Newer
Older
"""Probability models. (Chapter 13-15)
"""
from utils import *
from logic import extend
import agents
from random import random, seed
#______________________________________________________________________________
class DTAgent(agents.Agent):
"A decision-theoretic agent. [Fig. 13.1]"
def __init__(self, belief_state):
agents.Agent.__init__(self)
def program(percept):
belief_state.observe(action, percept)
program.action = argmax(belief_state.actions(),
belief_state.expected_outcome_utility)
return program.action
program.action = None
self.program = program
#______________________________________________________________________________
class ProbDist:
"""A discrete probability distribution. You name the random variable
in the constructor, then assign and query probability of values.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 0.25, 0.75; P['H']
0.25
>>> P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
>>> [P['lo'], P['med'], P['hi']]
[0.125, 0.375, 0.5]
>>> P = ProbDist('X', {'lo': 0.125, 'med': 0.250, 'hi': 0.625})
>>> [P['lo'], P['med'], P['hi']]
[0.125, 0.25, 0.625]
def __init__(self, varname='?', freqs=None):
"""If freqs is given, it is a dictionary of value: frequency pairs,
and the ProbDist is normalized."""
update(self, prob={}, varname=varname, values=[])
if freqs:
for (v, p) in freqs.items():
self[v] = p
self.normalize()
def __getitem__(self, val):
"Given a value, return P(value)."
return self.prob[val]
def __setitem__(self, val, p):
"Set P(val) = p"
if val not in self.values:
self.values.append(val)
self.prob[val] = p
def normalize(self):
"""Make sure the probabilities of all values sum to 1.
Returns the normalized distribution.
Raises a ZeroDivisionError if the sum of the values is 0.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 35, 65
>>> P = P.normalize()
>>> print '%5.3f %5.3f' % (P.prob['H'], P.prob['T'])
0.350 0.650
"""
total = float(sum(self.prob.values()))
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
if not (1.0-epsilon < total < 1.0+epsilon):
for val in self.prob:
self.prob[val] /= total
return self
epsilon = 0.001
class JointProbDist(ProbDist):
"""A discrete probability distribute over a set of variables.
>>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25
>>> P[1, 1]
0.25
"""
def __init__(self, variables):
update(self, prob={}, variables=variables, vals=DefaultDict([]))
def __getitem__(self, values):
"Given a tuple or dict of values, return P(values)."
if isinstance(values, dict):
values = tuple([values[var] for var in self.variables])
return self.prob[values]
def __setitem__(self, values, p):
"""Set P(values) = p. Values can be a tuple or a dict; it must
have a value for each of the variables in the joint. Also keep track
of the values we have seen so far for each variable."""
if isinstance(values, dict):
values = [values[var] for var in self.variables]
self.prob[values] = p
for var,val in zip(self.variables, values):
if val not in self.vals[var]:
self.vals[var].append(val)
def values(self, var):
"Return the set of possible values for a variable."
return self.vals[var]
def __repr__(self):
return "P(%s)" % self.variables
#______________________________________________________________________________
def enumerate_joint_ask(X, e, P):
"""Return a probability distribution over the values of the variable X,
given the {var:val} observations e, in the JointProbDist P.
Works for Boolean variables only. [Fig. 13.4]. *** or discrete only? ***
X is a string (variable name).
e is a dictionary of variable-name value pairs.
P is an instance of JointProbDist."""
Q = ProbDist(X) ## A probability distribution for X, initially empty
Y = [v for v in P.variables if v != X and v not in e] # hidden variables
for xi in P.values(X):
Q[xi] = enumerate_joint(Y, extend(e, X, xi), P)
# extend(e, X, xi) copies dictionary e and adds the pair X: xi
# (from logic.py)
return Q.normalize()
def enumerate_joint(vars, values, P):
"As in Fig 13.4, except x and e are already incorporated in values."
if not vars:
return P[values]
Y = vars[0]; rest = vars[1:]
return sum([enumerate_joint(rest, extend(values, Y, y), P)
for y in P.values(Y)])
#______________________________________________________________________________
class BayesNet:
"""Bayesian network containing only boolean variable nodes."""
def __init__(self, nodes=[]):
update(self, nodes=[], vars=[])
for node in nodes:
self.add(node)
def add(self, node):
self.nodes.append(node)
self.vars.append(node.variable)
def observe(self, var, val):
self.evidence[var] = val
def variable_node (self, var):
"""Returns the node for the variable named var.
>>> burglary.variable_node('Burglary').variable
'Burglary'
"""
for n in self.nodes:
if n.variable == var:
return n
raise Exception("No such variable: %s" % var)
def variables (self):
"""Returns the list of names of the variables.
