helper methods from the `POMDP` class, `remove_dominated_plans` and `max_difference`."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's try solving a simple one-dimensional POMDP using value-iteration.\n",
"<br>\n",
"Consider the problem of a user listening to voicemails.\n",
"At the end of each message, they can either _save_ or _delete_ a message.\n",
"This forms the unobservable state _S = {save, delete}_.\n",
"It is the task of the POMDP solver to guess which goal the user has.\n",
"<br>\n",
"The belief space has two elements, _b(s = save)_ and _b(s = delete)_.\n",
"For example, for the belief state _b = (1, 0)_, the left end of the line segment indicates _b(s = save) = 1_ and _b(s = delete) = 0_.\n",
"The intermediate points represent varying degrees of certainty in the user's goal.\n",
"<br>\n",
"The machine has three available actions: it can _ask_ what the user wishes to do in order to infer his or her current goal, or it can _doSave_ or _doDelete_ and move to the next message.\n",
"If the user says _save_, then an error may occur with probability 0.2, whereas if the user says _delete_, an error may occur with a probability 0.3.\n",
"<br>\n",
"The machine receives a large positive reward (+5) for getting the user's goal correct, a very large negative reward (-20) for taking the action _doDelete_ when the user wanted _save_, and a smaller but still significant negative reward (-10) for taking the action _doSave_ when the user wanted _delete_. \n",
"There is also a small negative reward for taking the _ask_ action (-1).\n",
"The discount factor is set to 0.95 for this example.\n",
"<br>\n",
"Let's define the POMDP."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [],
"source": [
"# transition function P(s'|s,a)\n",
"t_prob = [[[0.65, 0.35], [0.65, 0.35]], [[0.65, 0.35], [0.65, 0.35]], [[1.0, 0.0], [0.0, 1.0]]]\n",
"# evidence function P(e|s)\n",
"e_prob = [[[0.5, 0.5], [0.5, 0.5]], [[0.5, 0.5], [0.5, 0.5]], [[0.8, 0.2], [0.3, 0.7]]]\n",
"# reward function\n",
"rewards = [[5, -10], [-20, 5], [-1, -1]]\n",
"\n",
"gamma = 0.95\n",
"actions = ('0', '1', '2')\n",
"states = ('0', '1')\n",
"\n",
"pomdp = POMDP(actions, t_prob, e_prob, rewards, states, gamma)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have defined the `POMDP` object.\n",
"Let's run `pomdp_value_iteration` to find the utility function."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [],
"source": [
"utility = pomdp_value_iteration(pomdp, epsilon=0.1)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD8CAYAAACRkhiPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsnXd81dX9/5+fm733JiEBEkYYYRNkrwABW9yjWq2tP7WuVq24v0WtiKNaF1K0al3ggNIEhIDKEhlhRCBkD7L33rnn98eH+ykrZN2bm3Gej0cekuQzziee+359zjnv83orQggkEolEMjDRmbsBEolEIjEfUgQkEolkACNFQCKRSAYwUgQkEolkACNFQCKRSAYwUgQkEolkACNFQCKRSAYwUgQkEolkACNFQCKRSAYwluZuwPl4enqK4OBgczdDIpFI+hTx8fElQgivrpzbq0QgODiYI0eOmLsZEolE0qdQFCWrq+fK6SCJRCIZwEgRkEgkkgGMFAGJRCIZwEgRkEgkkgGMFAGJRCIZwEgRkEgkkgGMFAGJRCIZwEgRkEgkkgGMFAGJRCIZwEgRkEgkkgHMgBaBF198kfDwcMaOHUtERAQHDx40d5MkfYBNmzahKApnzpy54nGOjo491CJJW1hYWBAREUF4eDjjxo3j9ddfR6/XX/GczMxMRo8e3e4xn3/+uTGbajYGrAgcOHCAmJgYjh49SkJCAjt37iQwMNDczZL0Ab744gtmzJjBl19+ae6mSNrBzs6O48ePc+rUKeLi4ti6dSt//etfu31dKQL9gPz8fDw9PbGxsQHA09MTf39/Vq1axeTJkxk9ejR33303QggSExOZMmWKdm5mZiZjx44FID4+ntmzZzNx4kSioqLIz883y/NIeoaamhr279/PBx98oIlAfn4+s2bNIiIigtGjR7N3794LzikpKSEyMpLY2FhzNFlyDm9vb9atW8fbb7+NEILW1lYee+wxJk+ezNixY3n//fcvOaetY1auXMnevXuJiIjg73//e4eu1WsRQvSar4kTJ4qeorq6WowbN06EhoaKe++9V/z4449CCCFKS0u1Y37zm9+ILVu2CCGEGDdunEhLSxNCCLF69Wrx/PPPi6amJhEZGSmKioqEEEJ8+eWX4s477+yxZ5D0PP/+97/F7373OyGEEJGRkSI+Pl68+uqr4oUXXhBCCNHS0iKqqqqEEEI4ODiIgoICMWXKFLFjxw6ztXkg4+DgcMnPXF1dRUFBgXj//ffF888/L4QQoqGhQUycOFGkp6eLjIwMER4eLoQQbR7zww8/iOjoaO2abR3XUwBHRBfjrlGspBVF+RBYBhQJIUaf+5k7sAEIBjKBG4QQ5ca4nzFwdHQkPj6evXv38sMPP3DjjTeyevVqnJycWLNmDXV1dZSVlREeHs7y5cu54YYb2LhxIytXrmTDhg1s2LCBpKQkTp48ycKFCwH1rcHPz8/MTyYxJV988QUPP/wwADfddBNffPEFy5cv53e/+x3Nzc38+te/JiIiAoDm5mbmz5/PO++8w+zZs83ZbMl5qDETduzYQUJCAl9//TUAlZWVpKSkEBYWph3b1jHW1tYXXLOt40JCQnrikbpHV9Xj/C9gFjABOHnez9YAK8/9eyXwcnvXCRsdJhpbGk2ilO3x1VdfiQULFghvb2+RnZ0thBDiueeeE88995wQQojU1FQxfvx4kZSUJCZMmCCEECIhIUFMmzbNLO2V9DwlJSXC1tZWBAUFicGDB4tBgwaJwMBAodfrRW5urli3bp0YPXq0+Pjjj4UQQtjb24vbb79dPPHEE2Zu+cDl4pFAWlqacHd3F3q9XlxzzTXiu+++u+Sc80cCbR1z8UigreN6gvz87o0EjLImIITYA5Rd9ONfAR+f+/fHwK/bu05yaTKeazy5buN1fHT8IwprCo3RvMuSlJRESkqK9v3x48cZPnw4oK4P1NTUaKoOMHToUCwsLHj++ee58cYbARg+fDjFxcUcOHAAUN/8Tp06ZbI2S8zL119/ze23305WVhaZmZmcPXuWkJAQ9uzZg7e3N3/4wx+46667OHr0KACKovDhhx9y5swZVq9ebebWS4qLi7nnnnu4//77URSFqKgo3nvvPZqbmwFITk6mtrb2gnPaOsbJyYnq6up2jzMlubnw0EPQ3cGGKSuL+Qgh8gGEEPmKoni3d8JQ96HMGz2P2JRYvkn8BgWFyQGTWRa6jOiwaMb7jkdRFKM0rqamhgceeICKigosLS0ZNmwY69atw9XVlTFjxhAcHMzkyZMvOOfGG2/kscceIyMjAwBra2u+/vprHnzwQSorK2lpaeHhhx8mPDzcKG2U9C6++OILVq5cecHPrr32Wu644w4cHBywsrLC0dGRTz75RPu9hYUFX375JcuXL8fZ2Zn77ruvp5s9oKmvryciIoLm5mYsLS257bbb+POf/wzA73//ezIzM5kwYQJCCLy8vNi8efMF57d1zNixY7G0tGTcuHHccccdPPTQQ+1ey1hkZ8PLL8P69aDXw223wb/+1fXrKeLc/Fh3URQlGIgR/1sTqBBCuJ73+3IhhNtlzrsbuBsgKChoYlZWFkIIjhccJyY5htiUWA7lHkIg8HfyZ+mwpSwLW8aCIQtwsHYwStslEomkt5OZCS+99L+Af+edsHKlOhJQFCVeCDGpK9c1pQgkAXPOjQL8gB+FEMOvdI1JkyaJy9UYLqwpZFvqNmJTYtmeup3qpmpsLGyYEzyHZWHLiA6NJsStDyzAmIGdZeos3QJ3dzO3RCLpOgO5H6elwd/+Bp98Ajod/P738PjjEBT0v2N6qwi8ApQKIVYrirIScBdC/OVK12hLBM6nqbWJfdn7iEmOISY5hpQydV5/lNcookOjWRa2jOmB07HUmXKmq+8w59gxAH4cP97MLZFIus5A7MdJSWrw/+wzsLKCu++Gv/wFAgIuPdbsIqAoyhfAHMATKASeAzYDG4EgIBu4Xghx8eLxBXREBC4muTSZ2ORYYlNi2Z21mxZ9C662riwetphloctYPGwxHvYeXXiq/sFA/PBI+h8DqR+fPg0vvghffgk2NnDvvfDoo3Cl7PPuiIBRXpeFEDe38av5xrj+lQjzCCMsMow/Rf6JqsYq4tLiiEmJYWvKVr48+SU6RUfkoEhtlDDae7TRFpclEonEWPzyC7zwAnz1Fdjbq4H/kUfAu92Umu7Rr+ZMnG2cuXbUtVw76lr0Qs+RvCPa4vKT3z/Jk98/SZBLkCYIc4PnYmdlZ+5mSySSAczx4/D88/Dtt+DkBE88AX/6E3h69sz9e5UItOfu1xl0io4pAVOYEjCFVXNXkVedx9aUrcQkx/DxiY9578h72FnaMX/IfC0FdZDzIKPdXyKRSK7EkSNq8N+yBVxc4Nln1bz/nl77NtrCsDFQFEUA6HQ6fH19iYqK4qmnnmLo0KFGvU9DSwO7M3eri8spMWRWZAIwzmecNkqYEjAFC52FUe9rDpLq6gAYbm9v5pZIJF2nP/Xjn3+GVatg2zZwc1Pf+h94AFxd2z+3Lcy+MGwsDCLQFs7OzkRERPDII4+wfPlyo8ztCyFILEnUpo32Z++nVbTiae/JkmFLWBa2jEVDF+Fq243/QxKJZMCzb58a/OPiwMNDnfO/7z5wdu7+tfuNCLi6uopp06aRnZ1NWloaTU1N7Z5jZWVFSEgIt9xyC3/6059w7uZftLy+nO1p24lJjmFb6jbK6suwUCyYOXimNkoY7jG8zywu/7ekBIDlPTXBKJGYgL7aj4WA3bvV4P/DD+oi72OPwT33gDFrDvUbETh/JGBjY4OXlxe+vr5YW1tTX19PRkYGlZWVtNdmRVHw9PRk9uzZPPfcc+1WCWqLVn0rP+f8TGxKLDHJMfxS9AsAQ9yGaOsIswfPxsbSpkvX7wkGUmqdpP/S1/qxELBrlxr89+4FX191g9fdd6uZP8am34hASEiIWLRoEQkJCWRkZFBWVqYZMhmwtrbGw8MDV1dXdDod5eXlFBYW0tra2u717ezsGD16NA888AC33HILFhadm/PPrswmNjmWmJQYvs/4noaWBhysHFg0dBHRodEsDV2Kn1PvspLuax8eieRy9JV+LARs364G/wMH1I1dK1fCXXeBnQkTEfuNCFxus1hZWRlxcXHs2bOH48ePk5GRQUlJySXiYGVlhYuLC/b29uj1ekpLS6mvr2/3nhYWFvj7+3Pttdfy7LPP4uZ2ib3RZalrruP7jO81UcipygFgot9EloUtY1nYMib4TUCnmLd4W1/58EgkV6K392MhIDZWDf6HD6uWDk88ofr72PTAREG/FoG2qKqqYufOnezZs4djx46RlpZGSUkJjY2NFxxnaWmJg4MDNjY21NfXU1tb26FUVFdXVyIjI3n22WeZNm3aFY8VQpBQmKBNG/2c8zMCgY+DD9Gh0USHRbNwyEKcbJw69GzGpLd/eCSSjtBb+7Fer6Z4rloFx46pZm5PPgm33w4X1Z0xKQNSBNqitraW77//nt27d3P06FFSU1MpLi6moaHhguMsLCywtbVFp9NRX19PS0tLu9e2sbFh2LBh3H333dx3331YWl5+m0VxbTHfpX5HbEos36V+R2VjJVY6K+YEz9EWl4e6GzfttS1664dHIukMva0f6/Xq5q7nn4eEBBg2DJ56Cm69VfX56WmkCHSAhoYGdu/ezY8//kh8fDwpKSkUFhZeMmWk0+mwsrJCr9dfMuV0OXQ6Hd7e3ixdupQXXnjhkvKSza3N/HT2J21PwpmSMwAM9xiuOaDOCJqBlYVpes7Zc+IXaGtrkutLJD1Bb+nHra2wcaNq73D6NAwfDk8/DTfdBG28E/YIUgS6QVNTE/v27eOHH37gyJEjJCcnU1BQQN25zSkGFEVBp9Oh1+vbzU4CcHBwYMKECTz11FNERUVpP08rSyM2RTW8+zHzR5pam3C2cSZqaBTLwpaxZNgSvBy8jP6cEomk67S0wBdfqMZuSUkwahQ88wxcfz10Mr/EJPQbEXBxcRGPP/44V199NeHh4WbNxW9paeHgwYPs3LmTw4cPk5ycTF5e3mVLximK0iFhsLS0JCgoiN/+9rc8/vjjNNHEzvSdmigU1BSgoDB10FQtBXWcz7hu/R02FBUBcKOpXagkEhNirn7c3AyffqoG/7Q0GDtWDf7XXKN6+/cW+o0IXGnHsJWVFa6urvj7+zN27FiWL1/OwoULce3OXusuoNfriY+PZ+fOnRw8eJAzZ86Ql5d3Qb3RzqAoCi4uLsybN49bH7qVX/S/EJMSw5E8dUQ0yHmQurgcGs38IfOxt+pcknFvm0uVSLpCT/fjpib4+GPVzz8zEyZMUIP/1Vf3ruBvYECIQEfQ6XTY2dnh6elJSEgIM2bMYMWKFYwbN67TewI6i16vJyEhgbi4OA4ePEhiYiI5OTlUV1d3aJRwMVbWVvgM9sF3iS9nfM9Q01SDraUtc4PnamsJg10Ht3sdKQKS/kBP9ePGRvjwQ7WM49mzMHkyPPccLF0KvdkkoF+JgCFrx9bWFmtray0Dp7GxkZqaGhobGzu0MexKGAqC+/v7M3r0aBYvXszVV1+Nuwns+4QQJCYmsmPHDn7++WdOnz7N2bNnqaqq6rxrqgI6Bx36kXqYD6ODRmvTRtMGTbtsNTUpApL+gKn7cX29Wrj95ZchNxciI9Xgv2hR7w7+BvqNCDg4OAhfX18qKyupra2lqanpioHS0tISKyurC8SiqamJhoYGWlpauvQGbkBRFGxtbXFzc2PIkCFMnTqVa6+9lsmTJ7eZGtpZkpOTiYuL48CBA5w6dYrs7GwqKio6Lw6WoAvUMf+e+dy55E6ihkXhbqcKmhQBSX/AVP24rg7efx/WrIGCApg5Uw3+8+b1jeBvoN+IwOWygxobG0lOTubMmTOkpKSQlZVFTk4OhYWFlJaWUlVVpQnGlZ7FwsICS0tLLYC3tLTQ0tLS7VGFhYUFjo6O+Pn5MXLkSKKiorjmmmvw8up6hk9WVhbbt29n//79nDx5kuzsbMrLyzvXVh24ertif+2vCPntH9k3eXKX2yORmBtji0BNDbz3Hrz6KhQVqUH/2Wdh9myjXL7H6dci0Bnq6+s5c+YMiYmJpKWlkZmZSV5eHgUFBZSVlVFVVUVdXR3Nzc3tCoZhDaG1tbXDaaFtoSgKVlZWuLm5MXjwYCZPnsy1117LzJkzOzWqyM3NJS4ujn379pGQkEBmZiZlZWWdEgdnZ2eioqJ4++238ZYZQ5I+Qsk5R2HPbm7DraqCd96B116D0lJ1uueZZ2DGDGO00nxIEegC1dXVJCYmkpSURGpqKtnZ2eTk5FBUVERZWRnV1dWaYFwJ3blUASFEt4TCcC07Ozt8fHwYOXIk8+bN44YbbmDQoCtXPCsqKiIuLo69e/eSkJCgWWh0dFrJysqK4cOHs3r1aqKjo7v1DBJJb6SiAt56C/7+dygvVxd6n3kG2nGE6bVUVFTw1VdfsWvXLk6fPs0vv/wiRcCUlJeXc/r0aZKSkkhLSyM7O5u8vDyKioooLy+nurqa+vr6Du0wNgaWlpY4OzszePBgJkyYwIoVK4iKirpkVFFWVsZTGzeSfPAg9clJnDx9kuqKjqeyenp6cvPNN/Paa69hZY698BLJOT7KzwfgDr/OufSWlcGbb6pflZVqiuczz8CkLoXLnqG5uZm9e/eyefNm4uPjtenghoaGK436pQj0FoqLizXBSE9