"...mesure-r-seau-interaction.git" n'existait pas sur "86f5b2f78b7652baff671dd578cff1b23e6fb6a5"
Newer
Older
"""Search (Chapters 3-4)
The way to use this code is to subclass Problem to create a class of problems,
then create problem instances and solve them with calls to the various search
functions."""
from utils import (
is_in, argmin, argmax, argmax_random_tie, probability,
weighted_sample_with_replacement, memoize, print_table, DataFile, Stack,
)
from grid import distance
import math
import random
import sys
import bisect
# ______________________________________________________________________________
"""The abstract class for a formal problem. You should subclass
this and implement the methods actions and result, and possibly
__init__, goal_test, and path_cost. Then you will create instances
of your subclass and solve them with the various search functions."""
def __init__(self, initial, goal=None):
"""The constructor specifies the initial state, and possibly a goal
state, if there is a unique goal. Your subclass's constructor can add
other arguments."""
def actions(self, state):
"""Return the actions that can be executed in the given
state. The result would typically be a list, but if there are
many actions, consider yielding them one at a time in an
iterator, rather than building them all at once."""
def result(self, state, action):
"""Return the state that results from executing the given
action in the given state. The action must be one of
self.actions(state)."""
def goal_test(self, state):
"""Return True if the state is a goal. The default method compares the
state to self.goal or checks for state in self.goal if it is a
list, as specified in the constructor. Override this method if
checking against a single self.goal is not enough."""
if isinstance(self.goal, list):
return is_in(state, self.goal)
else:
return state == self.goal
def path_cost(self, c, state1, action, state2):
"""Return the cost of a solution path that arrives at state2 from
state1 via action, assuming cost c to get up to state1. If the problem
is such that the path doesn't matter, this function will only look at
state2. If the path does matter, it will consider c and maybe state1
and action. The default method costs 1 for every step in the path."""
return c + 1
withal
a validé
def value(self, state):
"""For optimization problems, each state has a value. Hill-climbing
and related algorithms try to maximize this value."""
# ______________________________________________________________________________
class Node:
"""A node in a search tree. Contains a pointer to the parent (the node
that this is a successor of) and to the actual state for this node. Note
that if a state is arrived at by two paths, then there are two nodes with
the same state. Also includes the action that got us to this state, and
the total path_cost (also known as g) to reach the node. Other functions
may add an f and h value; see best_first_graph_search and astar_search for
an explanation of how the f and h values are handled. You will not need to
subclass this class."""
def __init__(self, state, parent=None, action=None, path_cost=0):
"Create a search tree Node, derived from a parent by an action."
self.state = state
self.parent = parent
self.action = action
self.path_cost = path_cost
self.depth = 0
if parent:
self.depth = parent.depth + 1
def __repr__(self):
return "<Node %s>" % (self.state,)
def __lt__(self, node):
return self.state < node.state
def expand(self, problem):
"List the nodes reachable in one step from this node."
return [self.child_node(problem, action)
for action in problem.actions(self.state)]
def child_node(self, problem, action):
"[Figure 3.10]"
next = problem.result(self.state, action)
return Node(next, self, action,
problem.path_cost(self.path_cost, self.state,
action, next))
def solution(self):
"Return the sequence of actions to go from the root to this node."
return [node.action for node in self.path()[1:]]
def path(self):
"Return a list of nodes forming the path from the root to this node."
node, path_back = self, []
while node:
path_back.append(node)
node = node.parent
return list(reversed(path_back))
# We want for a queue of nodes in breadth_first_search or
# astar_search to have no duplicated states, so we treat nodes
# with the same state as equal. [Problem: this may not be what you
# want in other contexts.]
def __eq__(self, other):
return isinstance(other, Node) and self.state == other.state
def __hash__(self):
return hash(self.state)
# ______________________________________________________________________________
class SimpleProblemSolvingAgentProgram:
"""Abstract framework for a problem-solving agent. [Figure 3.1]"""
def __init__(self, initial_state=None):
self.state = initial_state
self.seq = []
def __call__(self, percept):
self.state = self.update_state(self.state, percept)
if not self.seq:
goal = self.formulate_goal(self.state)
problem = self.formulate_problem(self.state, goal)
self.seq = self.search(problem)
return self.seq.pop(0)
def update_state(self, percept):
def formulate_goal(self, state):
def formulate_problem(self, state, goal):
def search(self, problem):
# ______________________________________________________________________________
"""Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
Don't worry about repeated paths to a state. [Figure 3.7]"""
frontier.append(Node(problem.initial))
while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
frontier.extend(node.expand(problem))
return None
def graph_search(problem, frontier):
"""Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
If two paths reach a state, only use the first one. [Figure 3.7]"""
frontier.append(Node(problem.initial))
explored = set()
while frontier:
node = frontier.pop()
if child.state not in explored and
child not in frontier)
return None
def breadth_first_tree_search(problem):
"Search the shallowest nodes in the search tree first."
