knowledge_FOIL.ipynb 45,3 ko
Newer Older
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# KNOWLEDGE\n",
    "\n",
    "The [knowledge](https://github.com/aimacode/aima-python/blob/master/knowledge.py) module covers **Chapter 19: Knowledge in Learning** from Stuart Russel's and Peter Norvig's book *Artificial Intelligence: A Modern Approach*.\n",
    "\n",
    "Execute the cell below to get started."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "from knowledge import *\n",
    "\n",
    "from notebook import pseudocode, psource"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## CONTENTS\n",
    "\n",
    "* Overview\n",
    "* Inductive Logic Programming (FOIL)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## OVERVIEW\n",
    "\n",
    "Like the [learning module](https://github.com/aimacode/aima-python/blob/master/learning.ipynb), this chapter focuses on methods for generating a model/hypothesis for a domain. Unlike though the learning chapter, here we use prior knowledge to help us learn from new experiences and find a proper hypothesis.\n",
    "\n",
    "### First-Order Logic\n",
    "\n",
    "Usually knowledge in this field is represented as **first-order logic**, a type of logic that uses variables and quantifiers in logical sentences. Hypotheses are represented by logical sentences with variables, while examples are logical sentences with set values instead of variables. The goal is to assign a value to a special first-order logic predicate, called **goal predicate**, for new examples given a hypothesis. We learn this hypothesis by infering knowledge from some given examples.\n",
    "\n",
    "### Representation\n",
    "\n",
    "In this module, we use dictionaries to represent examples, with keys the attribute names and values the corresponding example values. Examples also have an extra boolean field, 'GOAL', for the goal predicate. A hypothesis is represented as a list of dictionaries. Each dictionary in that list represents a disjunction. Inside these dictionaries/disjunctions we have conjunctions.\n",
    "\n",
    "For example, say we want to predict if an animal (cat or dog) will take an umbrella given whether or not it rains or the animal wears a coat. The goal value is 'take an umbrella' and is denoted by the key 'GOAL'. An example:\n",
    "\n",
    "`{'Species': 'Cat', 'Coat': 'Yes', 'Rain': 'Yes', 'GOAL': True}`\n",
    "\n",
    "A hypothesis can be the following:\n",
    "\n",
    "`[{'Species': 'Cat'}]`\n",
    "\n",
    "which means an animal will take an umbrella if and only if it is a cat.\n",
    "\n",
    "### Consistency\n",
    "\n",
    "We say that an example `e` is **consistent** with an hypothesis `h` if the assignment from the hypothesis for `e` is the same as `e['GOAL']`. If the above example and hypothesis are `e` and `h` respectively, then `e` is consistent with `h` since `e['Species'] == 'Cat'`. For `e = {'Species': 'Dog', 'Coat': 'Yes', 'Rain': 'Yes', 'GOAL': True}`, the example is no longer consistent with `h`, since the value assigned to `e` is *False* while `e['GOAL']` is *True*."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Inductive Logic Programming (FOIL)\n",
    "\n",
    "Inductive logic programming (ILP) combines inductive methods with the power of first-order representations, concentrating in particular on the representation of hypotheses as logic programs. The general knowledge-based induction problem is to solve the entailment constrant: <br> <br>\n",
    "$ Background ∧ Hypothesis ∧ Descriptions \\vDash Classifications $\n",
    "\n",
    "for the __unknown__ $Hypothesis$, given the $Background$ knowledge described by $Descriptions$ and $Classifications$.\n",
    "\n",
    "\n",
    "\n",
    "The first approach to ILP works by starting with a very general rule and gradually specializing\n",
    "it so that it fits the data. <br> \n",
    "This is essentially what happens in decision-tree learning, where a\n",
    "decision tree is gradually grown until it is consistent with the observations. <br> To do ILP we\n",
    "use first-order literals instead of attributes, and the $Hypothesis$ is a set of clauses (set of first order rules, where each rule is similar to a Horn clause) instead of a decision tree. <br>\n",
    "\n",
    "\n",
    "The FOIL algorithm learns new rules, one at a time, in order to cover all given possitive and negative examples. <br>\n",
    "More precicely, FOIL contains an inner and an outer while loop. <br>\n",
    "-  __outer loop__: <font color='blue'>(function __foil()__) </font>  add rules untill all positive examples are covered. <br>\n",
    "   (each rule is a conjuction of literals, which are chosen inside the inner loop)\n",
    "   \n",
    "   \n",
    "-  __inner loop__: <font color ='blue'>(function __new_clause()__) </font>  add new literals untill all negative examples are covered, and some positive examples are covered. <br>\n",