P1wSjuLhYEwzDwrUpURQFGxsbWp2csAsO5rGrr+bWW28lJCSEyspK/vXtv/h629ecOHqCmuwa6KB+2djYMHHiRN577z3Gjh1r0meQSAx0dk2gpER963/rLaiuVjd3Pf009Ib8iIyMDDZu3MjevXtJSUmhqKiI2traDiezWFpaYm9vj4eHB8HBwQwdOpT169f3DxFQFEVYWVlhZWWFjY0Ntra22Nvb4+joiKOjIy4uLri6uuLm5oanpydeXl54e3vj6+uLv78/fn5+2NnZ9YmqX0IICgoKNMHIyMjQBKOkpITy8nJqamraU/9uY2FhgZ2dHU4eTuj8dRRZFdHc2AzpQCnQgRklRVHw8fHhkUce4dFHHzVZWyUDl46KQFGROt//zjtq5s/116vBf8yYnmgl1NXVsWXLFrZv384vv/xCTk4OlZWV7WY6GtDpdNjY2ODg4ICzs7MW7ywsLCgtLaW4uJiKigrq6uoufpHsHyJga2srvL29qa+vp7Gxkaampi5l8Oh0OiwsLC4REwcHh0vExMPDAy8vL3x8fPD19cXPzw8/Pz8cHBx6jZjo9XrOnj3L6dOnSUlJISMjg7Nnz5Kfn09JSQkVFRVG20PRJjrQWejQt+ihg13G2tqa6dOn8/nnn19irCeRdIb2RCA/H155BdauVTd83XST6uo5apTx2iCE4MiRI3z77bccOnSI9PR0rW5JR0b2Bv8xQ1q7ra0tlpaWtLS0UFtb290Xvt4rAoqiZALVQCvQcqWGXmk6qLm5mZKSEvLz88nPz6ewsJDi4mJKSkooLS2lvLycyspKqqurqampoa6ujrq6ugvEpLNZPoqiXLAX4XJi4uLigru7uyYm3t7e+Pj44OfnR0BAAI6Ojj0qJnq9noyMDE0wXjt0iMbCQkIbGjTBqK2tpbGxsfP7EYyAoih4eHjw2GOP8eijj2oL6xLJlWhLBHJy1Bz/detUk7dbb1WDf1hY5+9RXFzMV199xffff09iYiKFhYVUV1e3m01owBDkDZ93vV5v9M+Y4QXX1tYWJycnfHx8GDZsGF999VWvF4FJQoiS9o7tiTWBlpYWSktLLxCToqIiSkpKKCsr08SkqqqKmpoaamtrLxiZNDc3d0lMzh+Z2NjYtDkycXd3v0BM/P398ff3x9nZuUticqU3qJaWFlJTU0lMTCQlJYXMzExycnIoKCigtLSUyspKampq2t2DYQysrKwYO3Ysr7/+OjNmzJDiILmAi/txdjasXg0ffKB6+99+u1rJa9iwy5/f0tJCXFwcMTExHD16VNuY2dDQYJaXofOxsrLC1tYWZ2dnfHx8CA0NZcKECUyePJkJEybg4uLS7jV6dYpobxMBY6HX6ykrKyMvL4+8vLwLRiYGMamoqLhETBoaGi6Y5uqqmBhGJnZ2djg4OODk5ISTk9Ml01wuHh54+/gQHBDAoEGDcHFx6ZKYNDU1kZycTGJiIqmpqWRkZJCYnkja2TRKS0tpqmlSF5dN8Hny9vbm1ltv5emnnzaJtYek91N3bpqkMNuCl16Cjz5Sf/6736k1fJubU9iwYQM//fQTKSkpFBcXa/PmPT3lbWFhgb29Pc7Ozvj6+hIaGsqkSZOYOnUqERERODo6Gv2evV0EMoBy1Jnk94UQ69o6ti+JgLHQ6/WUl5dfMjIpLi6+YJqrLTFpbm7usphYWlpqIxODmDg6Ol6wIOXh4YGnp+cF01z+/v64u7tfICZFtUVsS9lGbEos2xK3UZNbg0WZBcH6YLyavbCutaaqrIrCwkLKy8tpbGw02ofTwcEBb29vJk+ezF133cX8+fNNbhgo6TlqampYu3Yna9e6k5Y2HWjFwuJftLb+DThr8vsbpl9cXFzw8/MjNDSUqVOnEhkZybhx47DtBQWbersI+Ash8hRF8QbigAeEEHvO+/3dwN0AQUFBE7Oyskzanv6KEILKykry8vI0QSkuLmZ7Rga15eX4NzVdMDKpqakxqphYW1trYmLvYA/WUKfUUSbKqNHVgD14eXoxMXQi88bMY96YeQwOHIy1tTVJSUnaLm+DLUhqaio5OTlGW+jW6XQ4OzsTHBzMwoULeeihhwgICDDKtSVdRwjBgQMH2LRpE4cOHSIlJYWysrLzpiDDgKeAW4Em4H3gFSCvy/c0vPwYgnpYWBjTp0/nqquuIjw8HOueLA5sJHq1CFxwM0X5P6BGCPHq5X4/EEcCpqaz+dVCCKqrq8nNzb1kzcSQutqemHR2CH5x1oQmJufSg52dnXFxccHOzk6zBbm4LKixsLS0xMXFhbFjx3Lbbbdxyy23YGNjY5J7DQSys7N588032bJlCzk5OZ0YAY5CDf43AfXAe8CrQOElRxrSKl1cXPD399eC+rx58xg+fLjRDB97M71WBBRFcQB0Qojqc/+OA1YJIb673PFSBIyPuVxEhRDU1tZqI5OCggKKiorIyc/hRMYJknOTyS3KpamuCRrBRthgrbeGFmhtbtVGJuZetGsLa2tr3N3dmTJlCo8//jjTp083d5N6jMrKSj788EO2bt1KQkICZWVlRtz8OAZ4GrgOqMPLayPTp//ML2GuuE6bxpEVK3pN6nZvojeLwBBg07lvLYHPhRAvtnW8FAHj05utpPVCT3xePDHJMcSmxBKfHw9AoHOgVjhnXsg89E168vPzNTNAw8iktLSUsrIyKioqtPTg2tpa6urqqK+vp6amxuQ7s6+EoihYW1vj5eVFZGQkDz/8MNOmTet1mU/19fVs2bKF//znPxw/fpzCwkItjdiYWFtb4+Pjw4QJE5g7dy7R0dEMHToURVE4dgyefx42bQInJ3jwQXj4YfD0VM/tzf24N9BrRaCzSBEwPn3pw5NXncfWlK3EpsQSlxZHbXMtdpZ2zAuZp4lCoEtgl6+vLjCu5b333iMrK8ukO7E7i8GSfPjw4cyZM4fIyEjGjx+Pv79/p32b6urq2L59O9u3byc+Pl4rYtTU1GT0Z9bpdDg4ODBixAjuvfdebrvttk5Nvxw+rAb///4XXFzUwP/QQ+DmduFxfakfmwMpApI26asfnsaWRnZn7SYmOYaY5BgyKjIAGOszVqumNjVgKha67mcBnTp1imeffZbvv/+eysrKTq1nGIKgYa+Hs7MzDg4OVFRUkJaWRlVVlVlHI11Fp9Ph6OjIoEGDCA8PZ86cOVx//fXdqpNxPgcOqMF/2zY14P/5z/DAA6oQXI6+2o97CikCkn6NEIIzJWe0aaN92ftoFa142HmwJHQJy0KXETUsCldbV6Pds7a2ljVr1vDvf/+bs2fPdjqQW1hY4O7uTnBwMGPHjuWqq65i0aJFBAQEUFVVRVxcHDt37uTHH38kPT2dpnN++T2JYUe8g4MDnp6e+Pn5aenBHh4eF+yC9/X1JSAgAF9f326lRO7dC6tWwc6d6lTPI4/AH/+oTgFJuo4UAcmAory+nB1pO4hJiWFrylbK6suwUCyYETRDmzYa4TnC6AuIQgj++9//smbNGo4dO0ZdXZ1Rr9+X0Ol0mqWKwZ/Lzs7uArNHNze3c7vgPaioiGDXrumcOuWNh0cLjzwieOABK0ywb2pAIkVA0iavZmcD8GhQkJlbYhpa9a0czD2ojRISChMAGOI2RJs2mj14NjaWHUvzNLi77tu3jz179mhOkGVlZVoZU3Nx/pu7t7c3YWFhzJw5kxtuuIHAwEAOHjzIp59+yp49e8jJyaG6utpo2VXn+2hZWFhc4o/T2trahtnjAuBZYCZqbv/LwD9R0z6vbPbo5OSkjUyyrKywd3Pj6qFD8fb21jYt+vv7Y29vb5Rn7MtIEZC0yUCbS82uzGZrylZikmPYlbGLhuYGbOtsCW8Mx7nAmfrceory1WJABk8oY38GDEHSWAZijo6OBAcHEx4ezrRp01i4cCGjRo3q0kinoqKCr7/+mi1btnDixAmKi4tpaGgw2t9ADejW2Nr+moaGx2hoGI+1dSEhIRsJCfkea2v171FdXX2B2aNhr0lzc3OX/LnOF5OLzR7PF5OLnYPP3wXf02aPxkSKgKRN+psI6PV60tLSOHToED/99BMnT54kNzeXsrIyzSvGmBkwhk1shsVfRVEuCVodCfSGdFFbW1taW1s7VVhIUZRLAqKiKDg5OTFo0CBGjhzJlClTWLhwIePGjet2CqoQgmPHjrFhwwZ2795NWloalZWVHayctwz1zX8ykAX8DfgIdbfvhZz/d/Xw8NDWHYKDgxk2bBhhYWF4enpSUlLCbfv20Vxayl329hQXF3fI7LGr/lyWlpYXWKpcSUwutlQZNGgQTk5OPS4mUgQkbdLbRaClpYWkpCQOHTrE4cOHOXXqFDk5OZSXl2s1no2+YUwHWAD2YOliqQYe72DsmuwoLfnqFwU+AAAgAElEQVRf4Y6uVnsaNmwY06ZN47rrrmPMmDHtBoS8vDxeeukltmzZQm5ubodEzGBZfPGxiqLg6OiIv78/I0aMYMqUKSxYsIBJkyYZfX9CbW3tuf0F/2XPHjcKC/+AXh+BWpHoReDfdLhk3RVQFAWsrLCwsyPo3IK1j48PgwYNIiQkhGHDhjFy5EhCQ0Mvm54qhLjA7LGgoMDsZo+GXfDni4mhpolBDDtj9ihFQNImPS0CjY2NnDp1imPHjhEfH8+pU6c4e/asVg3JFEFdURTtrdLDw0ObMw4MDCQkJISAgABycnKIj4/n5MmT5OXlUVlZ2eGpIIMtgaurK4MGDSIiIoKlS5eyZMkSk1lKNDc38/HHH7N27VpOnz7dIZsMw9/BcP7Fz+bg4ICfnx/Dhw9n0qRJLFiwgMjIyC6b7en18M03aqrnL7+oNs5PPw233AKGrQ1CCJKSkti4cSO7d+8mMTHR6AaC53N+ZS4XFxc8PT3x9fUlMDCQ4OBgQkNDGTVqFEOGDOm0KAohKC8v13bBn2+pYti42BNmj/b29tjb21/gHPz1119LEZBcniUJ6kLpti7WA66vrychIYFjx45x4sSJC97U6+vrTfOmzv9qJDs6OuLu7q6lMBre/sLCwhg5ciSBgYHEx8dfUO2prKysU9WerKyssLGzwcrZiibXJmr8aiAchg8ZTnRoNMvCljEjaAZWFp3btGUKDh8+zOrVq9mzZw+lpaUdCiiGRdeWlpbLBl97e3t8fX0JCwtj4sSJzJ07l1mzZrW5Sa21FTZuhBdegNOnYcQINfjfeCN01aanvr6eHTt28J///Efz+6+urjbpHgsLCwtNMFxdXfHy8tIEw9DHRo0aRWBgoFFHURebPRYWFlJYWHhJgSxDPQ/DLvh2xESKgKRj1NTUcPz4cY4dO8bJkyc5ffo0OTk5VFRUmDSow//e0gxvL+cH9uDgYO1DFxQUpH3oioqKtLnpxMRECgoKqKmp6XC1J0MNZXd3dwYPHszkyZP51a9+dcXCNenl6cQmxxKTEsOPmT/S1NqEs40zUUOjWBa2jCXDluDlYJxNU8agpKSEN954gw0bNpCVldWhuXuD572VlRVNTU3U1dVd8v/d1tYWX19fhg0bxsSJE5k5cy6FhXN5+WVrkpMhPByeeQauuw56yrk7NTWVb7/9lh9//JEzZ85QWFjYI4VhDHbSjo6OmmD4+fkRFBRESEgIw4cPZ+TIkfj5+fWYLcj5Zo+jRo2SIjAQEUJQUVGhvaWfPn2axMRE8vLyTP6mbkCn013w4bg4sIeGhhIeHn5BYDfQ0tLC9u3biY2N5dixY52u9mRYtHV2dsbf35/Ro0ezYMECVqxY0aFqTB2hpqmGnek7iU2OJTYllvyafBQUpg6aqo0SxvmM63VZJS0tLXz77be89dZbnDhxgurq6g6dZyhwDurbeXV1Na2tCvAbVFfPYShKAu7u7zBmTCoTJkQwZ84c5s2bh4ODg8mepzM0NDSwZ88eNm/ezJEjR8jKyqKioqLH0nstLS21z4RhFOvv709QUBBDhw4lNDSU0aNHG233Ncg1gX6DEIKSkhKOHj3KiRMnOHPmDMnJyeTm5mpz6oZayabk/GGym5ubtmgVFBSkBfaRI0cSHBx8xbee06dP880331xQ7ckwTdNevzNkadjb2+Pp6cmwYcO46qqruO666xgxwvgbwTqCXug5XnBcs7I4nHcYgACnAE0Q5oXMw8G6dwTDy3Hy5EleeeUV4uLiKCgoaOf/gxXwW+BJIAQbm5O4uPyD1tbNVFaWXzJVYzDLGzJkCOPHj2fWrFksXLhQE5Xu8HxmJgDPBAd3+1oGzp49y5YtW4iLi9NGmbW1td3OLju/b7bXzw2lJZ2cnHBzc8Pb2xt/f38GDx7MkCFDGD58OOHh4bhdbKZ06T2lCPRG9Ho9BQUFxMfH88svv3DmzBnS0tK0oG4IiD1hl3y5+U8fHx9t/rOjgd1AZWUlmzdvJi4ujpMnT5Kfn6+ZlHXkeQztcXV1JSgoiHHjxrF8+XIWLFjQZ/z7C2oKtGpq29O2U9NUg42FDfNC5hEdGk10WDTBrsHmbma7VFVVsXbtWj755BPS0tJoaBDA74CVQBBwEFgFbNXOURQFNzc3fH19sbGxoampidLSUkpLSy+ZjrKyssLT05OQkBAiIiKYOXMmixYt6lSpUHNluTU3N7N//37+85//cPDgQTIyMqioqDDKwrZOp9M+a0KIdsXHysoKOzs7nJ2dtVrkhpTaVatWSRHoCVpbW8nNzeXIkSMkJCSQmppKeno6ubm5VFZWatMvPfU3vTiwn58JYQjsf9XrsfX3Z8/EiR2+bmtrq9bxjxw5QmZmprbY2pG3JMNiq6OjIz4+PowaNUozIPPx8enOI/damlqb2JO1R1tLSC1LBSDcK5xlYctYFraMaYOmYanrvQVO6uvhn/+El1+GvDwYObIMO7tXSE9/n4qK8g5dw9bWlkGDBuHj44O1tTW1tbXk5uZSXFx8yXSMpaUlHh4emr/SjBkziIqKumwf6e2pznl5eWzbto0dO3ZoGWjGsDI/P9UU1BfLNvbCSBHoCk1NTWRlZWmpjKmpqWRmZpKXl3fBm3pP/o2uFNjPT3Hr6Bv75T48Z8+e5ZtvvtEWW4uKiqitre2wgBnmPD08PAgJCWHKlCmsWLGCKVOm9DqvfHORXJqsWVnsydpDi74FN1s3loQuITo0msXDFuNu1/E3YVNSWwvvvw9r1kBhIcyaBc89B3PnwsWzbqmpqbz++uvExsaSn5/foUVoRVHw9PQkNDQULy8vLC0tKSkpIT09naKiokvqFhjM9wYPHsyYMWO46qqrWB8QgI2PT68VgY7Q3NzM4cOHiYmJ4aeffiI9PZ3S0lLq6+uNEWOkCIC6IJSenk58fDynT58mPT2drKwsLagbdmka45k7M+/XkcBumIrpboH0hoYGtm3bxrZt2zhx4gTH0tJoqalB6eACsU6nw9raGmdnZwICAhgzZgxRUVEsX74cJ2n12CUqGyqJS48jJlk1vCuuK0an6Lgq8CptLWGUV9dsILpDTQ28+y68+ioUF8P8+Wq2z+zZnbtObW0tH3/8MR988AFJSUnU1tZ26DxbW1sGDx5MeHg4vr6+6PV6UlJSSE1N1bJ+LkCnw8PNjaCgIMaMGcP06dOJiooi2IjrBL2B4uJidu7cydatWzlx4gT5+fkd2bHdP0WgtraW1NRULahnZGSQk5Oj/VGM+aZuqHMLalA3fLVFW4H9/F2Mhjf27gZ2A0IIjh8/zubNmzlw4ACpqamUlpZqC8YdeUbDYqvBgGz69OnccMMNWoUniWnRCz2Hcw9ro4RjBepIbbDLYG3aaE7wHGwtu27X3B5VVfD22/D661BaClFRavC/6irj3UMIwe7du3nzzTfZu3cv5eXlHX4J8fDwICwsjAkTJuDn50dlZSX/2rePmqwsOGcPcvE5Li4uBAYGEh4eTmRkJIsWLWL48OHGe6BeRktLCydOnCA2Npa9e/eyc+fO/iECOp1OQPtv1h28lra13mDm1d5uPUO6oyGwG/xMLjcVY6zAfj6lpaVs2rSJXbt2cerUKfLz86murqapqanDOfG2tra4ubkRGBjIhAkTuPrqq5k9e3afWWwdaORU5WjV1Ham76SuuQ57K3sWDFmgLi6HRhPgHGCUe1VUwD/+AX//u/rv6Gg1+E+dapTLd4js7GzefvttNm3aRHZ2dofTNm1tbbURwLRp0wgICCApKYnDhw+TnJxMfn7+JSMQRVFwcXHR/JWmTZvGokWLCA8P73cvPP0mO0hRlMs2xvCWbmFhcYFDY2tra7vFyA0blAx57BcHdsMbe0hIiEkCu4GWlhZ2797Nli1biI+PJysri/LychoaGjq12Ork5ISvry/h4eHMnTuXa665Bm9vb5O1W9JzNLQ08GPmj1oKalZlFgARvhGaLfZk/8mdrqZWVgZvvAFvvqmOAn71KzX4dyJXwKQ0NjbyxRdfsH79ehISEqipqemwnYe7uzuhoaFMmjSJefPm4e7uzt69ezl06BBnzpzRFmjPx2C+FxAQwIgRI5g6dSoLFy4kIiKiz65p9RsRsLCwEJaWlu2mTbYV2C82lBoyZIhJA/v5pKWl8c0337Bv3z6SkpK0xdbOGJDZ2dnh4eHB0KFDmTp1Ktdccw3jx4/vVsd8Ij0dgJeGDOnyNSQ9jxCC08WntWmj/Wf3oxd6vOy9WBq6lOjQaBYNXYSLbdub4kpK1Cmft95S5/+vvVa1d4iI6MEH6SJCCA4cOMC7777Lrl27KCwqQnQwldqQoRQeHs6MGTOIjo6mvr6enTt38vPPP3PmzBlyc3Oprq6+5LPp5OSEn5+fZr43f/58Jk+e3GNxpKv0GxHQ6XTC09PzAuMncwZ2A7W1tcTGxrJt2zYSEhK0lNCO5sQbFlsNQ9Nx48axePFilixZgqOJSyv19tQ6Sccoqy9je+p2YlJi2JayjfKGcix1lswMmqmtJYR5hAFqhs9rr6mLvnV1cMMNavAfPdrMD9ENDP34Sz8/1q5dy1dffUV6evqli8dtoCgK7u7uDB06lEmTJjF//nwWLVpEZmYmO3bs4Oeff9YsVKqqqi5rvufr68uIESO08yMjIy/rWmoO+o0ImGOfQGtrK0ePHmXTpk0cPHjwgrStzhiQOTg44OXlxfDhw5k1axbXXHMNISEhZp97lCLQ/2jRt/Bzzs/aKOFk0UkAgi0icTv6N05vm0lzk46bb1Z46