return tree_search(problem, FIFOQueue())
def depth_first_tree_search(problem):
"Search the deepest nodes in the search tree first."
return tree_search(problem, Stack())
def depth_first_graph_search(problem):
"Search the deepest nodes in the search tree first."
return graph_search(problem, Stack())
"[Figure 3.11]"
node = Node(problem.initial)
if problem.goal_test(node.state):
return node
frontier = FIFOQueue()
frontier.append(node)
while frontier:
node = frontier.pop()
explored.add(node.state)
for child in node.expand(problem):
if child.state not in explored and child not in frontier:
if problem.goal_test(child.state):
return child
frontier.append(child)
return None
def best_first_graph_search(problem, f):
"""Search the nodes with the lowest f scores first.
You specify the function f(node) that you want to minimize; for example,
if f is a heuristic estimate to the goal, then we have greedy best
first search; if f is node.depth then we have breadth-first search.
There is a subtlety: the line "f = memoize(f, 'f')" means that the f
values will be cached on the nodes as they are computed. So after doing
a best first search you can examine the f values of the path returned."""
f = memoize(f, 'f')
node = Node(problem.initial)
if problem.goal_test(node.state):
return node
frontier = PriorityQueue(min, f)
frontier.append(node)
while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
explored.add(node.state)
for child in node.expand(problem):
if child.state not in explored and child not in frontier:
frontier.append(child)
elif child in frontier:
incumbent = frontier[child]
if f(child) < f(incumbent):
del frontier[incumbent]
frontier.append(child)
return None
"[Figure 3.14]"
return best_first_graph_search(problem, lambda node: node.path_cost)
def depth_limited_search(problem, limit=50):
"[Figure 3.17]"
def recursive_dls(node, problem, limit):
if problem.goal_test(node.state):
return node
return 'cutoff'
else:
result = recursive_dls(child, problem, limit-1)
if result == 'cutoff':
return result
return 'cutoff' if cutoff_occurred else None
# Body of depth_limited_search:
return recursive_dls(Node(problem.initial), problem, limit)
def iterative_deepening_search(problem):
"[Figure 3.18]"
result = depth_limited_search(problem, depth)
if result != 'cutoff':
return result
# ______________________________________________________________________________
# Informed (Heuristic) Search
greedy_best_first_graph_search = best_first_graph_search
# Greedy best-first search is accomplished by specifying f(n) = h(n).
def astar_search(problem, h=None):
"""A* search is best-first graph search with f(n) = g(n)+h(n).
You need to specify the h function when you call astar_search, or
else in your Problem subclass."""