>>> burglary.variables()
['Burglary', 'Earthquake', 'Alarm', 'JohnCalls', 'MaryCalls']
"""
return [n.variable for n in self.nodes]
def variable_values (self, var):
return [True, False]
class BayesNode:
def __init__(self, variable, parents, cpt):
if isinstance(parents, str): parents = parents.split()
update(self, variable=variable, parents=parents, cpt=cpt)
node = BayesNode
# Burglary example [Fig. 14.2]
T, F = True, False
burglary = BayesNet([
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
# It seems important in enumerate_all that variables (nodes)
# be listed in such an order that parents precede all of their children.
node('Burglary', '', .001),
node('Earthquake', '', .002),
node('Alarm', 'Burglary Earthquake',
{ (T, T):.95,
(T, F):.94,
(F, T):.29,
(F, F):.001}),
node('JohnCalls', 'Alarm', {T:.90, F:.05}),
node('MaryCalls', 'Alarm', {T:.70, F:.01})
])
#______________________________________________________________________________
def enumeration_ask (X, e, bn):
"""Returns a distribution of X given e from bayes net bn. [Fig. 14.9]
X is a string (variable name).
e is a dictionary of variablename: value pairs.
bn is an instance of BayesNet.
>>> p = enumeration_ask('Earthquake', {}, burglary)
>>> [p[True], p[False]]
[0.002, 0.998]
>>> p = enumeration_ask('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary)
>>> [p[True], p[False]]
[0.28417183536439289, 0.71582816463560706]
"""
Q = ProbDist(X) # empty probability distribution for X
for xi in bn.variable_values(X):
Q[xi] = enumerate_all(bn.variables(), extend(e, X, xi), bn)
# Assume that parents precede children in bn.variables,
# otherwise in enumerate_all, the values of y's parents
# may be unspecified.
return Q.normalize()
def enumerate_all (vars, e, bn):
"""Returns a real number = ??? the probability that X = xi given e.
vars is a list of variables in bn.
e is a dictionary of variablename: value pairs
bn is an instance of BayesNet.
Precondition: no variable in vars precedes its parents."""
if not vars: # i.e. []
return 1.0
else:
Y = vars[0]
rest = vars[1:]
Ynode = bn.variable_node(Y)
parents = Ynode.parents
cpt = Ynode.cpt
if e.has_key(Y):
y = e[Y]
cp = condprob(cpt, y, parents, e) # P(y | parents(Y))
result = cp * enumerate_all(rest, e, bn)
else:
result = 0
for y in bn.variable_values(Y):
cp = condprob(cpt, y, parents, e) # P(y | parents(Y)
result += cp * enumerate_all(rest, extend(e, Y, y), bn)
return result
def condprob (cpt, y, parent_vars, evidence):
"""Return the conditional probability P(y | parent_vars = parent_values)
by lookup in cpt, where parent_values are the values that
parent_vars have in evidence.
cpt is a conditional probability table for a variable Y:
a dictionary if Y has parents; otherwise a single number.
y is a possible value of a boolean random variable Y.
parent_vars is a tuple of the names of the parents of Y.
evidence is a dictionary of variablename: value pairs.
Preconditions:
1. each variable in parent_vars is bound to a value in evidence.
2. the variables are listed in parent_vars in the same order
in which they are listed in cpt.
>>> cpt = burglary.variable_node('Alarm').cpt
>>> parents = ['Burglary', 'Earthquake']
>>> evidence = {'Burglary': True, 'Earthquake': True}
>>> print '%4.2f' % condprob(cpt, True, parents, evidence)
0.95
>>> evidence = {'Burglary': False, 'Earthquake': True}
>>> print '%4.2f' % condprob(cpt, False, parents, evidence)
0.71
>>> print '%4.2f' % condprob(0.75, False, [], {})
0.25
"""
# It is a little unpleasant that while enumeration_ask and
# enumerate_all are independent of the variables being boolean,
# this is not.
# Can that assumption be confined to the BayesNet class?
# Or to a particular CPT class, BooleanCPT?
# Also that cpt may be either a dictionary or a number.
if parent_vars == []:
py = cpt
else:
parent_values = [evidence[parent] for parent in parent_vars]
if len(parent_values) == 1:
key = parent_values[0]
else:
key = tuple(parent_values)
py = cpt[key]
if y:
return py # P(Y = True)
else:
return 1.0 - py # P(Y = False)
def condsamp (cpt, parent_vars, evidence):
"""Return a sample value True or False from the conditional
distribution cpt of an unspecified variable, given its parent
parent_vars have the values they have in evidence
>>> cpt = {True: 0.2, False: 0.7}
>>> condsamp(cpt, ['A'], {'A': True}) in [True, False]
True
>>> cpt = {(True, True): 0.1, (True, False): 0.3,
... (False, True): 0.5, (False, False): 0.7}
>>> condsamp(cpt, ['A', 'B'], {'A': True, 'B': False}) in [True, False]
True
"""
p = condprob(cpt, True, parent_vars, evidence)
return (random() <= p)
#______________________________________________________________________________
# elimination_ask: implementation is incomplete
def elimination_ask(X, e, bn):
"[Fig. 14.10]"
factors = []
for var in reverse(bn.vars):
factors.append(Factor(var, e))
if is_hidden(var, X, e):
factors = sum_out(var, factors)
return pointwise_product(factors).normalize()
def pointwise_product(factors):
pass
def sum_out(var, factors):
pass
#______________________________________________________________________________
# Fig. 14.11a: sprinkler network
sprinkler = BayesNet([
node('Cloudy', '', 0.5),
node('Sprinkler', 'Cloudy', {T: 0.10, F: 0.50}),
node('Rain', 'Cloudy', {T: 0.80, F: 0.20}),
node('WetGrass', 'Sprinkler Rain',
{ (T, T): 0.99,
(T, F): 0.90,
(F, T): 0.90,
(F, F): 0.00})
])
#______________________________________________________________________________
def prior_sample(bn):
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
"""[Fig. 14.12]
Argument: bn is an instance of BayesNet.