ikYOdLMDTYCV+rHTU1NbNq0iX/+85/Ex8dTWVnZ4XVFW1tb/P39GTVqFNOnT2f58uWEh4eTnJysicOpU6fIzs6msrLykpc+e3t7fHx8NPO9efPmMXPmTKytrbv/0J1AisAVKCgoYNOmTfzwww+cOnWKwsJCampqurTYGhwczMSJE1m+fPkVXRZ7E1IE+j8/n8ph5V/L2Lt5BPpWHYz5FIf5/yBqagjLQpexNHQpPo59e5NeZ/uxoTDO2rVr+e6778jPz+9UER83NzdCQkK0wL5kyRKcnZ1JT09nx44dWkEjg9/Vxet6tra2+Pj4aOZ7c+bMYc6cOdjZ2XXuwTvIgBWB5uZmdu7cSUxMDMeOHdOMohobGzu82GrIiff19dUMyK6++mo8PT278yi9BikC/ZesLFi9Gj78UPX2/+1v4aFH6sjU7dJGCbnVuQBM9p/MsrBlRIdGM95vPDqlby2AGqsfl5WVsX79er788kuSkpI6tVHLxsYGPz8/Ro4cSWRkJMuWLdMquZ09e5YdO3awf/9+fvnlF7KysigrK7skDtnY2ODt7c3QoUOZMGECs2fPZt68ed2eFu7VIqAoymLgTdRaTuuFEKvbOvZ8ERBCcObMGTZt2sS+ffs0AzJDTnxnqj0ZDMimTZvGihUrGDNmTK9f6DEWvzl9GoBPR40yc0skxiI9HV56CT76SN3R+7vfwcqVcPGeKSEEJwpPaFYWB3MOIhD4OfqxNHQpy8KWsWDIAhytTbsuZQxM2Y9bW1v573//ywcffMCBAwc6vKcB/peGGhISwvjx45k3bx5Lly7VDN8KCgqIi4tj7969JCQkkJmZSWlp6RXN9yIiIpg1axYLFizA1dW1o+3onSKgKIoFkAwsBHKAw8DNQojTlztep9MJQ/pnexhy+g2LrREREURHRzN//nyTL7ZKJOYgJQX+9jf497/V4i2//z08/jgEBnbs/OLaYralqoZ336V+R1VjFdYW1swJnqOloA5xk1lkBk6dOsW6deuIiYnh7NmzHayxrGJtba0tJEdGRrJ06dILSnyWlpZq4nD8+HEyMjIoKSm5rPmeh4cHQ4YMYdy4ccycOZOFCxdeMlPRm0UgEvg/IUTUue+fABBCvNTG8eLcfzUDMm9vb0aMGMHs2bO55pprCAwMNPtiq0TSk5w5Ay++CJ9/DtbWcM898Nhj4O/f9Ws2tzazL3sfsSmxxCTHkFSaBMBIz5GalcX0wOm9oppab6KqqopPPvmEzz77jJMnT1JbW9vh6SRFUXB2diY4OJhx48Yxd+5coqOjL6grUFlZyc6dO9mzZw/Hjh0jPT29TfM9d3d3zXxv/fr1vVYErgMWCyF+f+7724CpQoj7L3f8xIkTRXx8vMnaMxB5OCUFgDdCQ83cEklnOXVKLeG4YQPY2cF998Ejj4Cvr/HvlVqWqk0b7c7cTbO+GVdbV62a2uJhi/G0N986WW/ux3q9nri4OD788EN2795NSUlJp2oSWFlZaRlGkZGRLF68mOnTp1+wP6i2tpZdu3axe/dujh07RmpqKsXFxeenyPZaEbgeiLpIBKYIIR4475i7gbsBgoKCJmZlZZmsPQMRuTDc9zhxQg3+X38Njo5w//3w5z+DEQtRXZHqxmri0uO0amqFtYXoFB3TBk3Tpo3GeI/p0RF5X+zHaWlprF+/ns2bN5ORkXGJW2p7ODs7a7U2Zs+ezdVXX32JzXZDQwM//PADS5cu7bUi0KnpoN5eT6Av0hc/PAOVo0fh+edh82ZwdoYHH4SHHwYPD/O1SS/0xOfFa9NG8fnqSD3QOfCCamp2VqZJfTTQX/pxXV0dn3/+OZ999hlHjx697K7lK2FlZYWXlxdhYWFMnTqVqKgoZs6ciZWVVa8VAUvUheH5QC7qwvAtQohTlzteioDx6S8fnv7MoUNq8I+JAVdXNfA/+CC0U1HQLORX52uGdzvSdlDbXIutpS3zQ+Zr1dSCXIKMft/+3I/1ej379+9n/fr1qkVGYWFXitF0WQRMuudZCNGiKMr9wHbUFNEP2xIAiWSgceAArFoF330H7u7qFND994NL23ZAZsfPyY+7JtzFXRPuorGlkT1Ze1TDuxR1XwJbYazPWG2UMDVgaqcN7wYaOp2OmTNnMnPmzAt+npOTwwcffMCmTZtITk6mvr7eJPfv05vFJO1zd5Ka9bGuH3ur9zX27FHf/HfuBE9PePRRddG3L9fsEUKQVJqkbVLbm7WXVtGKh52HVk0tamgUbnZdG97IfqxSX1/P119/zWeffcbhw4cpLy83TCf1zumgziJFQNJfEQJ+/BH++lfYvRt8fNQ0z3vuAQcHc7fO+FQ0VLA9dTuxKbFsTdlKaX0pFooFM4JmaKOEEZ4jZLq3ERBCoNPppAhIJL0RIdQ3/lWrYN8+8PNTN3j94Q9gb2/u1vUMrfpWDuUe0kYJJwpPABDiGqI5oM4ePBsbS1n4qKv02s1inUWKgPGRw2jzIARs26YG/4MHYdAg1drhrrvA1nSVI/sEZyvPEpuipp/uSt9FfUs9DlYOLBy6kOjQaJaGLsXf6cKdcLIfX5nuiEDvMMOWmIzki+qxSkyLEPDf/6rBPz4eBg+G999Xzd1khU+VQJdA7pl0D/dMuof65np+yPxBGyVsPrMZgAl+E7Q9CZP8J8l+bEKkCEgkRkCvV/P7n38ejh+HIUPggw/gttugDziOmw07KzuWhi5laehShBCcLDqp7Ul4Ye8LrNqzCh8HHxT3qbj7zKRq1FCcbZzN3ex+hZwO6uf05/zq3kBrK3zzjRr8T56E0FC1itctt6gmb5KuU1pXynep3xGTEsPXSbG0NFdjpbNi1uBZ2lrCMPdh5m5mr0CuCUjaRIqAaWhtVT19XngBEhNhxAi1ePuNN8IAcSnvUWbHH6ay/ASLRDKxKbGcLlaNiMM8wrRpoxlBM7C26NmKXr0FuSYgaZMIaattVFpaVDfPF1+E5GS1bu+GDWoRdxn8Tcd4Z1dwns2a0N+zZuEaMsoztGmjtw+/zes/v46zjTNRQ6OIDo1mSegSvB28zd3sPoEcCUgkHaC5WfXxf/FFtajLuHHw7LPw61+Drm8V6ep31DTVsCt9lyYK+TX5KChMCZiiVVOL8I3o13sS5HSQRGIiGhvh44/VYi5ZWTBxohr8ly9Xq3pJehdCCI4VHNNssQ/nHkYgCHAK0LyN5ofMx8G6f+3QkyIgaRNZXrJrNDSotXtXr4azZ2HqVDX4L1kig7856Go/LqwpZFvqNmKSY9iRtoPqpmpsLGyYGzJXW0sIdg02QYt7FrkmIGmTnE56mA906uth3TpYswby8uCqq2D9eli4UAZ/c9LVfuzj6MMdEXdwR8QdNLU2sTdrrzZtdP+2+7l/2/2Ee4VrVhaRgZFY6gZWWBxYTyuRtEFtLaxdC6+8AoWFMHs2fPopzJkjg39/wdrCmvlD5jN/yHxej3qd5NJkbdro9Z9fZ81Pa3CzdWPxsMVaNTV3O3dzN9vkSBGQDGiqq+Hdd+HVV6GkBObPV7N9Zs82d8skpibMI4ywyDD+FPknKhsq1WpqKbHEJsfyxckv0Ck6pgdO16aNwr3C++XishQByYCkshLefhtefx3KymDxYjXPf/p0c7dMYg5cbF24btR1XDfqOvRCz5G8I2qdhOQYVu5aycpdKxnsMlibNpobMhdby/5hAiVFoJ8T2ZsrlJiB8nL4xz/gjTegogKWLVOD/5Qp5m6Z5Er0ZD/WKTqmBExhSsAUVs1dRW5VrlZN7aMTH/HukXext7Jnfsh8LQU1wDmgx9pnbGR2kGRAUFqqBv5//AOqqtT8/qefVlM+JZKO0tDSwO7M3Vo1tcyKTAAifCO0UcJk/8k9Xk1NpohKJG1QXKxO+bz9NtTUwHXXqcF/3Dhzt0zS1xFCkFiSqDmg7s/eT6toxcveiyWhS1gWuoxFQxfhYmv6UYwUAUmbXHvyJADfjB5t5pb0LIWF6mLvu++qaZ833ghPPaXaPEj6Hn2hH5fVl2nV1LalbqOsvgxLnSUzg2Zqo4QwjzCTLC7LfQKSNiltbjZ3E3qUvDw1zXPtWmhqUt08n3pKNXiT9F36Qj92t3Pn5jE3c/OYm2nVt/Jzzs/aKOHRuEd5NO5RhroN1RxQZw2e1SsM76QISPoFOTnw8svwz3+qJm+33QZPPqlaO0skPY2FzoKrgq7iqqCreGnBS2RVZLE1ZSsxKTG8H/8+bx58E0drRxYNXaRVU/N19DVLW6UISPo0WVmqtcOHH6qFXe64A554Qi3qIpH0Fga7Dubeyfdy7+R7qWuu4/uM77VRwreJ3wIw2X+yNm003m88OqVnnAmlCEj6JOnpqqnbxx+rO3rvukut4Tt4sLlbJpFcGXsre21KSAhBQmGCJgh/3f1X/m/3/+Hr6KsJwoIhC3C0Np0lvBSBfs58NzdzN8GopKSods6ffqpW7rrnHvjLXyAw0Nwtk5iS/taPDSiKwjjfcYzzHcdTs56iuLb4f9XUTn/NB8c+wNrCmjnBc1QX1NBohroPNW4bTJUdpCjK/wF/AIrP/ehJIcTWK50js4MkbZGYqAb/L75QC7b/v/8Hjz0G/v7mbplEYhqaW5vZf3a/5m90puQMACM8R2hWFlcFXoWVhVXvTBE9JwI1QohXO3qOFAHJxZw8qZZw3LgR7Ozgj3+ERx4BHx9zt0wi6VnSytI0B9TdWbtpam3CxcaFxcMWs+H6DTJFVHJ5liQkALBt7Fgzt6RznDihFm//5htwdFTn+//0J/DyMnfLJOagr/ZjYzLUfSgPTn2QB6c+SHVjNTvTd6qGdymx3bquqUXgfkVRbgeOAI8IIcpNfD/JRdS3tpq7CZ0iPl4N/v/5Dzg7q74+Dz0EHh7mbpnEnPS1fmxqnGycWDFyBStGrkAv9Fg82nWbim7lICmKslNRlJOX+foV8B4wFIgA8oHX2rjG3YqiHFEU5UhxcfHlDpEMAA4eVM3cJk2C3bvhr39V0z9XrZICIJFcie6mknZrJCCEWNCR4xRF+ScQ08Y11gHrQF0T6E57JH2Pn35SA/327eDuri7+3n+/OgqQSCSmx2S7ERRF8Tvv2xXASVPdS9L32LMHFixQyzceParu9s3MVHf5SgGQSHoOU64JrFEUJQIQQCbw/0x4L0kbLOtFcylCwA8/qG/+u3erGT6vvaamezo4mLt1kt5Mb+rH/Q3pIioxOUJAXJwa/PfvV3P7H38c/vAHNe1TIpF0j+7sE+gZcwrJgEQI2LoVIiMhKkpd6H3nHUhLgwcflAIgkfQGpAj0c+YcO8acY8d69J5CqCmekydDdDQUFMD770NqKtx3H9j2j9Kskh7EHP14oCBFQGI09Hp1c9f48Wr5xooK1d0zJQXuvlu1e5BIJL0LKQKSbtPaChs2wNixavnGujrV3fPMGbjzTrCyMncLJRJJW0gRkHSZlhb47DO1ZONNN6kjgc8+U83ebr9ddfmUSCS9GykCkk7T0qK+6Y8aBb/5jRrsN25Uzd5uuQUsur6DXSKR9DDyXa2fc4O3t9Gu1dQE//63WswlPR0iIuDbb+FXvwKdfJ2QmBBj9mPJhUgR6OfcFxDQ7Ws0NsJHH8FLL6lpnpMmwRtvqF4/itL9Nkok7WGMfiy5PPL9rZ9T19pKXRcdGBsa1Lz+YcPUCl6+vmre/6FDsHy5FABJz9Gdfiy5MnIk0M9Zes6H/cfx4zt8Tl0d/POfqp9Pfr7q7/Phh6rXjwz8EnPQlX4s6RhSBCQatbWwdi288goUFsKcOWq2z5w5MvhLJP0VKQISqqvVaZ/XXoOSEvWNf+NGmDXL3C2TSCSmRorAAKayEt56C/7+dygrg8WL1Upe06ebu2USiaSnkCIwACkvhzffVL8qKtRF3qefhilTzN0yiUTS00gR6Ofc4eur/bu0VH3rf+stqKqCFSvU4D9hghkbKJF0gPP7scS4SBHo59zh50dxMaxcqc7719aq/j5PP616/UgkfYE7/PzaP0jSJaQI9GMKCuD5l1v5aJ2O+nqFm26Cp56C8HBzt0wi6RwlTU0AeFpbm7kl/Q8pAv2QvDxYs0b18G9o0uGzpJz4V90ZMcLcLZNIusZ1p04Bcp+AKZAi0I84e1bd4LV+vWrydvvtcOpXp7ELamLECHdzN08ikfRCpG1EPyAzU2czTncAAA2TSURBVLV1GDpUffu//XZITlZ3+doFNZm7eRKJpBcjRwJ9mLQ01dTt449VF8/f/14t4D54sLlbJpFI+gpSBPogycnw4ouqpYOlJdx7L/zlLzBokLlbJpFI+hpSBPoQiYlq8P/iC7Ve74MPwmOPwZWy5+6VFrySfoDsx6ZDikAf4Jdf4IUX4KuvwN4eHnlE/fLxaf/cG2UxDkk/QPZj09GthWFFUa5XFOWUoih6RVEmXfS7JxRFSVUUJUlRlKjuNXNgcvw4XHutuqlr2zZ44gl1EXjNmo4JAMDZhgbONjSYtJ0SiamR/dh0dHckcBK4Bnj//B8qijIKuAkIB/yBnYqihAkhZFWIDnDkCDz/PGzZAi4u8Oyz8NBD4N6FLM/bEhMBmV8t6dvIfmw6uiUCQohEAOVSs/lfAV8KIRqBDEVRUoEpwIHu3K+/c/AgrFqlVu9yc1P//cAD4Opq7pZJJJL+iqnWBAKAn8/7PufczySXYf9+NeDv2AEeHmoh9z/+EZydzd0yiUTS32lXBBRF2QlczsLvKSHEf9o67TI/E21c/27gboCgoKD2mtOv2L1bDf7ffw9eXupc/733gqOjuVsmkUgGCu2KgBBiQReumwMEnvf9ICCvjeuvA9YBTJo06bJC0Z8QQg36q1bBnj1q8fbXX4e77wYHB3O3TiKRDDRMNR20BfhcUZTXUReGQ4FDJrpXn0AIdbpn1Sr46Sfw94d//EPd5WtnZ7r7PhIY2P5BEkkvR/Zj09EtEVAUZQXwFuAFxCqKclwIESWEOKUoykbgNNAC/HGgZgYJoS70rloFhw5BYCC8+y7ceSfY2pr+/ss9PU1/E4nExMh+bDq6mx20CdjUxu9eBF7szvX7MkKoKZ6rVsHRoxAcDOvWwW9/Cz1piZ5UVwfAcHv7nrupRGJkZD82HXLHsJHR6+Hbb9UdvidOqM6eH34Iv/kNWFn1fHv+X1ISIPOrJX0b2Y9Nh7SSNhKtrfDll+ru3uuvh/p6+OQTOHNGnfoxhwBIJBJJe0gR6CYtLfDpp2rJxptvVkcCn38Op0/DbbepLp8SiUTSW5Ei0EWam+Gjj2DkSDXYW1vDxo1w8qQqBhYW5m6hRCKRtI98T+0kTU3qNM/f/gYZGTB+PGzaBFdfrRZ2kUgkkr6EFIEO0tgI//qXWskrOxsmTVLz/KOj4VLrpN7D07LMmKQfIPux6ZAi0A4NDWrh9tWrITcXpk1T6/hGRfXu4G9gQVesRyWSXobsx6ZDikAb1NWpef1r1kB+PsyYoa4BzJ/fN4K/gePV1QBEODmZuSUSSdeR/dh0SBG4iJoaWLsWXnkFiopg7lw122f27L4V/A08nJoKyPxqSd9G9mPTIUXgHNXV8M478NprUFICCxfCM8/AzJnmbplEIpGYjgEvApWV8NZb8Pe/Q1kZLFmiBv/ISHO3TCKRSEzPgBWB8nJ44w14801VCJYvV4P/5MnmbplEIpH0HANOBEpL1bf+f/xDnQJasUIN/nKqUSKRDEQGjAgUFanz/e+8o2b+XH89PP00jBlj7paZlr8NGWLuJkgk3Ub2Y9PR70WgoEDN9HnvPXXD1003wVNPwahR5m5ZzzDdxcXcTZBIuo3sx6aj34pAbq6a479unWr18JvfwJNPwvDh5m5Zz/JTZSUgP0SSvo3sx6aj34lAdja8/LK6y1evh9tvhyeegGHDzN0y8/Bkejog86slfRvZj01HvxGBzEzV1+df/1K/v/NOWLkSQkLM2iyJRCLp1fR5EUhLUx09P/lEdfH8wx/g8cchKMjcLZNIJJLeT58VgaQkNfh/9plateu+++Avf4GAAHO3TCKRSPoOfU4ETp+GF19USzna2MBDD8Gjj/L/27vfGCuuMo7j31+pQAh/w9qUWBAaoeFPiVZC2jdVQ6MNUYhNVUwaW20kFOUFEqMNSW3AvrFpNEZrwdigjVr+NBTQEixarTFuBUNKKRUC2BYQslIUX7Si4OOLmXY3ZHfv7M7OzN6Z3ychmd2Ze+6Th3Pvs3PmzBmmTKk6MjOz9tM2ReCll5KHt2/dCmPGJF/8a9bANddUHdnw9p2mXhG3WnE/Ls6wLwIHDsD69cnTu8aNS2b6rF4NHR1VR9YevPSu1YH7cXGGbRHYty/58t+1CyZMgAceSIZ+/GyJgdl7/jzgh3JYe3M/Lk6uIiDpU8CDwGxgYUTsT38/HXgFOJIe2hkRK7K02dkJ69bB7t0waVKyvWoVTJyYJ9Lm+uZrrwH+8Fh7cz8uTt4zgUPAHcCGXvYdj4j3D6Sxo0eTJZwnT07m/K9cCePH54zQzMz6lKsIRMQrABqiR2699Vayzs+KFTB27JA0aWZm/biqwLZnSDog6XeSMj2f68Ybk1k/LgBmZuVoeSYgaS9wbS+71kbEjj5edgaYFhFvSPog8LSkuRHxr17aXw4sB5jm23zNzErVsghExG0DbTQiLgIX0+0/SzoOzAL293LsRmAjwIIFC2Kg72X929C0ZVOtltyPi1PIFFFJ7wbOR8RlSdcDM4ETRbyX9e+GMWOqDsEsN/fj4uS6JiDpk5JOAbcAv5S0J911K3BQ0ovANmBFRJzPF6oNxq5z59h17lzVYZjl4n5cnLyzg7YD23v5/VPAU3natqHxyMmTAHzCt1hbG3M/Lk6Rs4PMzGyYcxEwM2swFwEzswZzETAza7Bhu4qoDY0nZs+uOgSz3NyPi+MiUHNTR4+uOgSz3NyPi+PhoJrb3NXF5q6uqsMwy8X9uDg+E6i5H5w+DcBn/BxOa2Pux8XxmYCZWYO5CJiZNZiLgJlZg7kImJk1mC8M19y2uXOrDsEsN/fj4rgI1FzHyJFVh2CWm/txcTwcVHObzpxh05kzVYdhlov7cXFcBGpu09mzbDp7tuowzHJxPy6Oi4CZWYO5CJiZNZiLgJlZg7kImJk1mKeI1twz8+dXHYJZbu7HxXERqLkxI0ZUHYJZbu7HxfFwUM09evo0