h = memoize(h or problem.h, 'h')
return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
# ______________________________________________________________________________
def recursive_best_first_search(problem, h=None):
"[Figure 3.26]"
h = memoize(h or problem.h, 'h')
def RBFS(problem, node, flimit):
return node, 0 # (The second value is immaterial)
successors = node.expand(problem)
if len(successors) == 0:
return None, infinity
for s in successors:
s.f = max(s.path_cost + h(s), node.f)
while True:
best = successors[0]
if best.f > flimit:
return None, best.f
if len(successors) > 1:
alternative = successors[1].f
alternative = infinity
result, best.f = RBFS(problem, best, min(flimit, alternative))
if result is not None:
return result, best.f
node = Node(problem.initial)
node.f = h(node)
result, bestf = RBFS(problem, node, infinity)
return result
def hill_climbing(problem):
"""From the initial node, keep choosing the neighbor with highest value,
stopping when no neighbor is better. [Figure 4.2]"""
current = Node(problem.initial)
while True:
withal
a validé
neighbors = current.expand(problem)
if not neighbors:
break
withal
a validé
if problem.value(neighbor.state) <= problem.value(current.state):
break
current = neighbor
withal
a validé
return current.state
def exp_schedule(k=20, lam=0.005, limit=100):
"One possible schedule function for simulated annealing"
return lambda t: (k * math.exp(-lam * t) if t < limit else 0)
def simulated_annealing(problem, schedule=exp_schedule()):
"[Figure 4.5]"
current = Node(problem.initial)
T = schedule(t)
if T == 0:
return current
withal
a validé
neighbors = current.expand(problem)
if not neighbors:
return current
next = random.choice(neighbors)
delta_e = problem.value(next.state) - problem.value(current.state)
if delta_e > 0 or probability(math.exp(delta_e/T)):
current = next
"""Used when the environment is nondeterministic and completely observable
Contains OR nodes where the agent is free to choose any action
After every action there is an AND node which contains all possible states
the agent may reach due to stochastic nature of environment
The agent must be able to handle all possible states of the AND node(as it
may end up in any of them) returns a conditional plan to reach goal state,
or failure if the former is not possible"""
"[Figure 4.11]"
def or_search(state, problem, path):
if problem.goal_test(state):
plan = and_search(problem.result(state, action),
problem, path + [state, ])
if plan is not None:
return [action, plan]
def and_search(states, problem, path):
"returns plan in form of dictionary where we take action plan[s] if we reach state s" # noqa
for s in states:
plan[s] = or_search(s, problem, path)
class OnlineDFSAgent:
"""The abstract class for an OnlineDFSAgent. Override update_state
method to convert percept to state. While initializing the subclass
a problem needs to be provided which is an instance of a subclass
def __init__(self, problem):
self.problem = problem
self.s = None
self.a = None
self.untried = defaultdict(list)
self.unbacktracked = defaultdict(list)
self.result = {}
s1 = self.update_state(percept)
if self.problem.goal_test(s1):
if s1 not in self.untried.keys():
self.untried[s1] = self.problem.actions(s1)
if s1 != self.result[(self.s, self.a)]:
self.result[(self.s, self.a)] = s1
unbacktracked[s1].insert(0, self.s)
if len(self.untried[s1]) == 0:
if len(self.unbacktracked[s1]) == 0:
# else a <- an action b such that result[s', b] = POP(unbacktracked[s']) # noqa
unbacktracked_pop = self.unbacktracked[s1].pop(0) # noqa
for (s, b) in self.result.keys():
if self.result[(s, b)] == unbacktracked_pop:
self.a = self.untried[s1].pop(0)
self.s = s1
'''To be overridden in most cases. The default case
# ______________________________________________________________________________
class OnlineSearchProblem(Problem):
"""
A problem which is solved by an agent executing
actions, rather than by just computation.
Carried in a deterministic and a fully observable environment.
"""
def __init__(self, initial, goal, graph):
self.initial = initial
self.goal = goal
self.graph = graph
def actions(self, state):
return self.graph.dict[state].keys()
def output(self, state, action):
return self.graph.dict[state][action]
def h(self, state):
"""
Returns least possible cost to reach a goal for the given state.
"""
return self.graph.least_costs[state]
def c(self, s, a, s1):
"""
Returns a cost estimate for an agent to move from state 's' to state 's1'
"""
return 1
def update_state(self, percept):
raise NotImplementedError
def goal_test(self, state):
if state == self.goal:
return True
return False
class LRTAStarAgent:
""" [Figure 4.24]
Abstract class for LRTA*-Agent. A problem needs to be
provided which is an instanace of a subclass of Problem Class.
Takes a OnlineSearchProblem [Figure 4.23] as a problem
"""
def __init__(self, problem):
self.problem = problem
# self.result = {} # no need as we are using problem.result
self.H = {}
self.s = None
self.a = None
def __call__(self, s1): # as of now s1 is a state rather than a percept
if self.problem.goal_test(s1):
self.a = None
return self.a
else:
if s1 not in self.H:
self.H[s1] = self.problem.h(s1)
if self.s is not None:
# self.result[(self.s, self.a)] = s1 # no need as we are using problem.output
# minimum cost for action b in problem.actions(s)
self.H[self.s] = min(self.LRTA_cost(self.s, b, self.problem.output(self.s, b), self.H)
for b in self.problem.actions(self.s))
# costs for action b in problem.actions(s1)
costs = [self.LRTA_cost(s1, b, self.problem.output(s1, b), self.H)
# an action b in problem.actions(s1) that minimizes costs
self.a = list(self.problem.actions(s1))[costs.index(min(costs))]
self.s = s1
return self.a
def LRTA_cost(self, s, a, s1, H):
"""
Returns cost to move from state 's' to state 's1' plus
estimated cost to get to goal from s1
"""
print(s, a, s1)
if s1 is None:
return self.problem.h(s)
else:
# sometimes we need to get H[s1] which we haven't yet added to H
# to replace this try, except: we can initialize H with values from problem.h
try:
return self.problem.c(s, a, s1) + self.H[s1]
return self.problem.c(s, a, s1) + self.problem.h(s1)
# ______________________________________________________________________________
# Genetic Algorithm
def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20):
"""
Call genetic_algorithm on the appropriate parts of a problem.