    "   -  In each iteration, we select/add the most promising literal, according to an estimate of its utility. <font color ='blue'>(function __new_literal()__) </font> <br>\n",
    "   \n",
    "   -  The evaluation function to estimate utility of adding literal $L$ to a set of rules $R$ is <font color ='blue'>(function __gain()__) </font> : \n",
    "   \n",
    "   $$ FoilGain(L,R) = t \\big( \\log_2{\\frac{p_1}{p_1+n_1}} - \\log_2{\\frac{p_0}{p_0+n_0}} \\big) $$\n",
    "      where: \n",
    "      \n",
    "      $p_0: \\text{is the number of possitive bindings of rule R } \\\\ n_0: \\text{is the number of negative bindings of R} \\\\ p_1: \\text{is the is the number of possitive bindings of rule R'}\\\\ n_0: \\text{is the number of negative bindings of R'}\\\\ t: \\text{is the number of possitive bindings of rule R that are still covered after adding literal L to R}$\n",
    "   \n",
    "   - Calculate the extended examples for the chosen literal <font color ='blue'>(function __extend_example()__) </font> <br>\n",
    "        (the set of examples created by extending example with each possible constant value for each new variable in literal)\n",
    "   \n",
    "-  Finally the algorithm returns a disjunction of first order rules (= conjuction of literals)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">FOIL_container</span><span class=\"p\">(</span><span class=\"n\">FolKB</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Hold the kb and other necessary elements required by FOIL.&quot;&quot;&quot;</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">clauses</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">):</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">const_syms</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pred_syms</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "        <span class=\"n\">FolKB</span><span class=\"o\">.</span><span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">clauses</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">tell</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">sentence</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">is_definite_clause</span><span class=\"p\">(</span><span class=\"n\">sentence</span><span class=\"p\">):</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">sentence</span><span class=\"p\">)</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">const_syms</span><span class=\"o\">.</span><span class=\"n\">update</span><span class=\"p\">(</span><span class=\"n\">constant_symbols</span><span class=\"p\">(</span><span class=\"n\">sentence</span><span class=\"p\">))</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pred_syms</span><span class=\"o\">.</span><span class=\"n\">update</span><span class=\"p\">(</span><span class=\"n\">predicate_symbols</span><span class=\"p\">(</span><span class=\"n\">sentence</span><span class=\"p\">))</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">raise</span> <span class=\"ne\">Exception</span><span class=\"p\">(</span><span class=\"s2\">&quot;Not a definite clause: {}&quot;</span><span class=\"o\">.</span><span class=\"n\">format</span><span class=\"p\">(</span><span class=\"n\">sentence</span><span class=\"p\">))</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">foil</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">examples</span><span class=\"p\">,</span> <span class=\"n\">target</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Learn a list of first-order horn clauses</span>\n",
       "<span class=\"sd\">        &#39;examples&#39; is a tuple: (positive_examples, negative_examples).</span>\n",
       "<span class=\"sd\">        positive_examples and negative_examples are both lists which contain substitutions.&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">clauses</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "\n",
       "        <span class=\"n\">pos_examples</span> <span class=\"o\">=</span> <span class=\"n\">examples</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
       "        <span class=\"n\">neg_examples</span> <span class=\"o\">=</span> <span class=\"n\">examples</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span>\n",
       "\n",
       "        <span class=\"k\">while</span> <span class=\"n\">pos_examples</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">extended_pos_examples</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">new_clause</span><span class=\"p\">((</span><span class=\"n\">pos_examples</span><span class=\"p\">,</span> <span class=\"n\">neg_examples</span><span class=\"p\">),</span> <span class=\"n\">target</span><span class=\"p\">)</span>\n",
       "            <span class=\"c1\"># remove positive examples covered by clause</span>\n",
