knowledge.ipynb 17,1 ko
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# KNOWLEDGE\n",
    "\n",
    "The [knowledge](https://github.com/aimacode/aima-python/blob/master/knowledge.py) module covers **Chapter 19: Knowledge in Learning** from Stuart Russel's and Peter Norvig's book *Artificial Intelligence: A Modern Approach*.\n",
    "\n",
    "Execute the cell below to get started."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "from knowledge import *"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## CONTENTS\n",
    "\n",
    "* Overview\n",
    "* Current-Best Learning"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## OVERVIEW\n",
    "\n",
    "Like the [learning module](https://github.com/aimacode/aima-python/blob/master/learning.ipynb), this chapter focuses on methods for generating a model/hypothesis for a domain. Unlike though the learning chapter, here we use prior knowledge to help us learn from new experiences and find a proper hypothesis.\n",
    "\n",
    "### First-Order Logic\n",
    "\n",
    "Usually knowledge in this field is represented as **first-order logic**, a type of logic that uses variables and quantifiers in logical sentences. Hypotheses are represented by logical sentences with variables, while examples are logical sentences with set values instead of variables. The goal is to assign a value to a special first-order logic predicate, called **goal predicate**, for new examples given a hypothesis. We learn this hypothesis by infering knowledge from some given examples.\n",
    "\n",
    "### Representation\n",
    "\n",
    "In this module, we use dictionaries to represent examples, with keys the attribute names and values the corresponding example values. Examples also have an extra boolean field, 'GOAL', for the goal predicate. A hypothesis is represented as a list of dictionaries. Each dictionary in that list represents a disjunction. Inside these dictionaries/disjunctions we have conjunctions.\n",
    "\n",
    "For example, say we want to predict if an animal (cat or dog) will take an umbrella given whether or not it rains or the animal wears a coat. The goal value is 'take an umbrella' and is denoted by the key 'GOAL'. An example:\n",
    "\n",
    "`{'Species': 'Cat', 'Coat': 'Yes', 'Rain': 'Yes', 'GOAL': True}`\n",
    "\n",
    "A hypothesis can be the following:\n",
    "\n",
    "`[{'Species': 'Cat'}]`\n",
    "\n",
    "which means an animal will take an umbrella if and only if it is a cat.\n",
    "\n",
    "### Consistency\n",
    "\n",
    "We say that an example `e` is **consistent** with an hypothesis `h` if the assignment from the hypothesis for `e` is the same as `e['GOAL']`. If the above example and hypothesis are `e` and `h` respectively, then `e` is consistent with `h` since `e['Species'] == 'Cat'`. For `e = {'Species': 'Dog', 'Coat': 'Yes', 'Rain': 'Yes', 'GOAL': True}`, the example is no longer consistent with `h`, since the value assigned to `e` is *False* while `e['GOAL']` is *True*."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "## [CURRENT-BEST LEARNING](https://github.com/aimacode/aima-pseudocode/blob/master/md/Current-Best-Learning.md)\n",
    "\n",
    "### Overview\n",
    "\n",
    "In **Current-Best Learning**, we start with a hypothesis and we refine it as we iterate through the examples. For each example, there are three possible outcomes. The example is consistent with the hypothesis, the example is a **false positive** (real value is false but got predicted as true) and **false negative** (real value is true but got predicted as false). Depending on the outcome we refine the hypothesis accordingly:\n",
    "\n",
    "* Consistent: We do not change the hypothesis and we move on to the next example.\n",
    "\n",