This requires the problem to have states that can mate and mutate,
plus a value method that scores states."""
s = problem.initial_state
states = [problem.result(s, a) for a in problem.actions(s)]
random.shuffle(states)
return genetic_algorithm(states[:n], problem.value, ngen, pmut)
def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.1):
"[Figure 4.8]"
for i in range(ngen):
new_population = []
for i in len(population):
fitnesses = map(fitness_fn, population)
p1, p2 = weighted_sample_with_replacement(population, fitnesses, 2)
child = p1.mate(p2)
if random.uniform(0, 1) < pmut:
child.mutate()
new_population.append(child)
population = new_population
class GAState:
"Abstract class for individuals in a genetic search."
def __init__(self, genes):
self.genes = genes
def mate(self, other):
"Return a new individual crossing self and other."
c = random.randrange(len(self.genes))
return self.__class__(self.genes[:c] + other.genes[c:])
def mutate(self):
"Change a few of my genes."
# _____________________________________________________________________________
# The remainder of this file implements examples for the search algorithms.
# ______________________________________________________________________________
# Graphs and Graph Problems
class Graph:
"""A graph connects nodes (verticies) by edges (links). Each edge can also
have a length associated with it. The constructor call is something like:
this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
A to B, and an edge of length 2 from A to C. You can also do:
g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
This makes an undirected graph, so inverse links are also added. The graph
stays undirected; if you add more links with g.connect('B', 'C', 3), then
inverse link is also added. You can use g.nodes() to get a list of nodes,
g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
length of the link from A to B. 'Lengths' can actually be any object at
all, and nodes can be any hashable object."""
def __init__(self, dict=None, directed=True):
self.dict = dict or {}
self.directed = directed
def make_undirected(self):
"Make a digraph into an undirected graph by adding symmetric edges."
for (b, distance) in self.dict[a].items():
self.connect1(b, a, distance)
def connect(self, A, B, distance=1):
"""Add a link from A and B of given distance, and also add the inverse
link if the graph is undirected."""
self.connect1(A, B, distance)
if not self.directed:
self.connect1(B, A, distance)
def connect1(self, A, B, distance):
"Add a link from A to B of given distance, in one direction only."
def get(self, a, b=None):
"""Return a link distance or a dict of {node: distance} entries.
.get(a,b) returns the distance or None;
.get(a) returns a dict of {node: distance} entries, possibly {}."""
links = self.dict.setdefault(a, {})
if b is None:
return links
else:
return links.get(b)
def nodes(self):
"Return a list of nodes in the graph."
def UndirectedGraph(dict=None):
"Build a Graph where every edge (including future ones) goes both ways."
return Graph(dict=dict, directed=False)
def RandomGraph(nodes=list(range(10)), min_links=2, width=400, height=300,
"""Construct a random graph, with the specified nodes, and random links.
The nodes are laid out randomly on a (width x height) rectangle.
Then each node is connected to the min_links nearest neighbors.
Because inverse links are added, some nodes will have more connections.