       "            <span class=\"n\">pos_examples</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">update_examples</span><span class=\"p\">(</span><span class=\"n\">target</span><span class=\"p\">,</span> <span class=\"n\">pos_examples</span><span class=\"p\">,</span> <span class=\"n\">extended_pos_examples</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"n\">clauses</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">new_clause</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">examples</span><span class=\"p\">,</span> <span class=\"n\">target</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Find a horn clause which satisfies part of the positive</span>\n",
       "<span class=\"sd\">        examples but none of the negative examples.</span>\n",
       "<span class=\"sd\">        The horn clause is specified as [consequent, list of antecedents]</span>\n",
       "<span class=\"sd\">        Return value is the tuple (horn_clause, extended_positive_examples).&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">clause</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">target</span><span class=\"p\">,</span> <span class=\"p\">[]]</span>\n",
       "        <span class=\"c1\"># [positive_examples, negative_examples]</span>\n",
       "        <span class=\"n\">extended_examples</span> <span class=\"o\">=</span> <span class=\"n\">examples</span>\n",
       "        <span class=\"k\">while</span> <span class=\"n\">extended_examples</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]:</span>\n",
       "            <span class=\"n\">l</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">choose_literal</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">new_literals</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">),</span> <span class=\"n\">extended_examples</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">clause</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">l</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">extended_examples</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"nb\">sum</span><span class=\"p\">([</span><span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">extend_example</span><span class=\"p\">(</span><span class=\"n\">example</span><span class=\"p\">,</span> <span class=\"n\">l</span><span class=\"p\">))</span> <span class=\"k\">for</span> <span class=\"n\">example</span> <span class=\"ow\">in</span>\n",
       "                                      <span class=\"n\">extended_examples</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">]],</span> <span class=\"p\">[])</span> <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"mi\">2</span><span class=\"p\">)]</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">extended_examples</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">extend_example</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">example</span><span class=\"p\">,</span> <span class=\"n\">literal</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Generate extended examples which satisfy the literal.&quot;&quot;&quot;</span>\n",
       "        <span class=\"c1\"># find all substitutions that satisfy literal</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">ask_generator</span><span class=\"p\">(</span><span class=\"n\">subst</span><span class=\"p\">(</span><span class=\"n\">example</span><span class=\"p\">,</span> <span class=\"n\">literal</span><span class=\"p\">)):</span>\n",
       "            <span class=\"n\">s</span><span class=\"o\">.</span><span class=\"n\">update</span><span class=\"p\">(</span><span class=\"n\">example</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">yield</span> <span class=\"n\">s</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">new_literals</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">clause</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Generate new literals based on known predicate symbols.</span>\n",
       "<span class=\"sd\">        Generated literal must share atleast one variable with clause&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">share_vars</span> <span class=\"o\">=</span> <span class=\"n\">variables</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">l</span> <span class=\"ow\">in</span> <span class=\"n\">clause</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]:</span>\n",
       "            <span class=\"n\">share_vars</span><span class=\"o\">.</span><span class=\"n\">update</span><span class=\"p\">(</span><span class=\"n\">variables</span><span class=\"p\">(</span><span class=\"n\">l</span><span class=\"p\">))</span>\n",