    "* False Positive: We **specialize** the hypothesis, which means we add a conjunction.\n",
    "\n",
    "* False Negative: We **generalize** the hypothesis, either by removing a conjunction or a disjunction, or by adding a disjunction.\n",
    "\n",
    "When specializing and generalizing, we should take care to not create inconsistencies with previous examples. To avoid that caveat, backtracking is needed. Thankfully, there is not just one specialization or generalization, so we have a lot to choose from. We will go through all the specialization/generalizations and we will refine our hypothesis as the first specialization/generalization consistent with all the examples seen up to that point."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation\n",
    "\n",
    "As mentioned previously, examples are dictionaries (with keys the attribute names) and hypotheses are lists of dictionaries (each dictionary is a disjunction). Also, in the hypothesis, we denote the *NOT* operation with an exclamation mark (!).\n",
    "\n",
    "We have functions to calculate the list of all specializations/generalizations, to check if an example is consistent/false positive/false negative with a hypothesis. We also have an auxiliary function to add a disjunction (or operation) to a hypothesis, and two other functions to check consistency of all (or just the negative) examples.\n",
    "\n",
    "You can read the source by running the cells below:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource current_best_learning"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource specializations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource generalizations"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can view the auxiliary functions in the [knowledge module](https://github.com/aimacode/aima-python/blob/master/knowledge.py). A few notes on the functionality of some of the important methods:"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "* `specializations`: For each disjunction in the hypothesis, it adds a conjunction for values in the examples encountered so far (if the conjunction is consistent with all the examples). It returns a list of hypotheses.\n",
    "\n",
    "* `generalizations`: It adds to the list of hypotheses in three phases. First it deletes disjunctions, then it deletes conjunctions and finally it adds a disjunction.\n",
    "\n",
    "* `add_or`: Used by `generalizations` to add an *or operation* (a disjunction) to the hypothesis. Since the last example is the problematic one which wasn't consistent with the hypothesis, it will model the new disjunction to that example. It creates a disjunction for each combination of attributes in the example and returns the new hypotheses consistent with the negative examples encountered so far. We do not need to check the consistency of positive examples, since they are already consistent with at least one other disjunction in the hypotheses' set, so this new disjunction doesn't affect them. In other words, if the value of a positive example is negative under the disjunction, it doesn't matter since we know there exists a disjunction consistent with the example."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Since the algorithm stops searching the specializations/generalizations after the first consistent hypothesis is found, usually you will get different results each time you run the code."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Examples\n",
    "\n",
    "We will take a look at two examples. The first is a trivial one, while the second is a bit more complicated (you can also find it in the book).\n",
    "\n",