j6bL8Jq1K/fj4rgI1NyWri62+GEc1ubcj4uTqwhIeljSXyQdlLRd0sQe++6XdEzSEUkfyx+qmZkNtbxnAs8C8yJiPnAUuB9A0hxgGTAXuB14VJIH9czMhplcRSAifhURl9IfO4Hr0u2lwJMRcTEi/gocAxbmeS8zMxt6Q3lN4AvA7nT7PcDJHvtOpb8zM7NhpOUUUUl7gWt72bU2Inakx6wFLgE/fftlvRwffbS/HFie/nhR0qFWMTVEB3BuqBrr7T+kjQxpLtpco3NxRT9udC6ucMNgX9iyCETEbf3tl3Q38HFgUUS8/UV/Cpja47DrgL/10f5GYGPa1v6IWJAh7tpzLro5F92ci27ORTdJ+wf72ryzg24HvgYsiYg3e+zaCSyTNErSDGAm8Kc872VmZkMv7x3D3wNGAc9KAuiMiBUR8bKkLcBhkmGiL0XE5ZzvZWZmQyxXEYiI9/Wz7yHgoQE2uTFPPDXjXHRzLro5F92ci26DzoW6h/HNzKxpvGyEmVmDVVIEJN2eLidxTNLXe9k/StLmdP8LkqaXH2U5MuTiK5IOp0tz/FrSe6uIswytctHjuDslhaTazgzJkgtJn077xsuSflZ2jGXJ8BmZJuk5SQfSz8niKuIsmqTHJXX1NY1eie+meToo6aZMDUdEqf+AEcBx4HpgJPAiMOeKY1YCj6Xby4DNZcc5jHLxEWBMun1fk3ORHjcOeJ7kDvUFVcddYb+YCRwAJqU/X1N13BXmYiNwX7o9B3i16rgLysWtwE3AoT72Lya5YVfAzcALWdqt4kxgIXAsIk5ExH+AJ0mWmehpKfDjdHsbsEjp9KOaaZmLiHguuqff9lyao26y9AuA9cC3gH+XGVzJsuTii8D3I+IfABFR1yU2s+QigPHp9gT6uCep3UXE88D5fg5ZCvwkEp3ARElTWrVbRRHIsqTEO8dEsjbRBWByKdGVa6DLa9xL99IcddMyF5I+AEyNiF+UGVgFsvSLWcAsSX+Q1Jnes1NHWXLxIHCXpFPAM8CqckIbdga1XE8VTxbLsqRE5mUn2txAlte4C1gAfKjQiKrTby4kXQV8G7inrIAqlKVfXE0yJPRhkrPD30uaFxH/LDi2smXJxWeBTRHxiKRbgCfSXPyv+PCGlUF9b1ZxJpBlSYl3jpF0NckpXn+nQe0q0/Iakm4D1pLcmX2xpNjK1ioX44B5wG8lvUoy5rmzpheHs35GdkTEfyNZqfcISVGomyy5uBfYAhARfwRGk6wr1DSZl+vpqYoisA+YKWmGpJEkF353XnHMTuDudPtO4DeRXvmomZa5SIdANpAUgLqO+0KLXETEhYjoiIjpETGd5PrIkogY9Jopw1iWz8jTJJMGkNRBMjx0otQoy5ElF68DiwAkzSYpAn8vNcrhYSfwuXSW0M3AhYg40+pFpQ8HRcQlSV8G9pBc+X88kmUm1gH7I2In8COSU7pjJGcAy8qOswwZc/EwMBbYml4bfz0illQWdEEy5qIRMuZiD/BRSYeBy8BXI+KN6qIuRsZcrAF+KGk1yfDHPXX8o1HSz0mG/zrS6x/fAN4FEBGPkVwPWUzy/JY3gc9nareGuTIzs4x8x7CZWYO5CJiZNZiLgJlZg7kImJk1mIuAmVmDuQiYmTWYi4CZWYO5CJiZNdj/AfYEjbWN5IUkAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x2f41e659e80>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib inline\n",
"plot_pomdp_utility(utility)"
]
},
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
"metadata": {},
"source": [
"---\n",
"## Appendix\n",
"\n",
"Surprisingly, it turns out that there are six other optimal policies for various ranges of R(s). \n",
"You can try to find them out for yourself.\n",
"See **Exercise 17.5**.\n",
"To help you with this, we have a GridMDP editor in `grid_mdp.py` in the GUI folder. \n",
"<br>\n",
"Here's a brief tutorial about how to use it\n",
"<br>\n",
"Let us use it to solve `Case 2` above\n",
"1. Run `python gui/grid_mdp.py` from the master directory.\n",
"2. Enter the dimensions of the grid (3 x 4 in this case), and click on `'Build a GridMDP'`\n",
"3. Click on `Initialize` in the `Edit` menu.\n",
"4. Set the reward as -0.4 and click `Apply`. Exit the dialog. \n",
"\n",
"<br>\n",
"5. Select cell (1, 1) and check the `Wall` radio button. `Apply` and exit the dialog.\n",
"\n",
"<br>\n",
"6. Select cells (4, 1) and (4, 2) and check the `Terminal` radio button for both. Set the rewards appropriately and click on `Apply`. Exit the dialog. Your window should look something like this.\n",
"\n",
"<br>\n",
"7. You are all set up now. Click on `Build and Run` in the `Build` menu and watch the heatmap calculate the utility function.\n",
"\n",
"<br>\n",
"Green shades indicate positive utilities and brown shades indicate negative utilities. \n",
"The values of the utility function and arrow diagram will pop up in separate dialogs after the algorithm converges."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
},
"widgets": {
"state": {
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
"001e6c8ed3fc4eeeb6ab7901992314dd": {
"views": []
},
"00f29880456846a8854ab515146ec55b": {
"views": []
},
"010f52f7cde545cba25593839002049b": {
"views": []
},
"01473ad99aa94acbaca856a7d980f2b9": {
"views": []
},
"021a4a4f35da484db5c37c5c8d0dbcc2": {
"views": []
},
"02229be5d3bc401fad55a0378977324a": {
"views": []
},
"022a5fdfc8e44fb09b21c4bd5b67a0db": {
"views": [
{
"cell_index": 27
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
}
]
},
"025c3b0250b94d4c8d9b33adfdba4c15": {
"views": []
},
"028f96abfed644b8b042be1e4b16014d": {
"views": []
},
"0303bad44d404a1b9ad2cc167e42fcb7": {
"views": []
},
"031d2d17f32347ec83c43798e05418fe": {
"views": []
},
"03de64f0c2fd43f1b3b5d84aa265aeb7": {
"views": []
},
"03fdd484675b42ad84448f64c459b0e0": {
"views": []
},
"044cf74f03fd44fd840e450e5ee0c161": {
"views": []
},
"054ae5ba0a014a758de446f1980f1ba5": {
"views": []
},
"0675230fb92f4539bc257b768fb4cd10": {
"views": [
{
"cell_index": 27
}
]
},
"06c93b34e1f4424aba9a0b172c428260": {
"views": []
},
"077a5ea324be46c3ad0110671a0c6a12": {
"views": []
},
"0781138d150142a08775861a69beaec9": {
"views": []
},
"0783e74a8c2b40cc9b0f5706271192f4": {
"views": [
{
"cell_index": 27
}
]
},
"07c7678b73634e728085f19d7b5b84f7": {
"views": []
},
"07febf1d15a140d8adb708847dd478ec": {
"views": []
},
"08299b681cd9477f9b19a125e186ce44": {
"views": []
},
"083af89d82e445aab4abddfece61d700": {
"views": []
},
"08a1129a8bd8486bbfe2c9e49226f618": {
"views": []
},
"08a2f800c0d540fdb24015156c7ffc15": {
"views": []
},
"097d8d0feccc4c76b87bbcb3f1ecece7": {
"views": []
},
"098f12158d844cdf89b29a4cd568fda0": {
"views": [
{
"cell_index": 27
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
}
]
},
"09e96f9d5d32453290af60fbd29ca155": {
"views": []
},
"0a2ec7c49dcd4f768194483c4f2e8813": {
"views": []
},
"0b1d6ed8fe4144b8a24228e1befe2084": {
"views": []
},
"0b299f8157d24fa9830653a394ef806a": {
"views": []
},
"0b2a4ac81a244ff1a7b313290465f8f4": {
"views": []
},
"0b52cfc02d604bc2ae42f4ba8c7bca4f": {
"views": []
},
"0b65fb781274495ab498ad518bc274d4": {
"views": [
{
"cell_index": 27
}
]
},
"0b865813de0841c49b41f6ad5fb85c6a": {
"views": []
},
"0c2070d20fb04864aeb2008a6f2b8b30": {
"views": []
},
"0cf5319bcde84f65a1a91c5f9be3aa28": {
"views": []
},
"0d721b5be85f4f8aafe26b3597242d60": {
"views": []
},
"0d9f29e197ad45d6a04bbb6864d3be6d": {
"views": []
},
"0e03c7e2c0414936b206ed055e19acba": {
"views": []
},
"0e2265aa506a4778bfc480d5e48c388b": {
"views": []
},
"0e4e3d0b6afc413e86970ec4250df678": {
"views": []
},
"0e6a5fe6423542e6a13e30f8929a8b02": {
"views": []
},
"0e7b2f39c94343c3b0d3b6611351886e": {
"views": []
},
"0eb5005fa34440988bcf3be231d31511": {
"views": []
},
"104703ad808e41bc9106829bb0396ece": {
"views": []
},
"109c376b28774a78bf90d3da4587d834": {
"views": []
},
"10b24041718843da976ac616e77ea522": {
"views": []
},
"11516bb6db8b45ef866bd9be8bb59312": {
"views": []
},
"1203903354fa467a8f38dbbad79cbc81": {
"views": []
},
"124ecbe68ada40f68d6a1807ad6bcdf9": {
"views": []
},
"1264becdbb63455183aa75f236a3413e": {
"views": []
},
"13061cc21693480a8380346277c1b877": {
"views": []
},
"130dd4d2c9f04ad28d9a6ac40045a329": {
"views": []
},
"1350a087b5a9422386c3c5f04dd5d1c9": {
"views": []
},
"139bd19be4a4427a9e08f0be6080188e": {
"views": []
},
"13f9f589d36c477f9b597dda459efd16": {
"views": []
},
"140917b5c77348ec82ea45da139a3045": {
"views": []
},
"145419657bb1401ba934e6cea43d5fd1": {
"views": []
},
"15d748f1629d4da1982cd62cfbcb1725": {
"views": []
},
"17ad015dbc744ac6952d2a6da89f0289": {
"views": []
},
"17b6508f32e4425e9f43e5407eb55ed3": {
"views": []
},
"185598d8e5fc4dffae293f270a6e7328": {
"views": []
},
"196473b25f384f3895ee245e8b7874e9": {
"views": []
},
"19c0f87663a0431285a62d4ad6748046": {
"views": []
},
"1a00a7b7446d4ad8b08c9a2a9ea9c852": {
"views": []
},
"1a97f5b88cdc4ae0871578c06bbb9965": {
"views": []
},
"1a9a07777b0c4a45b33e25a70ebdc290": {
"views": []
},
"1af711fe8e4f43f084cef6c89eec40ae": {
"views": [
{
"cell_index": 27
}
]
},
"1aff6a6e15b34bb89d7579d445071230": {
"views": []
},
"1b1ea7e915d846aea9efeae4381b2c48": {
"views": []
},
"1ba02ae1967740b0a69e07dbe95635cb": {
"views": []
},
"1c5c913acbde4e87a163abb2e24e6e38": {
"views": [
{
"cell_index": 27
}
]
},
"1cfca0b7ef754c459e1ad97c1f0ceb3b": {
"views": []
},
"1d8f6a4910e649589863b781aab4c4d4": {
"views": []
},
"1e64b8f5a1554a22992693c194f7b971": {
"views": []
},
"1e8f0a2bf7614443a380e53ed27b48c0": {
"views": []
},
"1f4e6fa4bacc479e8cd997b26a5af733": {
"views": []
},
"1fdf09158eb44415a946f07c6aaba620": {
"views": []
},
"200e3ebead3d4858a47e2f6d345ca395": {
"views": [
{
"cell_index": 27
}
]
},
"2050d4b462474a059f9e6493ba06ac58": {
"views": []
},
"20b5c21a6e6a427ba3b9b55a0214f75e": {
"views": []
},
"20b99631feba4a9c98c9d5f74c620273": {
"views": []
},
"20bcff5082854ab89a7977ae56983e30": {
"views": []
},
"20d708bf9b7845fa946f5f37c7733fee": {
"views": []
},
"210b36ea9edf4ee49ae1ae3fe5005282": {
"views": []
},
"21415393cb2d4f72b5c3f5c058aeaf66": {
"views": []
},
"2186a18b6ed8405a8a720bae59de2ace": {
"views": []
},
"220dc13e9b6942a7b9ed9e37d5ede7ba": {
"views": []
},
"221a735fa6014a288543e6f8c7e4e2ef": {
"views": []
},
"2288929cec4d4c8faad411029f5e21fa": {
"views": []
},
"22b86e207ea6469d85d8333870851a86": {
"views": []
},
"23283ad662a140e3b5e8677499e91d64": {
"views": []
},
"23a7cc820b63454ca6be3dcfd2538ac1": {
"views": []
},
"240ed02d576546028af3edfab9ea8558": {
"views": []
},
"24678e52a0334cb9a9a56f92c29750be": {
"views": []
},
"247820f6d83f4dd9b68f5df77dbda4b7": {
"views": []
},
"24b6a837fbd942c9a68218fb8910dcd5": {
"views": []
},
"24ee3204f26348bca5e6a264973e5b56": {
"views": []
},
"262c7bb5bd7447f791509571fe74ae44": {
"views": []
},
"263595f22d0d45e2a850854bcefe4731": {
"views": []
},