Returns: one sample, a dictionary of variable-name: value pairs.
>>> s = prior_sample(burglary)
>>> s['Burglary'] in [True, False]
True
>>> s['Alarm'] in [True, False]
True
>>> s['JohnCalls'] in [True, False]
True
>>> len(s)
5
"""
sample = {} # boldface x in Fig. 14.12
for node in bn.nodes:
var = node.variable
sample[var] = condsamp(node.cpt, node.parents, sample)
return sample
#_______________________________________________________________________________
def rejection_sampling (X, e, bn, N):
"""Estimates probability distribution of X given evidence e
in BayesNet bn, using N samples. [Fig. 14.13]
Arguments:
X is a variable name (string).
e is a dictionary of variable-name: value pairs.
bn is an instance of BayesNet.
N is an integer > 0.
Returns: an instance of ProbDist representing P(X | e).
Raises a ZeroDivisionError if all the N samples are rejected,
i.e., inconsistent with e.
>>> seed(21); p = rejection_sampling('Earthquake', {}, burglary, 1000)
>>> [p[True], p[False]]
[0.001, 0.999]
>>> seed(47)
>>> p = rejection_sampling('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary, 10000)
>>> [p[True], p[False]]
[0.29999999999999999, 0.69999999999999996]
"""
counts = {True: 0, False: 0} # counts is boldface N in Fig. 14.13
# Generate and count observations
for j in xrange(N):
sample = prior_sample(bn) # sample is boldface x in Fig. 14.13
if consistent_with(sample, e):
counts[sample[X]] += 1 # increment count of sampled value of X
# Package counts as a ProbDist
d = ProbDist(X)
for value in bn.variable_values(X):
d[value] = counts[value]
return d.normalize()
def consistent_with (sample, evidence):
"""Returns True if sample is consistent with evidence, False otherwise.
sample is a dictionary of variable-name: value pairs.
evidence is a dictionary of variable-name: value pairs.
The variable names in evidence are a subset of the variable names
in sample.
>>> s = {'A': True, 'B': False, 'C': True, 'D': False}
>>> consistent_with(s, {})
True
>>> consistent_with(s, s)
True
>>> consistent_with(s, {'A': False})
False
>>> consistent_with(s, {'D': True})
False
"""
for (k, v) in evidence.items():
if sample[k] != v:
return False
return True
#_______________________________________________________________________________
# Fig. 14.14: likelihood_weighting, weighted_sample
def likelihood_weighting (X, e, bn, N):
"""Returns an estimate of P(X | e).
Arguments:
X is a variable name (string).
e is a dictionary of variable-name: value pairs (the evidence).
bn is an instance of BayesNet.
N is an integer, the number of samples to be generated.
Returns an instance of ProbDist.
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
>>> seed(71); p = likelihood_weighting('Earthquake', {}, burglary, 1000)
>>> [p[True], p[False]]
[0.002, 0.998]
>>> seed(1017)
>>> p = likelihood_weighting('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary, 10000)
>>> [p[True], p[False]]
[0.29801552320954111, 0.70198447679045894]
"""
# Initialize weighted counts of X values
weights = {True: 0.0, False: 0.0} # boldface W in Fig. 14.14
# Generate and count observations
for j in xrange(N):
sample, weight = weighted_sample(bn, e) # boldface x, w in Fig. 14.14
sample_X = sample[X] # value of X in sample
weights[sample_X] += weight
# Package and return weights as a ProbDist
return ProbDist(X, weights)
def weighted_sample (bn, e):
"""Returns an event (a sample) and a weight."""
# Initialize
event = {} # will store variables and values (boldface x in Fig. 14.14)
weight = 1.0 # w in Fig. 14.14
# Accumulate event and weight
for node in bn.nodes:
X = node.variable # X sub i in Fig. 14.14
parents = node.parents
cpt = node.cpt
# print "Variable %s, parents %s, cpt %s" % (X, parents, cpt)
if e.has_key(X):
xvalue = e[X]
event[X] = xvalue
cp = condprob(cpt, xvalue, parents, event)
weight *= cp
# print " value = %s, cp = %f, weight = %f" % (xvalue, cp, weight)
else:
event[X] = condsamp(cpt, parents, event)
# print " value = %s" % event[X]
return event, weight
#_______________________________________________________________________________
# MISSING
# Fig. 14.15: mcmc_ask