    "First we have the \"animals taking umbrellas\" example. Here we want to find a hypothesis to predict whether or not an animal will take an umbrella. The attributes are `Species`, `Rain` and `Coat`. The possible values are `[Cat, Dog]`, `[Yes, No]` and `[Yes, No]` respectively. Below we give seven examples (with `GOAL` we denote whether an animal will take an umbrella or not):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "animals_umbrellas = [\n",
    "    {'Species': 'Cat', 'Rain': 'Yes', 'Coat': 'No', 'GOAL': True},\n",
    "    {'Species': 'Cat', 'Rain': 'Yes', 'Coat': 'Yes', 'GOAL': True},\n",
    "    {'Species': 'Dog', 'Rain': 'Yes', 'Coat': 'Yes', 'GOAL': True},\n",
    "    {'Species': 'Dog', 'Rain': 'Yes', 'Coat': 'No', 'GOAL': False},\n",
    "    {'Species': 'Dog', 'Rain': 'No', 'Coat': 'No', 'GOAL': False},\n",
    "    {'Species': 'Cat', 'Rain': 'No', 'Coat': 'No', 'GOAL': False},\n",
    "    {'Species': 'Cat', 'Rain': 'No', 'Coat': 'Yes', 'GOAL': True}\n",
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let our initial hypothesis be `[{'Species': 'Cat'}]`. That means every cat will be taking an umbrella. We can see that this is not true, but it doesn't matter since we will refine the hypothesis using the Current-Best algorithm. First, let's see how that initial hypothesis fares to have a point of reference."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "True\n",
      "True\n",
      "False\n",
      "False\n",
      "False\n",
      "True\n",
      "True\n"
     ]
    }
   ],
   "source": [
    "initial_h = [{'Species': 'Cat'}]\n",
    "\n",
    "for e in animals_umbrellas:\n",
    "    print(guess_value(e, initial_h))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We got 5/7 correct. Not terribly bad, but we can do better. Let's run the algorithm and see how that performs."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "True\n",
      "True\n",
      "True\n",
      "False\n",
      "False\n",
      "False\n",
      "True\n"
     ]
    }
   ],
   "source": [
    "h = current_best_learning(animals_umbrellas, initial_h)\n",
    "\n",
    "for e in animals_umbrellas:\n",
    "    print(guess_value(e, h))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We got everything right! Let's print our hypothesis:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{'Species': 'Cat', 'Rain': '!No'}, {'Coat': 'Yes', 'Species': 'Dog', 'Rain': 'Yes'}, {'Coat': 'Yes', 'Species': 'Cat'}]\n"
     ]
    }
   ],
   "source": [
    "print(h)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If an example meets any of the disjunctions in the list, it will be `True`, otherwise it will be `False`.\n",
    "\n",
    "Let's move on to a bigger example, the \"Restaurant\" example from the book. The attributes for each example are the following:\n",
    "\n",
    "* Alternative option (`Alt`)\n",
    "* Bar to hang out/wait (`Bar`)\n",
    "* Day is Friday (`Fri`)\n",
    "* Is hungry (`Hun`)\n",
    "* How much does it cost (`Price`, takes values in [$, $$, $$$])\n",
    "* How many patrons are there (`Pat`, takes values in [None, Some, Full])\n",
    "* Is raining (`Rain`)\n",
    "* Has made reservation (`Res`)\n",
    "* Type of restaurant (`Type`, takes values in [French, Thai, Burger, Italian])\n",
    "* Estimated waiting time (`Est`, takes values in [0-10, 10-30, 30-60, >60])\n",
    "\n",
    "We want to predict if someone will wait or not (Goal = WillWait). Below we show twelve examples found in the book."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![restaurant](images/restaurant.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "In code:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "restaurant = [\n",
    "    {'Alt': 'Yes', 'Bar': 'No', 'Fri': 'No', 'Hun': 'Yes', 'Pat': 'Some',\n",
    "    'Price': '$$$', 'Rain': 'No', 'Res': 'Yes', 'Type': 'French', 'Est': '0-10',\n",
    "    'GOAL': True},\n",
    "\n",
    "    {'Alt': 'Yes', 'Bar': 'No', 'Fri': 'No', 'Hun': 'Yes', 'Pat': 'Full',\n",