The distance between nodes is the hypotenuse times curvature(),
where curvature() defaults to a random number between 1.1 and 1.5."""
g = UndirectedGraph()
g.locations = {}
for node in nodes:
g.locations[node] = (random.randrange(width), random.randrange(height))
# Build roads from each city to at least min_links nearest neighbors.
for i in range(min_links):
for node in nodes:
if len(g.get(node)) < min_links:
here = g.locations[node]
def distance_to_node(n):
if n is node or g.get(node, n):
return infinity
return distance(g.locations[n], here)
d = distance(g.locations[neighbor], here) * curvature()
return g
Surya Teja Cheedella
a validé
""" [Figure 3.2]
Simplified road map of Romania
"""
romania_map = UndirectedGraph(dict(
Arad=dict(Zerind=75, Sibiu=140, Timisoara=118),
Bucharest=dict(Urziceni=85, Pitesti=101, Giurgiu=90, Fagaras=211),
Craiova=dict(Drobeta=120, Rimnicu=146, Pitesti=138),
Drobeta=dict(Mehadia=75),
Eforie=dict(Hirsova=86),
Fagaras=dict(Sibiu=99),
Hirsova=dict(Urziceni=98),
Iasi=dict(Vaslui=92, Neamt=87),
Lugoj=dict(Timisoara=111, Mehadia=70),
Oradea=dict(Zerind=71, Sibiu=151),
Pitesti=dict(Rimnicu=97),
Rimnicu=dict(Sibiu=80),
Urziceni=dict(Vaslui=142)))
Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288),
Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449),
Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506),
Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537),
Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410),
Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350),
Vaslui=(509, 444), Zerind=(108, 531))
Surya Teja Cheedella
a validé
""" [Figure 4.9]
Each state is represented as
* "State of the left room" "State of the right room" "Room in which the agent is present"
1 - DDL Dirty Dirty Left
2 - DDR Dirty Dirty Right
3 - DCL Dirty Clean Left
4 - DCR Dirty Clean Right
5 - CDL Clean Dirty Left
6 - CDR Clean Dirty Right
7 - CCL Clean Clean Left
8 - CCR Clean Clean Right
State_1 = dict(Suck = ['State_7', 'State_5'], Right = ['State_2']),
State_2 = dict(Suck = ['State_8', 'State_4'], Left = ['State_2']),
State_3 = dict(Suck = ['State_7'], Right = ['State_4']),
State_4 = dict(Suck = ['State_4', 'State_2'], Left = ['State_3']),
State_5 = dict(Suck = ['State_5', 'State_1'], Right = ['State_6']),
State_6 = dict(Suck = ['State_8'], Left = ['State_5']),
State_7 = dict(Suck = ['State_7', 'State_3'], Right = ['State_8']),
State_8 = dict(Suck = ['State_8', 'State_6'], Left = ['State_7'])
Surya Teja Cheedella
a validé
""" [Figure 4.23]
One-dimensional state space Graph
"""
one_dim_state_space = Graph(dict(
State_1 = dict(Right = 'State_2'),
State_2 = dict(Right = 'State_3', Left = 'State_1'),
State_3 = dict(Right = 'State_4', Left = 'State_2'),
State_4 = dict(Right = 'State_5', Left = 'State_3'),
State_5 = dict(Right = 'State_6', Left = 'State_4'),
State_6 = dict(Left = 'State_5')
))
one_dim_state_space.least_costs = dict(
State_1 = 8,
State_2 = 9,
State_3 = 2,
State_4 = 2,
State_5 = 4,
State_6 = 3)
Surya Teja Cheedella
a validé
""" [Figure 6.1]
Principal states and territories of Australia
"""
T=dict(),
SA=dict(WA=1, NT=1, Q=1, NSW=1, V=1),
NT=dict(WA=1, Q=1),
NSW=dict(Q=1, V=1)))
australia_map.locations = dict(WA=(120, 24), NT=(135, 20), SA=(135, 30),
Q=(145, 20), NSW=(145, 32), T=(145, 42),
V=(145, 37))
class GraphProblem(Problem):
"The problem of searching a graph from one node to another."
def __init__(self, initial, goal, graph):
Problem.__init__(self, initial, goal)
self.graph = graph
def actions(self, A):
"The actions at a graph node are just its neighbors."
def result(self, state, action):
"The result of going to a neighbor is just that neighbor."
return action
def path_cost(self, cost_so_far, A, action, B):
return cost_so_far + (self.graph.get(A, B) or infinity)
def h(self, node):
"h function is straight-line distance from a node's state to goal."
locs = getattr(self.graph, 'locations', None)
if locs:
return int(distance(locs[node.state], locs[self.goal]))
else:
return infinity
A version of GraphProblem where an action can lead to
nondeterministic output i.e. multiple possible states
Define the graph as dict(A = dict(Action = [[<Result 1>, <Result 2>, ...], <cost>], ...), ...)