       "        <span class=\"c1\"># creates literals with different order every time  </span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">pred</span><span class=\"p\">,</span> <span class=\"n\">arity</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pred_syms</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">new_vars</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">standardize_variables</span><span class=\"p\">(</span><span class=\"n\">expr</span><span class=\"p\">(</span><span class=\"s1\">&#39;x&#39;</span><span class=\"p\">))</span> <span class=\"k\">for</span> <span class=\"n\">_</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">arity</span> <span class=\"o\">-</span> <span class=\"mi\">1</span><span class=\"p\">)}</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">args</span> <span class=\"ow\">in</span> <span class=\"n\">product</span><span class=\"p\">(</span><span class=\"n\">share_vars</span><span class=\"o\">.</span><span class=\"n\">union</span><span class=\"p\">(</span><span class=\"n\">new_vars</span><span class=\"p\">),</span> <span class=\"n\">repeat</span><span class=\"o\">=</span><span class=\"n\">arity</span><span class=\"p\">):</span>\n",
       "                <span class=\"k\">if</span> <span class=\"nb\">any</span><span class=\"p\">(</span><span class=\"n\">var</span> <span class=\"ow\">in</span> <span class=\"n\">share_vars</span> <span class=\"k\">for</span> <span class=\"n\">var</span> <span class=\"ow\">in</span> <span class=\"n\">args</span><span class=\"p\">):</span>\n",
       "                    <span class=\"c1\"># make sure we don&#39;t return an existing rule</span>\n",
       "                    <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"n\">pred</span><span class=\"p\">,</span> <span class=\"n\">args</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"n\">clause</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]:</span>\n",
       "                        <span class=\"k\">yield</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"n\">pred</span><span class=\"p\">,</span> <span class=\"o\">*</span><span class=\"p\">[</span><span class=\"n\">var</span> <span class=\"k\">for</span> <span class=\"n\">var</span> <span class=\"ow\">in</span> <span class=\"n\">args</span><span class=\"p\">])</span>\n",
       "\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">choose_literal</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">literals</span><span class=\"p\">,</span> <span class=\"n\">examples</span><span class=\"p\">):</span> \n",
       "        <span class=\"sd\">&quot;&quot;&quot;Choose the best literal based on the information gain.&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"nb\">max</span><span class=\"p\">(</span><span class=\"n\">literals</span><span class=\"p\">,</span> <span class=\"n\">key</span> <span class=\"o\">=</span> <span class=\"n\">partial</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">gain</span> <span class=\"p\">,</span> <span class=\"n\">examples</span> <span class=\"o\">=</span> <span class=\"n\">examples</span><span class=\"p\">))</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">gain</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">l</span> <span class=\"p\">,</span><span class=\"n\">examples</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">pre_pos</span><span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">examples</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span>\n",
       "        <span class=\"n\">pre_neg</span><span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">examples</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">])</span>\n",
       "        <span class=\"n\">extended_examples</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"nb\">sum</span><span class=\"p\">([</span><span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">extend_example</span><span class=\"p\">(</span><span class=\"n\">example</span><span class=\"p\">,</span> <span class=\"n\">l</span><span class=\"p\">))</span> <span class=\"k\">for</span> <span class=\"n\">example</span> <span class=\"ow\">in</span> <span class=\"n\">examples</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">]],</span> <span class=\"p\">[])</span> <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"mi\">2</span><span class=\"p\">)]</span>\n",
       "        <span class=\"n\">post_pos</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">extended_examples</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span>          \n",
       "        <span class=\"n\">post_neg</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">extended_examples</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">])</span> \n",
       "        <span class=\"k\">if</span> <span class=\"n\">pre_pos</span> <span class=\"o\">+</span> <span class=\"n\">pre_neg</span> <span class=\"o\">==</span><span class=\"mi\">0</span> <span class=\"ow\">or</span> <span class=\"n\">post_pos</span> <span class=\"o\">+</span> <span class=\"n\">post_neg</span><span class=\"o\">==</span><span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"o\">-</span><span class=\"mi\">1</span>\n",