    "    'Price': '$', 'Rain': 'No', 'Res': 'No', 'Type': 'Thai', 'Est': '30-60',\n",
    "    'GOAL': False},\n",
    "\n",
    "    {'Alt': 'No', 'Bar': 'Yes', 'Fri': 'No', 'Hun': 'No', 'Pat': 'Some',\n",
    "    'Price': '$', 'Rain': 'No', 'Res': 'No', 'Type': 'Burger', 'Est': '0-10',\n",
    "    'GOAL': True},\n",
    "\n",
    "    {'Alt': 'Yes', 'Bar': 'No', 'Fri': 'Yes', 'Hun': 'Yes', 'Pat': 'Full',\n",
    "    'Price': '$', 'Rain': 'Yes', 'Res': 'No', 'Type': 'Thai', 'Est': '10-30',\n",
    "    'GOAL': True},\n",
    "\n",
    "    {'Alt': 'Yes', 'Bar': 'No', 'Fri': 'Yes', 'Hun': 'No', 'Pat': 'Full',\n",
    "    'Price': '$$$', 'Rain': 'No', 'Res': 'Yes', 'Type': 'French', 'Est': '>60',\n",
    "    'GOAL': False},\n",
    "\n",
    "    {'Alt': 'No', 'Bar': 'Yes', 'Fri': 'No', 'Hun': 'Yes', 'Pat': 'Some',\n",
    "    'Price': '$$', 'Rain': 'Yes', 'Res': 'Yes', 'Type': 'Italian', 'Est': '0-10',\n",
    "    'GOAL': True},\n",
    "\n",
    "    {'Alt': 'No', 'Bar': 'Yes', 'Fri': 'No', 'Hun': 'No', 'Pat': 'None',\n",
    "    'Price': '$', 'Rain': 'Yes', 'Res': 'No', 'Type': 'Burger', 'Est': '0-10',\n",
    "    'GOAL': False},\n",
    "\n",
    "    {'Alt': 'No', 'Bar': 'No', 'Fri': 'No', 'Hun': 'Yes', 'Pat': 'Some',\n",
    "    'Price': '$$', 'Rain': 'Yes', 'Res': 'Yes', 'Type': 'Thai', 'Est': '0-10',\n",
    "    'GOAL': True},\n",
    "\n",
    "    {'Alt': 'No', 'Bar': 'Yes', 'Fri': 'Yes', 'Hun': 'No', 'Pat': 'Full',\n",
    "    'Price': '$', 'Rain': 'Yes', 'Res': 'No', 'Type': 'Burger', 'Est': '>60',\n",
    "    'GOAL': False},\n",
    "\n",
    "    {'Alt': 'Yes', 'Bar': 'Yes', 'Fri': 'Yes', 'Hun': 'Yes', 'Pat': 'Full',\n",
    "    'Price': '$$$', 'Rain': 'No', 'Res': 'Yes', 'Type': 'Italian', 'Est': '10-30',\n",
    "    'GOAL': False},\n",
    "\n",
    "    {'Alt': 'No', 'Bar': 'No', 'Fri': 'No', 'Hun': 'No', 'Pat': 'None',\n",
    "    'Price': '$', 'Rain': 'No', 'Res': 'No', 'Type': 'Thai', 'Est': '0-10',\n",
    "    'GOAL': False},\n",
    "\n",
    "    {'Alt': 'Yes', 'Bar': 'Yes', 'Fri': 'Yes', 'Hun': 'Yes', 'Pat': 'Full',\n",
    "    'Price': '$', 'Rain': 'No', 'Res': 'No', 'Type': 'Burger', 'Est': '30-60',\n",
    "    'GOAL': True}\n",
    "]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Say our initial hypothesis is that there should be an alternative option and let's run the algorithm."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "True\n",
      "False\n",
      "True\n",
      "True\n",
      "False\n",
      "True\n",
      "False\n",
      "True\n",
      "False\n",
      "False\n",
      "False\n",
      "True\n"
     ]
    }
   ],
   "source": [
    "initial_h = [{'Alt': 'Yes'}]\n",
    "h = current_best_learning(restaurant, initial_h)\n",
    "for e in restaurant:\n",
    "    print(guess_value(e, h))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The predictions are correct. Let's see the hypothesis that accomplished that:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{'Type': '!Thai', 'Fri': '!Yes', 'Alt': 'Yes'}, {'Fri': 'No', 'Type': 'Burger', 'Pat': '!None', 'Alt': 'No'}, {'Fri': 'Yes', 'Est': '10-30', 'Pat': 'Full', 'Rain': 'Yes', 'Res': 'No', 'Bar': 'No', 'Price': '$'}, {'Fri': 'No', 'Est': '0-10', 'Pat': 'Some', 'Res': 'Yes', 'Type': 'Italian', 'Alt': 'No'}, {'Fri': 'No', 'Pat': 'Some', 'Res': 'Yes', 'Type': 'Thai', 'Hun': 'Yes', 'Alt': 'No', 'Price': '$$'}, {'Fri': 'Yes', 'Pat': 'Full', 'Rain': 'No', 'Alt': 'Yes', 'Type': 'Burger', 'Hun': 'Yes', 'Bar': 'Yes', 'Price': '$'}]\n"
     ]
    }
   ],
   "source": [
    "print(h)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It might be quite complicated, with many disjunctions if we are unlucky, but it will always be correct, as long as a correct hypothesis exists."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}