A the dictionary format is different, make sure the graph is created as a directed graph
"""
def result(self, state, action):
return self.graph.get(state, action)
def path_cost():
raise NotImplementedError
# ______________________________________________________________________________
class NQueensProblem(Problem):
"""The problem of placing N queens on an NxN board with none attacking
each other. A state is represented as an N-element array, where
a value of r in the c-th entry means there is a queen at column c,
row r, and a value of None means that the c-th column has not been
filled in yet. We fill in columns left to right.
>>> depth_first_tree_search(NQueensProblem(8))
<Node [7, 3, 0, 2, 5, 1, 6, 4]>
"""
def __init__(self, N):
self.N = N
self.initial = [None] * N
"In the leftmost empty column, try all non-conflicting rows."
if state[-1] is not None:
else:
col = state.index(None)
if not self.conflicted(state, row, col)]
def result(self, state, row):
"Place the next queen at the given row."
col = state.index(None)
new = state[:]
new[col] = row
return new
def conflicted(self, state, row, col):
"Would placing a queen at (row, col) conflict with anything?"
withal
a validé
return any(self.conflict(row, col, state[c], c)
for c in range(col))
def conflict(self, row1, col1, row2, col2):
"Would putting two queens in (row1, col1) and (row2, col2) conflict?"
return (row1 == row2 or # same row
col1 == col2 or # same column
row1-col1 == row2-col2 or # same \ diagonal
row1+col1 == row2+col2) # same / diagonal
def goal_test(self, state):
"Check if all columns filled, no conflicts."
return False
withal
a validé
return not any(self.conflicted(state, state[col], col)
for col in range(len(state)))
# ______________________________________________________________________________
# Inverse Boggle: Search for a high-scoring Boggle board. A good domain for
# iterative-repair and related search techniques, as suggested by Justin Boyan.
ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'
cubes16 = ['FORIXB', 'MOQABJ', 'GURILW', 'SETUPL',
'CMPDAE', 'ACITAO', 'SLCRAE', 'ROMASH',
'NODESW', 'HEFIYE', 'ONUDTK', 'TEVIGN',
'ANEDVZ', 'PINESH', 'ABILYT', 'GKYLEU']
def random_boggle(n=4):
"""Return a random Boggle board of size n x n.
We represent a board as a linear list of letters."""
cubes = [cubes16[i % 16] for i in range(n*n)]
random.shuffle(cubes)
# The best 5x5 board found by Boyan, with our word list this board scores
# 2274 words, for a score of 9837
boyan_best = list('RSTCSDEIAEGNLRPEATESMSSID')
def print_boggle(board):
"Print the board in a 2-d array."
for i in range(n2):
if i % n == 0 and i > 0:
print()
if board[i] == 'Q':
print('Qu', end=' ')
else:
print(str(board[i]) + ' ', end=' ')
def boggle_neighbors(n2, cache={}):
"""Return a list of lists, where the i-th element is the list of indexes
for the neighbors of square i."""
if cache.get(n2):
return cache.get(n2)
n = exact_sqrt(n2)
neighbors = [None] * n2
for i in range(n2):
neighbors[i] = []
on_top = i < n
on_bottom = i >= n2 - n
on_left = i % n == 0
on_right = (i+1) % n == 0
if not on_top:
neighbors[i].append(i - n)
if not on_left:
neighbors[i].append(i - n - 1)
if not on_right:
neighbors[i].append(i - n + 1)
if not on_bottom:
if not on_left:
neighbors[i].append(i + n - 1)
if not on_right:
neighbors[i].append(i + n + 1)
if not on_left:
neighbors[i].append(i - 1)
if not on_right:
neighbors[i].append(i + 1)
cache[n2] = neighbors
return neighbors
def exact_sqrt(n2):
"If n2 is a perfect square, return its square root, else raise error."
n = int(math.sqrt(n2))
assert n * n == n2
return n
# _____________________________________________________________________________
class Wordlist:
"""This class holds a list of words. You can use (word in wordlist)
to check if a word is in the list, or wordlist.lookup(prefix)
to see if prefix starts any of the words in the list."""
def __init__(self, file, min_len=3):
lines = file.read().upper().split()
self.words = [word for word in lines if len(word) >= min_len]
self.words.sort()
self.bounds = {}
for c in ALPHABET:
c2 = chr(ord(c) + 1)
self.bounds[c] = (bisect.bisect(self.words, c),
bisect.bisect(self.words, c2))
def lookup(self, prefix, lo=0, hi=None):
"""See if prefix is in dictionary, as a full word or as a prefix.