"2640720aa6684c5da6d7870abcbc950b": {
"views": []
},
"265ca1ec7ad742f096bb8104d0cf1550": {
"views": []
},
"26bf66fba453464fac2f5cd362655083": {
"views": []
},
"29769879478f49e8b4afd5c0b4662e87": {
"views": []
},
"29a13bd6bc8d486ca648bf30c9e4c2a6": {
"views": []
},
"29c5df6267584654b76205fc5559c553": {
"views": []
},
"29ce25045e7248e5892e8aafc635c416": {
"views": []
},
"2a17207c43c9424394299a7b52461794": {
"views": []
},
"2a777941580945bc83ddb0c817ed4122": {
"views": []
},
"2ae1844e2afe416183658d7a602e5963": {
"views": []
},
"2afa2938b41944cf8c14e41a431e3969": {
"views": []
},
"2bdc5f9b161548e3aab8ea392b5af1a1": {
"views": []
},
"2c26b2bcfc96473584930a4b622d268e": {
"views": []
},
"2ca2a914a5f940b18df0b5cde2b79e4b": {
"views": []
},
"2ca2c532840548a9968d1c6b2f0acdd8": {
"views": []
},
"2d17c32bfea143babe2b114d8777b15d": {
"views": []
},
"2d3acd8872c342eab3484302cac2cb05": {
"views": [
{
"cell_index": 27
}
]
},
"2dc514cc2f5547aeb97059a5070dc9e3": {
"views": []
},
"2e1351ad05384d058c90e594bc6143c1": {
"views": [
{
"cell_index": 27
}
]
},
"2e9b80fa18984615933e41c1c1db2171": {
"views": []
},
"2ef17ee6b7c74a4bbbbbe9b1a93e4fb6": {
"views": []
},
"2f5438f1b34046a597a467effd43df11": {
"views": [
{
"cell_index": 27
}
]
},
"2f8d22417f3e421f96027fca40e1554f": {
"views": []
},
"2fb0409cfb49469d89a32597dc3edba9": {
"views": []
},
"303ccef837984c97b7e71f2988c737a4": {
"views": []
},
"3058b0808dca48a0bba9a93682260491": {
"views": []
},
"306b65493c28411eb10ad786bbf85dc5": {
"views": []
},
"30f5d30cf2d84530b3199015c5ff00eb": {
"views": []
},
"310b1ac518bd4079bdb7ecaf523a6809": {
"views": []
},
"313eca81d9d24664bcc837db54d59618": {
"views": []
},
"31413caf78c14548baa61e3e3c9edc55": {
"views": []
},
"317fbd3cb6324b2fbdfd6aa46a8d1192": {
"views": []
},
"319425ba805346f5ba366c42e220f9c6": {
"views": [
{
"cell_index": 27
}
]
},
"31fc8165275e473f8f75c6215b5184ff": {
"views": []
},
"329f12edaa0c44d2a619450f188e8777": {
"views": []
},
"32edf057582f4a6ca30ce3cb685bf971": {
"views": []
},
"330e74773ba148e18674cfa3e63cd6cc": {
"views": []
},
"332a89c03bfb49c2bb291051d172b735": {
"views": [
{
"cell_index": 27
}
]
},
"3347dfda0aca450f89dd9b39ca1bec7d": {
"views": []
},
"336e8bcfd7cc4a85956674b0c7bffff2": {
"views": []
},
"3376228b3b614d4ab2a10b2fd0f484fd": {
"views": []
},
"3380a22bc67c4be99c61050800f93395": {
"views": []
},
"34b5c16cbea448809c2ccbce56f8d5a5": {
"views": []
},
"34bb050223504afc8053ce931103f52c": {
"views": []
},
"34c28187175d49198b536a1ab13668c4": {
"views": []
},
"3521f32644514ecf9a96ddfa5d80fb9b": {
"views": []
},
"36511bd77ed74f668053df749cc735d4": {
"views": []
},
"36541c3490bd4268b64daf20d8c24124": {
"views": []
},
"37aa1dd4d76a4bac98857b519b7b523a": {
"views": []
},
"37aa3cfa3f8f48989091ec46ac17ae48": {
"views": []
},
"386991b0b1424a9c816dac6a29e1206b": {
"views": []
},
"386cf43742234dda994e35b41890b4d8": {
"views": []
},
"388571e8e0314dfab8e935b7578ba7f9": {
"views": [
{
"cell_index": 27
}
]
},
"3974e38e718547efaf0445da2be6a739": {
"views": []
},
"398490e0cc004d22ac9c4486abec61e1": {
"views": []
},
"399875994aba4c53afa8c49fae8d369e": {
"views": []
},
"39b64aa04b1d4a81953e43def0ef6e10": {
"views": []
},
"39ffc3dd42d94a27ba7240d10c11b565": {
"views": []
},
"3a21291c8e7249e3b04417d31b0447cf": {
"views": [
{
"cell_index": 27
}
]
},
"3a377d9f46704d749c6879383c89f5d3": {
"views": []
},
"3a44a6f1f62742849e96d957033a0039": {
"views": []
},
"3b22d68709b046e09fe70f381a3944cd": {
"views": [
{
"cell_index": 27
}
]
},
"3b329209c8f547acae1925dc3eb4af77": {
"views": []
},
"3c1b2ec10a9041be8a3fad9da78ff9f6": {
"views": [
{
"cell_index": 27
}
]
},
"3c2be3c85c6d41268bb4f9d63a43e196": {
"views": []
},
"3c6796eff7c54238a7b7776e88721b08": {
"views": []
},
"3cbca3e11edf439fb7f8ba41693b4824": {
"views": []
},
"3d4b6b7c0b0c48ff8c4b8d78f58e0f1c": {
"views": []
},
"3de1faf0d2514f49a99b3d60ea211495": {
"views": []
},
"3df60d9ac82b42d9b885d895629e372e": {
"views": []
},
"3e5b9fd779574270bf58101002c152ce": {
"views": [
{
"cell_index": 27
}
]
},
"3e80f34623c94659bfab5b3b56072d9a": {
"views": []
},
"3e8bb05434cb4a0291383144e4523840": {
"views": [
{
"cell_index": 27
}
]
},
"3ea1c8e4f9b34161928260e1274ee048": {
"views": []
},
"3f32f0915bc6469aaaf7170eff1111e3": {
"views": []
},
"3fe69a26ae7a46fda78ae0cb519a0f8b": {
"views": []
},
"4000ecdd75d9467e9dffd457b35aa65f": {
"views": []
},
"402d346f8b68408faed2fd79395cf3fb": {
"views": []
},
"402f4116244242148fdc009bb399c3bd": {
"views": []
},
"4049e0d7c0d24668b7eae2bb7169376e": {
"views": []
},
"4088c9ed71b0467b9b9417d5b04eda0e": {
"views": []
},
"40d70faa07654b6cb13496c32ba274b3": {
"views": []
},
"4146be21b7614abe827976787ec570f1": {
"views": []
},
"4198c08edda440dd93d1f6ce3e4efa62": {
"views": []
},
"42023d7d3c264f9d933d4cee4362852b": {
"views": []
},
"421ad8c67f754ce2b24c4fa3a8e951cf": {
"views": []
},
"4263fe0cef42416f8d344c1672f591f9": {
"views": []
},
"428e42f04a1e4347a1f548379c68f91b": {
"views": [
{
"cell_index": 27
}
]
},
"42a47243baf34773943a25df9cf23854": {
"views": []
},
"4343b72c91d04a7c9a6080f30fc63d7d": {
"views": []
},
"43488264fc924c01a30fa58604074b07": {
"views": []
},
"4379175239b34553bf45c8ef9443ac55": {
"views": [
{
"cell_index": 27
}
]
},
"43859798809a4a289c58b4bd5e49d357": {
"views": []
},
"43ad406a61a34249b5622aba9450b23d": {
"views": []
},
"4421c121414d464bb3bf1b5f0e86c37b": {
"views": [
{
"cell_index": 27
}
]
},
"445cc08b4da44c2386ac9379793e3506": {
"views": []
},
"447cff7e256c434e859bb7ce9e5d71c8": {
"views": []
},
"44af7da9d8304f07890ef7d11a9f95fe": {
"views": []
},
"45021b6f05db4c028a3b5572bc85217f": {
"views": []
},
"457768a474844556bf9b215439a2f2e9": {
"views": []
},
"45d5689de53646fe9042f3ce9e281acc": {
"views": []
},
"461aa21d57824526a6b61e3f9b5af523": {
"views": []
},
"472ca253aab34b098f53ed4854d35f23": {
"views": []
},
"4731208453424514b471f862804d9bb8": {
"views": [
{
"cell_index": 27
}
]
},
"47dfef9eaf0e433cb4b3359575f39480": {
"views": []
},
"48220a877d494a3ea0cc9dae19783a13": {
"views": []
},
"4882c417949b4b6788a1c3ec208fb1ac": {
"views": []
},
"49f5c38281984e3bad67fe3ea3eb6470": {
"views": []
},
"4a0d39b43eee4e818d47d382d87d86d1": {
"views": []
},
"4a470bf3037047f48f4547b594ac65fa": {
"views": []
},
"4abab5bca8334dfbb0434be39eb550db": {
"views": []
},
"4b48e08fd383489faa72fc76921eac4e": {
"views": []
},
"4b9439e6445c4884bd1cde0e9fd2405e": {
"views": []
},
"4b9fa014f9904fcf9aceff00cc1ebf44": {
"views": []
},
"4bdc63256c3f4e31a8fa1d121f430518": {
"views": []
},
"4bebb097ddc64bbda2c475c3a0e92ab5": {
"views": []
},
"4c201df21ca34108a6e7b051aa58b7f6": {
"views": []
},
"4ced8c156fd941eca391016fc256ce40": {
"views": []
},
"4d281cda33fa489d86228370e627a5b0": {
"views": [
{
"cell_index": 27
}
]
},
"4d85e68205d94965bdb437e5441b10a1": {
"views": []
},
"4e0e6dd34ba7487ba2072d352fe91bf5": {
"views": []
},
"4e82b1d731dd419480e865494f932f80": {
"views": []
},
"4e9f52dea051415a83c4597c4f7a6c00": {
"views": []
},
"4ec035cba73647358d416615cf4096ee": {
"views": [
{
"cell_index": 27
}
]
},
"4f09442f99aa4a9e9f460f82a50317c4": {
"views": []
},
"4f80b4e6b074475698efbec6062e3548": {
"views": []
},
"4f905a287b4f4f0db64b9572432b0139": {
"views": []
},
"50a339306cd549de86fbe5fa2a0a3503": {
"views": []
},
"51068697643243e18621c888a6504434": {
"views": []
},
"51333b89f44b41aba813aef099bdbb42": {
"views": []
},
"5141ae07149b46909426208a30e2861e": {
"views": [
{
"cell_index": 27
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
}
]
},
"515606cb3b3a4fccad5056d55b262db4": {
"views": []
},
"51aa6d9f5a90481db7e3dd00d77d4f09": {
"views": []
},
"524091ea717d427db2383b46c33ef204": {
"views": []
},
"524d1132c88f4d91b15344cc427a9565": {
"views": []
},
"52f70e249adc4edb8dca28b883a5d4f4": {
"views": []
},
"531c080221f64b8ca50d792bbaa6f31e": {
"views": []
},
"53349c544b54450f8e2af9b8ba176d78": {
"views": []
},
"53a8b8e7b7494d02852a0dc5ccca51a2": {
"views": []
},
"53c963469eee41b59479753201626f18": {
"views": []
},
"5436516c280a49828c1c2f4783d9cf0e": {
"views": []
},
"55a1b0b794f44ac796bc75616f65a2a1": {
"views": [
{
"cell_index": 27
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
}
]
},
"55ebf735de4c4b5ba2f09bc51d3593fd": {
"views": []
},
"56007830e925480e94a12356ff4fb6a4": {
"views": []
},
"56def8b3867843f990439b33dab3da58": {
"views": []
},
"5719bb596a5649f6af38c11c3daae6e9": {
"views": []
},
"572245b145014b6e91a3b5fe55e4cf78": {
"views": []
},
"5728da2e2d5a4c5595e1f49723151dca": {
"views": []
},
"579673c076da4626bc34a34370702bd4": {
"views": []
},
"57c2148f18314c3789c3eb9122a85c86": {
"views": []
},
"58066439757048b98709d3b3f99efdf8": {
"views": []
},
"58108da85e9443ea8ba884e8adda699e": {
"views": []
},
"583f252174d9450196cdc7c1ebab744f": {
"views": []
},
"58b92095873e4d22895ee7dde1f8e09a": {
"views": []
},
"58be1833a5b344fb80ec86e08e8326da": {
"views": []
},
"58ee0f251d7c4aca82fdace15ff52414": {
"views": []
},
"590f2f9f8dc342b594dc9e79990e641f": {
"views": []
},
"593c6f6b541e49be95095be63970f335": {
"views": []
},
"593d3f780c1a4180b83389afdb9fecfe": {
"views": []
},
"5945f05889be40019f93a90ecd681125": {
"views": []
},
"595c537ed2514006ac823b4090cf3b4b": {
"views": [
{
"cell_index": 27
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
}
]
},
"599cfb7471ec4fd29d835d2798145a54": {