       "        <span class=\"c1\"># number of positive example that are represented in extended_examples</span>\n",
       "        <span class=\"n\">T</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">example</span> <span class=\"ow\">in</span> <span class=\"n\">examples</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]:</span>\n",
       "            <span class=\"k\">def</span> <span class=\"nf\">represents</span><span class=\"p\">(</span><span class=\"n\">d</span><span class=\"p\">):</span>\n",
       "                <span class=\"k\">return</span> <span class=\"nb\">all</span><span class=\"p\">(</span><span class=\"n\">d</span><span class=\"p\">[</span><span class=\"n\">x</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"n\">example</span><span class=\"p\">[</span><span class=\"n\">x</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"n\">x</span> <span class=\"ow\">in</span> <span class=\"n\">example</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"nb\">any</span><span class=\"p\">(</span><span class=\"n\">represents</span><span class=\"p\">(</span><span class=\"n\">l_</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">l_</span> <span class=\"ow\">in</span> <span class=\"n\">extended_examples</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]):</span>\n",
       "                <span class=\"n\">T</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span>\n",
       "        <span class=\"n\">value</span> <span class=\"o\">=</span> <span class=\"n\">T</span> <span class=\"o\">*</span> <span class=\"p\">(</span><span class=\"n\">log</span><span class=\"p\">(</span><span class=\"n\">post_pos</span> <span class=\"o\">/</span> <span class=\"p\">(</span><span class=\"n\">post_pos</span> <span class=\"o\">+</span> <span class=\"n\">post_neg</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"mf\">1e-12</span><span class=\"p\">,</span><span class=\"mi\">2</span><span class=\"p\">)</span> <span class=\"o\">-</span> <span class=\"n\">log</span><span class=\"p\">(</span><span class=\"n\">pre_pos</span> <span class=\"o\">/</span> <span class=\"p\">(</span><span class=\"n\">pre_pos</span> <span class=\"o\">+</span> <span class=\"n\">pre_neg</span><span class=\"p\">),</span><span class=\"mi\">2</span><span class=\"p\">))</span>\n",
       "        <span class=\"c1\">#print (l, value)</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">value</span>\n",
       "\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">update_examples</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">target</span><span class=\"p\">,</span> <span class=\"n\">examples</span><span class=\"p\">,</span> <span class=\"n\">extended_examples</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Add to the kb those examples what are represented in extended_examples</span>\n",
       "<span class=\"sd\">        List of omitted examples is returned.&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">uncovered</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">example</span> <span class=\"ow\">in</span> <span class=\"n\">examples</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">def</span> <span class=\"nf\">represents</span><span class=\"p\">(</span><span class=\"n\">d</span><span class=\"p\">):</span>\n",
       "                <span class=\"k\">return</span> <span class=\"nb\">all</span><span class=\"p\">(</span><span class=\"n\">d</span><span class=\"p\">[</span><span class=\"n\">x</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"n\">example</span><span class=\"p\">[</span><span class=\"n\">x</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"n\">x</span> <span class=\"ow\">in</span> <span class=\"n\">example</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"nb\">any</span><span class=\"p\">(</span><span class=\"n\">represents</span><span class=\"p\">(</span><span class=\"n\">l</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">l</span> <span class=\"ow\">in</span> <span class=\"n\">extended_examples</span><span class=\"p\">):</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">tell</span><span class=\"p\">(</span><span class=\"n\">subst</span><span class=\"p\">(</span><span class=\"n\">example</span><span class=\"p\">,</span> <span class=\"n\">target</span><span class=\"p\">))</span>\n",
       "            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">uncovered</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">example</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"n\">uncovered</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(FOIL_container)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example Family \n",
    "Suppose we have the following family relations:\n",
    "<br>\n",
    "![title](images/knowledge_foil_family.png)\n",
    "<br>\n",
    "Given some positive and negative examples of the relation 'Parent(x,y)', we want to find a set of rules that satisfies all the examples. <br>\n",