Return two values: the first is the lowest i such that
words[i].startswith(prefix), or is None; the second is
True iff prefix itself is in the Wordlist."""
words = self.words
i = bisect.bisect_left(words, prefix, lo, hi)
if i < len(words) and words[i].startswith(prefix):
return i, (words[i] == prefix)
return None, False
return self.lookup(word)[1]
return len(self.words)
# _____________________________________________________________________________
class BoggleFinder:
"""A class that allows you to find all the words in a Boggle board. """
wordlist = None # A class variable, holding a wordlist
def __init__(self, board=None):
if BoggleFinder.wordlist is None:
BoggleFinder.wordlist = Wordlist(DataFile("EN-text/wordlist.txt"))
self.found = {}
if board:
self.set_board(board)
def set_board(self, board=None):
"Set the board, and find all the words in it."
if board is None:
board = random_boggle()
self.board = board
self.neighbors = boggle_neighbors(len(board))
self.found = {}
for i in range(len(board)):
lo, hi = self.wordlist.bounds[board[i]]
self.find(lo, hi, i, [], '')
return self
def find(self, lo, hi, i, visited, prefix):
"""Looking in square i, find the words that continue the prefix,
considering the entries in self.wordlist.words[lo:hi], and not
revisiting the squares in visited."""
return
wordpos, is_word = self.wordlist.lookup(prefix, lo, hi)
if wordpos is not None:
self.found[prefix] = True
visited.append(i)
c = self.board[i]
prefix += c
self.find(wordpos, hi, j, visited, prefix)
visited.pop()
"The words found."
scores = [0, 0, 0, 0, 1, 2, 3, 5] + [11] * 100
def score(self):
"The total score for the words found, according to the rules."
return sum([self.scores[len(w)] for w in self.words()])
def __len__(self):
"The number of words found."
return len(self.found)
# _____________________________________________________________________________
def boggle_hill_climbing(board=None, ntimes=100, verbose=True):
"""Solve inverse Boggle by hill-climbing: find a high-scoring board by
starting with a random one and changing it."""
finder = BoggleFinder()
if board is None:
board = random_boggle()
best = len(finder.set_board(board))
for _ in range(ntimes):
i, oldc = mutate_boggle(board)
new = len(finder.set_board(board))
if new > best:
best = new
print_boggle(board)
return board, best
def mutate_boggle(board):
i = random.randrange(len(board))
oldc = board[i]
# random.choice(boyan_best)
board[i] = random.choice(random.choice(cubes16))
return i, oldc
# ______________________________________________________________________________
# Code to compare searchers on various problems.
class InstrumentedProblem(Problem):
"""Delegates to a problem, and keeps statistics."""
self.problem = problem
self.succs = self.goal_tests = self.states = 0
self.found = None
def actions(self, state):
self.succs += 1
return self.problem.actions(state)
def result(self, state, action):
self.states += 1
return self.problem.result(state, action)
def goal_test(self, state):
self.goal_tests += 1
result = self.problem.goal_test(state)
self.found = state
return result
def path_cost(self, c, state1, action, state2):
return self.problem.path_cost(c, state1, action, state2)
def value(self, state):
return self.problem.value(state)
def __getattr__(self, attr):
def __repr__(self):
return '<%4d/%4d/%4d/%s>' % (self.succs, self.goal_tests,
def compare_searchers(problems, header,
searchers=[breadth_first_tree_search,
breadth_first_search,
depth_first_graph_search,
iterative_deepening_search,
depth_limited_search,
recursive_best_first_search]):
def do(searcher, problem):
p = InstrumentedProblem(problem)
searcher(p)
return p
table = [[name(s)] + [do(s, p) for p in problems] for s in searchers]
print_table(table, header)
def compare_graph_searchers():
compare_searchers(problems=[GraphProblem('Arad', 'Bucharest', romania_map),
GraphProblem('Oradea', 'Neamt', romania_map),
GraphProblem('Q', 'WA', australia_map)],
header=['Searcher', 'romania_map(Arad, Bucharest)',
'romania_map(Oradea, Neamt)', 'australia_map'])