"views": []
},
"5a8d17dc45d54463a6a49bad7a7d87ac": {
"views": []
},
"5bb323bde7e4454e85aa18fda291e038": {
"views": []
},
"5bc5e0429c1e4863adc6bd1ff2225b6d": {
"views": []
},
"5bd0fafc4ced48a5889bbcebc9275e40": {
"views": []
},
"5ccf965356804bc38c94b06698a2c254": {
"views": []
},
"5d1f96bedebf489cac8f820c783f7a14": {
"views": []
},
"5d3fc58b96804b57aad1d67feb26c70a": {
"views": []
},
"5d41872e720049198a319adc2f476276": {
"views": []
},
"5d7a630da5f14cd4969b520c77bc5bc5": {
"views": []
},
"5da153e0261e43af8fd1c3c5453cace0": {
"views": []
},
"5dde90afb01e44888d3c92c32641d4e2": {
"views": []
},
"5de2611543ff4475869ac16e9bf406fd": {
"views": []
},
"5e03db9b91124e79b082f7e3e031a7d3": {
"views": []
},
"5e576992ccfe4bb383c88f80d9746c1d": {
"views": []
},
"5e91029c26c642a9a8c90186f3acba8e": {
"views": []
},
"5ea2a6c21b9845d18f72757ca5af8340": {
"views": []
},
"5ef08dc24584438c8bc6c618763f0bc8": {
"views": []
},
"5f823979d2ce4c34ba18b4ca674724e4": {
"views": [
{
"cell_index": 27
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
}
]
},
"5fc7b070fc1a4e809da4cda3a40fc6d9": {
"views": []
},
"601ca9a27da94a6489d62ac26f2805a9": {
"views": []
},
"605cbb1049a4462e9292961e62e55cee": {
"views": []
},
"60addd9bec3f4397b20464fdbcf66340": {
"views": []
},
"60e17d6811c64dc8a69b342abe20810a": {
"views": []
},
"611840434d9046488a028618769e4b86": {
"views": []
},
"627ab7014bbf404ba8190be17c22e79d": {
"views": []
},
"633aa1edce474560956be527039800e7": {
"views": []
},
"63b6e287d1aa48efad7c8154ddd8f9c4": {
"views": []
},
"63dcfdb9749345bab675db257bda4b81": {
"views": []
},
"640ba8cc905a4b47ad709398cc41c4e3": {
"views": []
},
"644dcff39d7c47b7b8b729d01f59bee5": {
"views": [
{
"cell_index": 27
}
]
},
"6455faf9dbc6477f8692528e6eb90c9a": {
"views": [
{
"cell_index": 27
}
]
},
"64ca99573d5b48d2ba4d5815a50e6ffe": {
"views": []
},
"65d7924ba8c44d3f98a1d2f02dc883f1": {
"views": []
},
"665ed2b201144d78a5a1f57894c2267c": {
"views": [
{
"cell_index": 27
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
}
]
},
"66742844c1cd47ddbbe9aacf2e805f36": {
"views": []
},
"6678811915f14d0f86660fe90f63bd60": {
"views": []
},
"66a04a5cf76e429cadbebfc527592195": {
"views": []
},
"66e5c563ffe94e29bab82fdecbd1befa": {
"views": []
},
"673066e0bb0b40e288e6750452c52bf6": {
"views": []
},
"67ae0fb9621d488f879d0e3c458e88e9": {
"views": []
},
"687702eca5f74e458c8d43447b3b9ed5": {
"views": []
},
"68a4135d6f0a4bae95130539a2a44b3c": {
"views": []
},
"68c3a74e9ea74718b901c812ed179f47": {
"views": []
},
"694bd01e350449c2a40cd4ffc5d5a873": {
"views": []
},
"6981c38c44ad4b42bfb453b36d79a0e6": {
"views": []
},
"69e08ffffce9464589911cc4d2217df2": {
"views": []
},
"6a28f605a5d14589907dba7440ede2fc": {
"views": [
{
"cell_index": 27
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
}
]
},
"6a74dc52c2a54837a64ad461e174d4e0": {
"views": []
},
"6ad1e0bf705141b3b6e6ab7bd6f842ea": {
"views": []
},
"6b37935db9f44e6087d1d262a61d54ac": {
"views": []
},
"6b402f0f3afb4d0dad0e2fa8b71aa890": {
"views": []
},
"6bc95be59a054979b142d2d4a8900cf2": {
"views": []
},
"6ce0ea52c2fc4a18b1cce33933df2be4": {
"views": []
},
"6d7effd6bc4c40a4b17bf9e136c5814c": {
"views": [
{
"cell_index": 27
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
}
]
},
"6d9a639e949c4d1d8a7826bdb9e67bb5": {
"views": []
},
"6e18fafd95744f689c06c388368f1d21": {
"views": []
},
"6e2bc4a1e3424e2085d0363b7f937884": {
"views": []
},
"6e30c494930c439a996ba7c77bf0f721": {
"views": []
},
"6e682d58cc384145adb151652f0e3d15": {
"views": []
},
"6f08def65d27471b88fb14e9b63f9616": {
"views": []
},
"6f20c1dc00ef4a549cd9659a532046bf": {
"views": []
},
"6f605585550d4879b2f27e2fda0192be": {
"views": []
},
"706dd4e39f194fbbba6e34acd320d1c3": {
"views": []
},
"70f21ab685dc4c189f00a17a1810bbad": {
"views": []
},
"7101b67c47a546c881fdaf9c934c0264": {
"views": []
},
"71b0137b5ed741be979d1896762e5c75": {
"views": []
},
"7223df458fdf4178af0b9596e231c09c": {
"views": []
},
"7262519db6f94e2a9006c68c20b79d29": {
"views": []
},
"72dfe79a3e52429da1cf4382e78b2144": {
"views": [
{
"cell_index": 27
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
}
]
},
"72e8d31709eb4e3ea28af5cb6d072ab2": {
"views": []
},
"73647a1287424ee28d2fb3c4471d720c": {
"views": []
},
"739c5dde541a41e1afae5ba38e4b8ee3": {
"views": []
},
"74187cc424a347a5aa73b8140772ec68": {
"views": []
},
"7418edf751a6486c9fae373cde30cb74": {
"views": []
},
"744302ec305b4405894ed1459b9d41d0": {
"views": []
},
"74dfbaa15be44021860f7ba407810255": {
"views": []
},
"750a30d80fd740aaabc562c0564f02a7": {
"views": []
},
"75e344508b0b45d1a9ae440549d95b1a": {
"views": [
{
"cell_index": 27
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
}
]
},
"766efd1cfee542d3ba068dfa1705c4eb": {
"views": []
},
"7738084e8820466f9f763d49b4bf7466": {
"views": []
},
"781855043f1147679745947ff30308fa": {
"views": []
},
"78e2cfb79878452fa4f6e8baea88f822": {
"views": []
},
"796027b3dd6b4b888553590fecd69b29": {
"views": []
},
"7a302f58080c4420b138db1a9ed8103e": {
"views": []
},
"7a3c362499f54884b68e951a1bcfc505": {
"views": []
},
"7a4ee63f5f674454adf660bfcec97162": {
"views": []
},
"7ac2c18126414013a1b2096233c88675": {
"views": []
},
"7b1e3c457efa4f92ab8ff225a1a2c45e": {
"views": []
},
"7b8897b4f8094eef98284f5bb1ed5d51": {
"views": []
},
"7bbfd7b13dd242f0ac15b36bb437eb22": {
"views": []
},
"7d3c88bc5a0f4b428174ff33d5979cfd": {
"views": []
},
"7d4f53bd14d44f3f80342925f5b0b111": {
"views": []
},
"7d95ca693f624336a91c3069e586ef1b": {
"views": []
},
"7dcdc07b114e4ca69f75429ec042fabf": {
"views": []
},
"7e79b941d7264d27a82194c322f53b80": {
"views": []
},
"7f2f98bbffc0412dbb31c387407a9fed": {
"views": [
{
"cell_index": 27
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
}
]
},
"7f4688756da74b369366c22fd99657f4": {
"views": []
},
"7f7ed281359f4a55bbe75ce841dd1453": {
"views": []
},
"7fdf429182a740a097331bddad58f075": {
"views": []
},
"81b312df679f4b0d8944bc680a0f517e": {
"views": []
},
"82036e8fa76544ae847f2c2fc3cf72c2": {
"views": []
},
"821f1041188a43a4be4bdaeb7fa2f201": {
"views": []
},
"827358a9b4ce49de802df37b7b673aea": {
"views": []
},
"82db288a0693422cbd846cc3cb5f0415": {
"views": []
},
"82e2820c147a4dff85a01bcddbad8645": {
"views": [
{
"cell_index": 27
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
}
]
},
"82f795491023435e8429ea04ff4dc60a": {
"views": []
},
"8317620833b84ccebc4020d90382e134": {
"views": []
},
"8346e26975524082af27967748792444": {
"views": []
},
"83f8ed39d0c34dce87f53f402d6ee276": {
"views": []
},
"844ac22a0ebe46db84a6de7472fe9175": {
"views": []
},
"849948fe6e3144e1b05c8df882534d5a": {
"views": []
},
"85058c7c057043b185870da998e4be61": {
"views": []
},
"85443822f3714824bec4a56d4cfed631": {
"views": []
},
"8566379c7ff943b0bb0f9834ed4f0223": {
"views": []
},
"85a3c6f9a0464390be7309edd36c323c": {
"views": []
},
"85d7a90fbac640c9be576f338fa25c81": {
"views": []
},
"85f31444b4e44e11973fd36968bf9997": {
"views": []
},
"867875243ad24ff6ae39b311efb875d3": {
"views": []
},
"8698bede085142a29e9284777f039c93": {
"views": []
},
"86bf40f5107b4cb6942800f3930fdd41": {
"views": []
},
"874c486c4ebb445583bd97369be91d9b": {
"views": []
},
"87c469625bda412185f8a6c803408064": {
"views": []
},
"87d4bd76591f4a9f991232ffcff3f73b": {
"views": []
},
"87df3737c0fc4e848fe4100b97d193df": {
"views": []
},
"886b599c537b467ab49684d2c2f8fb78": {
"views": []
},
"889e19694e8043e289d8efc269eba934": {
"views": []
},
"88c628983ad1475ea3a9403f6fea891c": {
"views": []
},
"88c807c411d34103ba2e31b2df28b947": {
"views": []
},
"895ddca8886b4c06ad1d71326ca2f0af": {
"views": []
},
"899cc011a1bd4046ac798bc5838c2150": {
"views": []
},
"89d0e7a3090c47df9689d8ca28914612": {
"views": []
},
"89ea859f8bbd48bb94b8fa899ab69463": {
"views": []
},
"8a600988321e4e489450d26dedaa061f": {
"views": []
},
"8adcca252aff41a18cca5d856c17e42f": {
"views": []
},
"8b2fe9e4ea1a481089f73365c5e93d8b": {
"views": []
},
"8b5acd50710c4ca185037a73b7c9b25c": {
"views": []
},
"8bbdba73a1454cac954103a7b1789f75": {
"views": []
},
"8cffde5bdb3d4f7597131b048a013929": {
"views": [
{
"cell_index": 27
}
]
},
"8db2abcad8bc44df812d6ccf2d2d713c": {
"views": [
{
"cell_index": 27
}
]
},
"8dd5216b361c44359ba1233ee93683a4": {
"views": [
{
"cell_index": 27
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
}
]
},
"8e13719438804be4a0b74f73e25998cd": {
"views": []
},
"8eb4ff3279fe4d43a9d8ee752c78a956": {
"views": []
},
"8f577d437d4743fd9399fefcd8efc8cb": {
"views": []
},
"8f8fbe8fd1914eae929069aeeac16b6d": {
"views": []
},
"8f9b8b5f7dd6425a9e8e923464ab9528": {
"views": []
},
"8f9e3422db114095a72948c37e98dd3e": {
"views": []
},
"8fd325068289448d990b045520bad521": {
"views": []
},
"9039bc40a5ad4a1c87272d82d74004e2": {
"views": []
},
"90bf5e50acbb4bccad380a6e33df7e40": {
"views": []
},
"91028fc3e4bc4f6c8ec752b89bcf3139": {
"views": []
},
"9274175be7fb47f4945e78f96d39a7a6": {
"views": []
},
"929245675b174fe5bfa102102b8db897": {
"views": []
},
"92be1f7fb2794c9fb25d7bbb5cbc313d": {
"views": []
},
"933904217b6045c1b654b7e5749203f5": {
"views": [
{
"cell_index": 27
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
}
]
},
"936bc7eb12e244c196129358a16e14bb": {
"views": []
},
"936c09f4dde8440b91e9730a0212497c": {
"views": []
},