    "\n",
    "A definition of Parent is $Parent(x,y) \\Leftrightarrow Mother(x,y) \\lor Father(x,y)$, which is the result that we expect from the algorithm. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "A, B, C, D, E, F, G, H, I, x, y, z = map(expr, 'ABCDEFGHIxyz')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "small_family = FOIL_container([expr(\"Mother(Anne, Peter)\"),\n",
    "                               expr(\"Mother(Anne, Zara)\"),\n",
    "                               expr(\"Mother(Sarah, Beatrice)\"),\n",
    "                               expr(\"Mother(Sarah, Eugenie)\"),\n",
    "                               expr(\"Father(Mark, Peter)\"),\n",
    "                               expr(\"Father(Mark, Zara)\"),\n",
    "                               expr(\"Father(Andrew, Beatrice)\"),\n",
    "                               expr(\"Father(Andrew, Eugenie)\"),\n",
    "                               expr(\"Father(Philip, Anne)\"),\n",
    "                               expr(\"Father(Philip, Andrew)\"),\n",
    "                               expr(\"Mother(Elizabeth, Anne)\"),\n",
    "                               expr(\"Mother(Elizabeth, Andrew)\"),\n",
    "                               expr(\"Male(Philip)\"),\n",
    "                               expr(\"Male(Mark)\"),\n",
    "                               expr(\"Male(Andrew)\"),\n",
    "                               expr(\"Male(Peter)\"),\n",
    "                               expr(\"Female(Elizabeth)\"),\n",
    "                               expr(\"Female(Anne)\"),\n",
    "                               expr(\"Female(Sarah)\"),\n",
    "                               expr(\"Female(Zara)\"),\n",
    "                               expr(\"Female(Beatrice)\"),\n",
    "                               expr(\"Female(Eugenie)\"),\n",
    "])\n",
    "\n",
    "target = expr('Parent(x, y)')\n",
    "\n",
    "examples_pos = [{x: expr('Elizabeth'), y: expr('Anne')},\n",
    "                {x: expr('Elizabeth'), y: expr('Andrew')},\n",
    "                {x: expr('Philip'), y: expr('Anne')},\n",
    "                {x: expr('Philip'), y: expr('Andrew')},\n",
    "                {x: expr('Anne'), y: expr('Peter')},\n",
    "                {x: expr('Anne'), y: expr('Zara')},\n",
    "                {x: expr('Mark'), y: expr('Peter')},\n",
    "                {x: expr('Mark'), y: expr('Zara')},\n",
    "                {x: expr('Andrew'), y: expr('Beatrice')},\n",
    "                {x: expr('Andrew'), y: expr('Eugenie')},\n",
    "                {x: expr('Sarah'), y: expr('Beatrice')},\n",
    "                {x: expr('Sarah'), y: expr('Eugenie')}]\n",
    "examples_neg = [{x: expr('Anne'), y: expr('Eugenie')},\n",
    "                {x: expr('Beatrice'), y: expr('Eugenie')},\n",
    "                {x: expr('Mark'), y: expr('Elizabeth')},\n",
    "                {x: expr('Beatrice'), y: expr('Philip')}]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[Parent(x, y), [Mother(x, y)]], [Parent(x, y), [Father(x, y)]]]\n"
     ]
    }
   ],
   "source": [
    "# run the FOIL algorithm \n",
    "clauses = small_family.foil([examples_pos, examples_neg], target)\n",
    "print (clauses)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Indeed the algorithm returned the rule: \n",
    "<br>$Parent(x,y) \\Leftrightarrow Mother(x,y) \\lor Father(x,y)$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Suppose that we have some possitive and negative results for the relation 'GrandParent(x,y)' and we want to find a set of rules that satisfies the examples. <br>\n",
    "One possible set of rules for the relation $Grandparent(x,y)$ could be: <br>\n",
    "![title](images/knowledge_FOIL_grandparent.png)\n",
    "<br>\n",
    "Or, if $Background$ included the sentence $Parent(x,y) \\Leftrightarrow [Mother(x,y) \\lor Father(x,y)]$ then:  \n",
    "\n",
    "$$Grandparent(x,y) \\Leftrightarrow \\exists \\: z \\quad  Parent(x,z) \\land Parent(z,y)$$\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[Grandparent(x, y), [Parent(x, v_5), Parent(v_5, y)]]]\n"
     ]
    }
   ],
   "source": [
    "target = expr('Grandparent(x, y)')\n",
    "\n",
    "examples_pos = [{x: expr('Elizabeth'), y: expr('Peter')},\n",
    "                {x: expr('Elizabeth'), y: expr('Zara')},\n",
    "                {x: expr('Elizabeth'), y: expr('Beatrice')},\n",
    "                {x: expr('Elizabeth'), y: expr('Eugenie')},\n",
    "                {x: expr('Philip'), y: expr('Peter')},\n",
    "                {x: expr('Philip'), y: expr('Zara')},\n",
    "                {x: expr('Philip'), y: expr('Beatrice')},\n",
    "                {x: expr('Philip'), y: expr('Eugenie')}]\n",
    "examples_neg = [{x: expr('Anne'), y: expr('Eugenie')},\n",
    "                {x: expr('Beatrice'), y: expr('Eugenie')},\n",
    "                {x: expr('Elizabeth'), y: expr('Andrew')},\n",
    "                {x: expr('Elizabeth'), y: expr('Anne')},\n",
    "                {x: expr('Elizabeth'), y: expr('Mark')},\n",
    "                {x: expr('Elizabeth'), y: expr('Sarah')},\n",
    "                {x: expr('Philip'), y: expr('Anne')},\n",
    "                {x: expr('Philip'), y: expr('Andrew')},\n",
    "                {x: expr('Anne'), y: expr('Peter')},\n",
    "                {x: expr('Anne'), y: expr('Zara')},\n",
    "                {x: expr('Mark'), y: expr('Peter')},\n",
    "                {x: expr('Mark'), y: expr('Zara')},\n",
    "                {x: expr('Andrew'), y: expr('Beatrice')},\n",
    "                {x: expr('Andrew'), y: expr('Eugenie')},\n",
    "                {x: expr('Sarah'), y: expr('Beatrice')},\n",
    "                {x: expr('Mark'), y: expr('Elizabeth')},\n",
    "                {x: expr('Beatrice'), y: expr('Philip')}, \n",
    "                {x: expr('Peter'), y: expr('Andrew')}, \n",
    "                {x: expr('Zara'), y: expr('Mark')},\n",
    "                {x: expr('Peter'), y: expr('Anne')},\n",
    "                {x: expr('Zara'), y: expr('Eugenie')},     ]\n",
    "\n",
    "clauses = small_family.foil([examples_pos, examples_neg], target)\n",
    "\n",
    "print(clauses)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Indeed the algorithm returned the rule: \n",
    "<br>$Grandparent(x,y) \\Leftrightarrow \\exists \\: v \\: \\: Parent(x,v) \\land Parent(v,y)$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example Network\n",
    "\n",
    "Suppose that we have the following directed graph and we want to find a rule that describes the reachability between two nodes (Reach(x,y)). <br>\n",
    "Such a rule could be recursive, since y can be reached from x if and only if there is a sequence of adjacent nodes from x to y: \n",
    "\n",
    "$$ Reach(x,y) \\Leftrightarrow \\begin{cases} \n",
    "                Conn(x,y), \\: \\text{(if there is a directed edge from x to y)} \\\\\n",
    "                \\lor \\quad \\exists \\: z \\quad Reach(x,z) \\land Reach(z,y) \\end{cases}$$\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"\n",
    "A              H\n",
    "|\\            /|\n",
    "| \\          / |\n",
    "v  v        v  v\n",
    "B  D-->E-->G-->I\n",
    "|  /   |\n",
    "| /    |\n",
    "vv     v\n",
    "C      F\n",
    "\"\"\"\n",
    "small_network = FOIL_container([expr(\"Conn(A, B)\"),\n",
    "                               expr(\"Conn(A ,D)\"),\n",
    "                               expr(\"Conn(B, C)\"),\n",
    "                               expr(\"Conn(D, C)\"),\n",
    "                               expr(\"Conn(D, E)\"),\n",
    "                               expr(\"Conn(E ,F)\"),\n",
    "                               expr(\"Conn(E, G)\"),\n",
    "                               expr(\"Conn(G, I)\"),\n",
    "                               expr(\"Conn(H, G)\"),\n",
    "                               expr(\"Conn(H, I)\")])\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[Reach(x, y), [Conn(x, y)]], [Reach(x, y), [Reach(x, v_12), Reach(v_14, y), Reach(v_12, v_16), Reach(v_12, y)]], [Reach(x, y), [Reach(x, v_20), Reach(v_20, y)]]]\n"
     ]
    }
   ],
   "source": [
    "target = expr('Reach(x, y)')\n",
    "examples_pos = [{x: A, y: B},\n",
    "                {x: A, y: C},\n",
    "                {x: A, y: D},\n",
    "                {x: A, y: E},\n",
    "                {x: A, y: F},\n",
    "                {x: A, y: G},\n",
    "                {x: A, y: I},\n",
    "                {x: B, y: C},\n",
    "                {x: D, y: C},\n",
    "                {x: D, y: E},\n",
    "                {x: D, y: F},\n",
    "                {x: D, y: G},\n",
    "                {x: D, y: I},\n",
    "                {x: E, y: F},\n",
    "                {x: E, y: G},\n",
    "                {x: E, y: I},\n",
    "                {x: G, y: I},\n",
    "                {x: H, y: G},\n",
    "                {x: H, y: I}]\n",
    "nodes = {A, B, C, D, E, F, G, H, I}\n",
    "examples_neg = [example for example in [{x: a, y: b} for a in nodes for b in nodes]\n",
    "                    if example not in examples_pos]\n",
    "clauses = small_network.foil([examples_pos, examples_neg], target)\n",
    "\n",
    "print(clauses)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The algorithm produced something close to the recursive rule: \n",
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
    " $$ Reach(x,y) \\Leftrightarrow [Conn(x,y)] \\: \\lor \\: [\\exists \\: z \\: \\: Reach(x,z) \\, \\land  \\, Reach(z,y)]$$\n",
    " \n",
    "This happened because the size of the example is small. "
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}