"9406b6ae7f944405a0e8a22f745a39b2": {
"views": []
},
"942a96eea03740719b28fcc1544284d4": {
"views": []
},
"94840e902ffe4bbba5b374ff4d26f19f": {
"views": []
},
"948d01f0901545d38e05f070ce4396e4": {
"views": []
},
"94e2a0bc2d724f7793bb5b6d25fc7088": {
"views": []
},
"94f2b877a79142839622a61a3a081c03": {
"views": [
{
"cell_index": 27
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
}
]
},
"94f30801a94344129363c8266bf2e1f8": {
"views": []
},
"95b127e8aff34a76a813783a6a3c6369": {
"views": []
},
"95d44119bf714e42b163512d9a15bbc5": {
"views": []
},
"95f016e9ea9148a4a3e9f04cb8f5132d": {
"views": []
},
"968e9e9de47646409744df3723e87845": {
"views": []
},
"97207358fc65430aa196a7ed78b252f0": {
"views": [
{
"cell_index": 27
}
]
},
"9768d539ee4044dc94c0bd5cfb827a18": {
"views": []
},
"98587702cc55456aa881daf879d2dc8d": {
"views": []
},
"986c6c4e92964759903d6eb7f153df8a": {
"views": [
{
"cell_index": 27
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
}
]
},
"987d808edd63404f8d6f2ce42efff33a": {
"views": []
},
"9895c26dfb084d509adc8abc3178bad3": {
"views": []
},
"994bc7678f284a24a8700b2a69f09f8d": {
"views": []
},
"99eee4e3d9c34459b12fe14cee543c28": {
"views": []
},
"9a5c0b0805034141a1c96ddd57995a3c": {
"views": []
},
"9a7862bb66a84b4f897924278a809ef3": {
"views": []
},
"9b812f733f6a4b60ba4bf725959f7913": {
"views": []
},
"9bb5ae9ff9c94fe7beece9ce43f519af": {
"views": []
},
"9bfde7b437fb4e76a16a49574ea5b7ec": {
"views": []
},
"9c1d14484b6d4ab3b059731f17878d14": {
"views": []
},
"9c7a66ead55e48c8b92ef250a5a464b7": {
"views": []
},
"9ce50a53aafe439ebb19fff363c1bfe2": {
"views": []
},
"9d5e9658af264ad795f6a5f3d8c3c30f": {
"views": [
{
"cell_index": 27
}
]
},
"9d7aa65511b6482d9587609ad7898f54": {
"views": [
{
"cell_index": 27
}
]
},
"9d87f94baf454bd4b529e55e0792a696": {
"views": []
},
"9de4bd9c6a7b4f3dbd401df15f0b9984": {
"views": []
},
"9dfd6b08a2574ed89f0eb084dae93f73": {
"views": []
},
"9e1dffcb1d9d48aaafa031da2fb5fed9": {
"views": []
},
"9efb46d2bb0648f6b109189986f4f102": {
"views": [
{
"cell_index": 27
}
]
},
"9f1439500d624f769dd5e5c353c46866": {
"views": []
},
"9f27ba31ccc947b598dc61aefca16a7f": {
"views": []
},
"9f31a58b6e8e4c79a92cf65c497ee000": {
"views": []
},
"9f43f85a0fb9464e9b7a25a85f6dba9c": {
"views": [
{
"cell_index": 27
}
]
},
"9f4970dc472946d48c14e93e7f4d4b70": {
"views": []
},
"9f5dd25217a84799b72724b2a37281ea": {
"views": []
},
"9faa50b44e1842e0acac301f93a129c4": {
"views": [
{
"cell_index": 27
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
}
]
},
"a0202917348d4c41a176d9871b65b168": {
"views": []
},
"a058f021f4ca4daf8ab830d8542bf90b": {
"views": []
},
"a0a2dded995543a6b68a67cd91baa252": {
"views": []
},
"a0e170b3ea484fd984985d2607f90ef3": {
"views": []
},
"a168e79f4cbb44c8ac7214db964de5f2": {
"views": []
},
"a182b774272b48238b55e3c4d40e6152": {
"views": []
},
"a1840ca22d834df2b145151baf6d8241": {
"views": [
{
"cell_index": 27
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
}
]
},
"a1bb2982e88e4bb1a2729cc08862a859": {
"views": []
},
"a1d897a6094f483d8fc9a3638fbc179d": {
"views": []
},
"a231ee00d2b7404bb0ff4e303c6b04ee": {
"views": []
},
"a29fdc2987f44e69a0343a90d80c692c": {
"views": []
},
"a2de3ac1f4fe423997c5612b2b21c12f": {
"views": []
},
"a30ba623acec4b03923a2576bcfcbdf5": {
"views": []
},
"a3357d5460c5446196229eae087bb19e": {
"views": []
},
"a358d9ecd754457db178272315151fa3": {
"views": []
},
"a35aec268ac3406daa7fe4563f83f948": {
"views": []
},
"a38c5ed35b9945008341c2d3c0ef1470": {
"views": []
},
"a39cfb47679c4d2895cda12c6d9d2975": {
"views": [
{
"cell_index": 27
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
}
]
},
"a55227f2fd5d42729fc4fd39a8c11914": {
"views": []
},
"a65af2c8506d47ec803c15815e2ab445": {
"views": []
},
"a6d2366540004eeaab760c8be196f10a": {
"views": []
},
"a709f15a981a468b9471a0f672f961a7": {
"views": []
},
"a7258472ad944d038cd227de28d9155f": {
"views": []
},
"a72eb43242c34ef19399c52a77da8830": {
"views": []
},
"a7568aed621548649e37cfa6423ca198": {
"views": []
},
"a83f7f5c09a845ecb3f5823c1d178a54": {
"views": []
},
"a87c651448f14ce4958d73c2f1e413e1": {
"views": [
{
"cell_index": 27
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
}
]
},
"a8e78f5bc64e412ab44eb9c293a7e63b": {
"views": []
},
"a996d507452241e0b99aabe24eecbdd9": {
"views": []
},
"a9a4b7a2159e40f8aa93a50f11048342": {
"views": []
},
"a9cc48370b964a888f8414e1742d6ff2": {
"views": []
},
"a9dcbe9e9a4445bf9cf8961d4c1214a6": {
"views": []
},
"aab29dfddb98416ea815475d6c6a3eed": {
"views": []
},
"ab89783a86bc4939a5f78957f4019553": {
"views": []
},
"abaee5bb577d4a68b6898d637a4c7898": {
"views": []
},
"abecb04251e04260860074b8bdad088a": {
"views": []
},
"acc07b8cf2cf4d50ae1bceef2254637f": {
"views": []
},
"ae3ee1ee05a2443c8bf2f79cd9e86e56": {
"views": []
},
"ae4e85e2bceb4ec783dbfaaf3a174ea7": {
"views": []
},
"aec1a51db98f470cb0854466f3461fc1": {
"views": []
},
"afc5dccd3db64a1592ee0b2fd516b71d": {
"views": []
},
"afe28f5bae8941b19717e3d7285ddc61": {
"views": []
},
"b00516b171544bca9113adc99ed528a1": {
"views": []
},
"b005d7f2afbe479eb02678447a079a1a": {
"views": []
},
"b020ad1a7750461bb79fe4e74b9384f6": {
"views": []
},
"b07d0aab375142978e1261a6a4c94b10": {
"views": []
},
"b2c18df5c51649cdbdaf64092fc945b3": {
"views": []
},
"b410c14ee52d4af49c08da115db85ac7": {
"views": []
},
"b41220079b2b49c2ba6f59dcfe9e7757": {
"views": []
},
"b445a187ca6943bbb465782a67288ce5": {
"views": []
},
"b4dfb435038645dc9673ea4257fc26f3": {
"views": []
},
"b5633708bd8b4abdaec77a96aca519bb": {
"views": []
},
"b59b2622026d4ec582354d919e16f658": {
"views": []
},
"b635f31747e14f989c7dee2ba5d5caa5": {
"views": []
},
"b63dfdde813a4f019998e118b5168943": {
"views": []
},
"b6c3d440986d44ed88a9471a69b70e05": {
"views": []
},
"b6ee195c9bfd48ee8526b8cf0f3322b9": {
"views": []
},
"b7064dd21c9949d79f40c73fee431dff": {
"views": []
},
"b7537298609f4d64b8e36692b84f376c": {
"views": []
},
"b755013f41fa4dce8e2bab356d85d26d": {
"views": []
},
"b7cd4bfabc2e40fe9f30de702ae63716": {
"views": []
},
"b7e4c497ff5c4173961ffdc3bd3821a9": {
"views": [
{
"cell_index": 27
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
}
]
},
"b821a13ce3e8453d85f07faccc95fee1": {
"views": []
},
"b86ea9c1f1ee45a380e35485ad4e2fac": {
"views": []
},
"b87f4d4805944698a0011c10d626726c": {
"views": []
},
"b8e173c7c8be41df9161cbbe2c4c6c86": {
"views": []
},
"b9322adcd8a241478e096aa1df086c78": {
"views": []
},
"b9ad471398784b6889ce7a1d2ef5c4c0": {
"views": []
},
"b9c138598fce460692cc12650375ee52": {
"views": [
{
"cell_index": 27
}
]
},
"ba146eb955754db88ba6c720e14ea030": {
"views": []
},
"ba48cba009e8411ea85c7e566a47a934": {
"views": []
},
"bb2793de83a64688b61a2007573a8110": {
"views": []
},
"bb53891d7f514a17b497f699484c9aed": {
"views": []
},
"bbe5dea9d57d466ba4e964fce9af13cf": {
"views": [
{
"cell_index": 27
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
}
]
},
"bbe88faf528d44a0a9083377d733d66a": {
"views": []
},
"bc0525d022404722a921132e61319e46": {
"views": []
},
"bc320fb35f5744cc82486b85f7a53b6f": {
"views": []
},
"bc900e9562c546f9ae3630d5110080ec": {
"views": []
},
"bcbf6b3ff19d4eb5aa1b8a57672d7f6f": {
"views": []
},
"bccf183ccb0041e380732005f2ca2d0a": {
"views": []
},
"bd0d18e3441340a7a56403c884c87a8e": {
"views": []
},
"bd21e4fe92614c22a76ae515077d2d11": {
"views": []
},
"bd5b05203cfd402596a6b7f076c4a8f8": {
"views": []
},
"beb0c9b29d8d4d69b3147af666fa298b": {
"views": [
{
"cell_index": 27
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
}
]
},
"bf0d147a6a1346799c33807404fa1d46": {
"views": []
},
"c03d4477fa2a423dba6311b003203f62": {
"views": []
},
"c05697bcb0a247f78483e067a93f3468": {
"views": []
},
"c09c3d0e94ca4e71b43352ca91b1a88a": {
"views": []
},
"c0d015a0930e4ddf8f10bbace07c0b24": {
"views": []
},
"c15edd79a0fd4e24b06d1aae708a38c4": {
"views": []
},
"c20b6537360f4a70b923e6c5c2ba7d9b": {
"views": []
},
"c21fff9912924563b28470d32f62cd44": {
"views": []
},
"c2482621d28542268a2b0cbf4596da37": {
"views": []
},
"c25bd0d8054b4508a6b427447b7f4576": {
"views": []
},
"c301650ac4234491af84937a8633ad76": {
"views": []
},
"c333a0964b1e43d0817e73cb47cf0317": {
"views": []
},
"c36213b1566843ceb05b8545f7d3325c": {
"views": []
},
"c37d0add29fa4f41a47caf6538ec6685": {
"views": []
},
"c409a01effb945c187e08747e383463c": {
"views": []
},
"c4e104a7b731463688e0a8f25cf50246": {
"views": []
},
"c54f609af4e94e93b57304bc55e02eba": {
"views": []
},
"c576bf6d24184f3a9f31d4f40231ce87": {
"views": []
},
"c58ab80a895344008b5aadd8b8c628a4": {
"views": []
},
"c5d28bea41da447e88f4cec9cfaaf197": {
"views": []
},
"c74bbd55a8644defa3fcef473002a626": {
"views": [
{
"cell_index": 27
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
}
]
},
"c856e77b213b400599b6e026baaa4c85": {
"views": []
},
"c894f9e350a1473abb28ff651443ae6f": {
"views": []
},
"c8e3827ae28b45bc9768a8c3e35cc8b1": {
"views": []
},
"c95bf1935b71400e98c63722b77caa08": {
"views": []
},
"c9e5129d30ea4b78b846e8e92651b0e9": {
"views": []
},
"ca2123c7b103485c851815cbcb4a6c17": {
"views": []
},
"ca34917db02148168daf0c30ceed7466": {
"views": []
},
"caa6adf7b0d243da8229c317c7482fe3": {
"views": []
},
"cb924475ebb64e76964f88e830979d38": {
"views": []
},
"cba1473ccaee4b2a89aba4d2b4b1e648": {
"views": []
},
"cbd735eb8eb446069ee912d795ccaf14": {
"views": []
},
"cc0ee37900ef40069515c79e99a9a875": {
"views": []
},
"cc564bca35c743b89697f5cfd4ecccc2": {
"views": []
},
"cc5a47588e2b4c8eb5deff560a0256c2": {
"views": []
},
"ccc64ac3a8a84ae9815ff9e8bdc3279d": {
"views": []
},
"cd02a06cec7342438f8585af6227db96": {
"views": []
},
"cd236465e91d4a90a2347e6baab6ab71": {
"views": []
},
"cd9a0aa1700a4407ab445053029dca18": {
"views": []
},
"cdd6c6a945a74c568d611b42e4ba8a1a": {
"views": []
},
"cdf0323ea1324c0b969f49176ecee1c2": {
"views": []
},
"ce3a0e82e80d48b9b2658e0c52196644": {
"views": [
{
"cell_index": 27
}
]
},
"ce6ad0459f654b6785b3a71ccdf05063": {
"views": []
},
"ce8d3cd3535b459c823da2f49f3cc526": {
"views": [
{
"cell_index": 27
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
}
]
},
"cf8c8f791d0541ffa4f635bb07389292": {
"views": []
},
"cfed29ab68f244e996b0d571c31020ec": {
"views": []
},
"d034cbd7b06a448f98b3f11b68520c08": {
"views": []
},
"d13135f5facc4c5996549a85974145a1": {
"views": []
},
"d18c7c17fa93493ebc622fe3d2c0d44e": {
"views": []
},
"d23b743d7d0342aca257780f2df758d6": {
"views": []
},
"d2fe43f4a2064078a6c8da47f8afb903": {
"views": []
},
"d34f626ca035456bb9e0c9ad2a9dced1": {
"views": []
},
"d359911be08f4342b20e86a954cd060f": {
"views": []
},
"d4d76a1c09a342e79cd6733886626459": {
"views": []
},
"d58d12f54e2b426fba4ca611b0ffc68f": {
"views": []
},
"d5e2a77d429d4ca0969e1edec5dc2690": {
"views": []
},
"d5f4bbe3242245f0a2c3b18a284e55f8": {
"views": []
},
"d6c325f3069a4186b3022619f4280c37": {
"views": []
},
"d6d46520bbcf495bad20bcd266fe1357": {
"views": []
},
"d72b7c8058324d1bb56b6574090ccda6": {
"views": []
},
"d73bbb49a33d49e187200fa7c8f23aaa": {
"views": []
},
"d80e4f8eb9a54aef8b746e38d8c3ef1b": {
"views": []
},
"d819255bc7104ee8b9466b149dba5bff": {
"views": []
},
"d819fcff913441d39a41982518127af5": {
"views": []
},
"d8295021db704345a63c9ff9d692b761": {
"views": []
},
"d83329fe36014f85bb5d0247d3ae4472": {
"views": [
{
"cell_index": 27
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
}
]
},
"d88a0305cc224037a14e5040ed8e13af": {
"views": []
},
"d89b81d63c6048ff800d3380bf921ac0": {
"views": []
},
"d8d8667ab50944e4b066d648aa3c8e2a": {
"views": []
},
"d8fd2b5ef6e24628b2b5102d3cd375f3": {
"views": []
},
"d9579a126d5f44a3bc0a731e0ad55f24": {
"views": []
},
"da51bd4d4fd848699919e3973b2fabc2": {
"views": []
},
"dba5a5a8fec346b2bcdc88f4ce294550": {
"views": []
},
"dc201c38ac434cb8a424553f1fa5a791": {
"views": []
},
"dc631df85ae84ffc964acd7a76e399ce": {
"views": []
},
"dc7376a2272e44179f237e5a1c7f6a49": {
"views": [
{
"cell_index": 27
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
}
]
},
"dc8a45203a0a457c927f582f9d576e5d": {
"views": []
},
"dcc0e1ea9e994fc0827d9d7f648e4ad9": {
"views": []
},
"dce6f4cb98094ee1b06c0dd0ff8f488a": {
"views": []
},
"dcfc688de41b4ed7a8f89ae84089d5c0": {
"views": []
},
"dd486b2cbda84c83ace5ceaee8a30ff8": {
"views": []
},
"ddcfbf7b97714357920ba9705e8d4ab0": {
"views": []
},
"ddd4485714564c65b70bd865783076af": {
"views": []
},
"de7738417f1040b1a06ad25e485eb91d": {
"views": []
},
"df4cada92e484fd4ae75026eaf1845e2": {
"views": []
},
"dfb3707b4a01441c8a0a1751425b8e1c": {
"views": []
},
"e03b701a52d948aab86117c928cbe275": {
"views": []
},
"e0a614fe085c4d3c835c78d6ada60a40": {
"views": []
},
"e138e0c7d5a4471d99bbdac50de00fe1": {
"views": []
},
"e154289ce1774450a9a51ac45a1d5725": {
"views": []
},
"e25c1d2c78c94c9a805920df36268508": {
"views": []
},
"e281172ebc7f48b5ae6545b16da79477": {
"views": []
},
"e2862bd7efac4bc0b23532705f5e46c4": {
"views": []
},
"e2cd9bb21f254e08885f43fd6e968879": {
"views": []
},
"e2f4acecaf194351b8e67439440a9966": {
"views": []
},
"e3198c124ac841a79db062efa81f6812": {
"views": []
},
"e36f3009f61a4f5ba047562e70330add": {
"views": []
},
"e3765274f28b4a55a82d9115ded151de": {
"views": []
},
"e37e3fba3b40413180cd30e594bf62bd": {
"views": []
},
"e3f9760867fa410fbdc4611aef1cee18": {
"views": []
},
"e4331c134ab24f9cae99d476dfa04c89": {
"views": []
},
"e46db59e121045169a1ea5313b1748b7": {
"views": []
},
"e475d1e00f9d48edadac886fb53c2a20": {
"views": []
},
"e48449d21c2d4360b851169468066470": {
"views": []
},
"e4c26b8a42b54e959b276a174f2c2795": {
"views": []
},
"e4e55dabd92f4c17b78ed4b6881842e8": {
"views": []
},
"e4e5dd3dc28d4aa3ab8f8f7c4a475115": {
"views": [
{
"cell_index": 27
}
]
},
"e516fd8ebfc6478c95130d6edec77c88": {
"views": []
},
"e5afb8d0e8a94c4dac18f2bbf1d042ce": {
"views": []
},
"e5bcb13bf2e94afc857bcbb37f6d4d87": {
"views": []
},
"e64ab85e80184b70b69d01a9c6851943": {
"views": [
{
"cell_index": 27
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
}
]
},
"e66b26fb788944ba83b7511d79b85dc5": {
"views": []
},
"e73434cfcc854429ac27ddc9c9b07f5e": {
"views": []
},
"e7a8244ea5a84493b3b5bdeaf92a50b4": {
"views": []
},
"e81ed2c281df4f06bc1d4e6b67c574b4": {
"views": []
},
"e85ff7ccdc034c268df9cb0e95e9b850": {
"views": []
},
"e8a198bff55a437eab56887563cd9a6e": {
"views": []
},
"e92ede4cfc96436b84e63809bcb22385": {
"views": []
},
"e949474f6aa64c5dada603476ea6cabd": {
"views": []
},
"e98e59c3156c49c1bb27be7a478c3654": {
"views": []
},
"e9ea6f88d1334fbcab7f9c9a11cf4a50": {
"views": []
},
"ea09e5da878c42f2b533856dc3149e3e": {
"views": []
},
"ea74036074054593b1cc31fec030d2a2": {
"views": []
},
"ea8d97fb8c0d499095cceb133e4d7d9c": {
"views": []
},
"eafbea5bce1f4ab4bcbb0aa08598af0f": {
"views": []
},
"ec01e6cdc5a54f068f1bb033415b4a06": {
"views": []
},
"ec2d1f18f2e841b184f5d4cd15979d46": {
"views": []
},
"ec923af478b94ad99bdfd3257f48cb06": {
"views": []
},
"ed02e2272e844678979bd6a3c00f5cb3": {
"views": []
},
"ed80296f5f5e42e694dfc5cc7fd3acee": {
"views": []
},
"ee4df451ca9d4ed48044b25b19dc3f3f": {
"views": []
},
"ee77219007884e089fc3c1479855c469": {
"views": []
},
"ef372681937b4e90a04b0d530b217edb": {
"views": []
},
"ef452efe39d34db6b4785cb816865ca3": {
"views": []
},
"efcb07343f244ff084ea49dbc7e3d811": {
"views": []
},
"f083a8e4c8574fe08f5eb0aac66c1e71": {
"views": []
},
"f09d7c07bec64811805db588515af7f6": {
"views": []
},
"f0ef654c93974add9410a6e243e0fbf2": {
"views": []
},
"f20d7c2fcf144f5da875c6af5ffd35cb": {
"views": []
},
"f234eb38076146b9a640f44b7ef30892": {
"views": []
},
"f24d087598434ed1bb7f5ae3b0b4647a": {
"views": []
},
"f262055f3f1b48029f9e2089f752b0b8": {
"views": [
{
"cell_index": 27
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
}
]
},
"f2d40a380f884b1b95992ccc7c3df04e": {
"views": []
},
"f2e2e2e5177542aa9e5ca3d69508fb89": {
"views": []
},
"f31914f694384908bec466fc2945f1c7": {
"views": []
},
"f31cbea99df94f2281044c369ef1962d": {
"views": []
},
"f32c6c5551f540709f7c7cd9078f1aad": {
"views": []
},
"f337eb824d654f0fbd688e2db3c5bf7b": {
"views": []
},
"f36f776a7767495cbda2f649c2b3dd48": {
"views": []
},
"f3cef080253c46989413aad84b478199": {
"views": []
},
"f3df35ce53e0466e81a48234b36a1430": {
"views": [
{
"cell_index": 27
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
}
]
},
"f3fa0f8a41ab4ede9c4e20f16e35237d": {
"views": []
},
"f42e4f996f254a1bb7fe6f4dfc49aba3": {
"views": []
},
"f437babcddc64a8aa238fc7013619fbb": {
"views": []
},
"f44a5661ed1f4b5d97849cf4bb5e862e": {
"views": []
},
"f44d24e28afa475da40628b4fd936922": {
"views": []
},
"f44d5e6e993745b8b12891d1f3af3dc3": {
"views": []
},
"f457cb5e76be46a29d9f49ba0dc135f1": {
"views": []
},
"f4691cbe84534ef6b7d3fca530cf1704": {
"views": []
},
"f4ca26fbbdbf49dda5d1b8affdecfa3e": {
"views": []
},
"f54998361fe84a8a95b2607fbe367d52": {
"views": []
},
"f54bdb1d3bfb47af9e7aaabb4ed12eff": {
"views": []
},
"f54c28b82f7d498b83bf6908e19b6d1b": {
"views": []
},
"f5cc05fcee4d4c3e80163c6e9c072b6e": {
"views": []
},
"f621b91a209e4997a47cf458f8a5027f": {
"views": []
},
"f665bf176eb443f6867cef8fdd79b4e5": {
"views": []
},
"f6e27824f5e84bd8b4671e9eb030b20f": {
"views": []
},
"f6f162ac0811434ea95875f6335bd484": {
"views": []
},
"f6f629e6fb164c97acdc50c25d1354ee": {
"views": []
},
"f71adee125f74ddd8302aa2796646d67": {
"views": []
},
"f731d66445aa4543800a6bb3e9267936": {
"views": []
},
"f8f8e8c27fff45afa309a849d1655e29": {
"views": []
},
"f913752b9e86487cb197f894d667d432": {
"views": []
},
"f92cde8d24064ae5afd4cd577eaa895a": {
"views": []
},
"f944674b7ca345a582de627055614499": {
"views": []
},
"f9458080ed534d25856c67ce8f93d5a1": {
"views": [
{
"cell_index": 27
}
]
},
"f986f98d05dd4b9fa8a3c1111c1cea9b": {
"views": []
},
"f9f7bc097f654e41b68f2d849c99a1a1": {
"views": []
},
"fa00693458bc45669e2ed4ee536e98d6": {
"views": []
},
"fa2f219e60ff453da3842df62a371813": {
"views": []
},
"fa6cbfe76fff48848dc08a9344de84ff": {
"views": []
},
"fb3b6d5e405d4e1b87e82bcc8ae3df0f": {
"views": []
},
"fbe27ee7dc93467292b67f68935ae6f0": {
"views": []
},
"fc494b2bcade4c3a890f08386dd8aab0": {
"views": []
},
"fd98ac9b76cc44f09bc3b684caf1882d": {
"views": []
},
"feb9bf5d951c40d4a87d57a4de5e819a": {
"views": []
},
"fedfd679505d409fa74ccaa52b87fcce": {
"views": []
},
"fef0278d4386407f96c44b4affe437b8": {
"views": []
},
"ff29b06d50b048d6bbcbdb5a8665dcde": {
"views": []
},
"ff3c868e31c0430dbf5b85415da9a24b": {
"views": []
},
"ff8a91a101044f4fba19cdfffc39e0d3": {
"views": []
},
"ffbca26ec77b492bbbda1be40b044d8e": {
"views": []
},
"fff5f5bc334942bd851ac24f782f4f3c": {
"views": []
}
},
"version": "1.1.1"
}
},
"nbformat": 4,