search.py 40,2 ko
Newer Older
"""Search (Chapters 3-4)

The way to use this code is to subclass Problem to create a class of problems,
then create problem instances and solve them with calls to the various search
functions."""

from utils import *  # noqa
MircoT's avatar
MircoT a validé

MircoT's avatar
MircoT a validé
import math
import random
import sys
import bisect
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
infinity = float('inf')

# ______________________________________________________________________________
MircoT's avatar
MircoT a validé

withal's avatar
withal a validé
class Problem(object):
MircoT's avatar
MircoT a validé

    """The abstract class for a formal problem.  You should subclass
    this and implement the methods actions and result, and possibly
    __init__, goal_test, and path_cost. Then you will create instances
    of your subclass and solve them with the various search functions."""

    def __init__(self, initial, goal=None):
        """The constructor specifies the initial state, and possibly a goal
        state, if there is a unique goal.  Your subclass's constructor can add
        other arguments."""
MircoT's avatar
MircoT a validé
        self.initial = initial
        self.goal = goal
    def actions(self, state):
        """Return the actions that can be executed in the given
        state. The result would typically be a list, but if there are
        many actions, consider yielding them one at a time in an
        iterator, rather than building them all at once."""
norvig's avatar
norvig a validé
        raise NotImplementedError
    def result(self, state, action):
        """Return the state that results from executing the given
        action in the given state. The action must be one of
        self.actions(state)."""
norvig's avatar
norvig a validé
        raise NotImplementedError
    def goal_test(self, state):
        """Return True if the state is a goal. The default method compares the
Chipe1's avatar
Chipe1 a validé
        state to self.goal or checks for state in self.goal if it is a list, as specified in the constructor. Override this
        method if checking against a single self.goal is not enough."""
Chipe1's avatar
Chipe1 a validé
        if isinstance(self.goal, list):
            return is_in(state, self.goal)
        else:
            return state == self.goal
    def path_cost(self, c, state1, action, state2):
        """Return the cost of a solution path that arrives at state2 from
        state1 via action, assuming cost c to get up to state1. If the problem
        is such that the path doesn't matter, this function will only look at
        state2.  If the path does matter, it will consider c and maybe state1
        and action. The default method costs 1 for every step in the path."""
        return c + 1

        """For optimization problems, each state has a value.  Hill-climbing
        and related algorithms try to maximize this value."""
norvig's avatar
norvig a validé
        raise NotImplementedError
# ______________________________________________________________________________
MircoT's avatar
MircoT a validé

MircoT's avatar
MircoT a validé

    """A node in a search tree. Contains a pointer to the parent (the node
    that this is a successor of) and to the actual state for this node. Note
    that if a state is arrived at by two paths, then there are two nodes with
    the same state.  Also includes the action that got us to this state, and
    the total path_cost (also known as g) to reach the node.  Other functions
    may add an f and h value; see best_first_graph_search and astar_search for
    an explanation of how the f and h values are handled. You will not need to
    subclass this class."""

    def __init__(self, state, parent=None, action=None, path_cost=0):
        "Create a search tree Node, derived from a parent by an action."
        self.state = state
        self.parent = parent
        self.action = action
        self.path_cost = path_cost
        self.depth = 0
        if parent:
            self.depth = parent.depth + 1
    def __repr__(self):
        return "<Node %s>" % (self.state,)
Chipe1's avatar
Chipe1 a validé
    def __lt__(self, node):
        return self.state < node.state

    def expand(self, problem):
        "List the nodes reachable in one step from this node."
        return [self.child_node(problem, action)
                for action in problem.actions(self.state)]

    def child_node(self, problem, action):
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
        "[Fig. 3.10]"
        next = problem.result(self.state, action)
        return Node(next, self, action,
                    problem.path_cost(self.path_cost, self.state,
                                      action, next))

    def solution(self):
        "Return the sequence of actions to go from the root to this node."
        return [node.action for node in self.path()[1:]]
        "Return a list of nodes forming the path from the root to this node."
        node, path_back = self, []
        while node:
            path_back.append(node)
            node = node.parent
        return list(reversed(path_back))
    # We want for a queue of nodes in breadth_first_search or
    # astar_search to have no duplicated states, so we treat nodes
    # with the same state as equal. [Problem: this may not be what you
    # want in other contexts.]

    def __eq__(self, other):
        return isinstance(other, Node) and self.state == other.state

    def __hash__(self):
        return hash(self.state)

# ______________________________________________________________________________
class SimpleProblemSolvingAgentProgram:
    """Abstract framework for a problem-solving agent. [Fig. 3.1]"""
    def __init__(self, initial_state=None):
        self.state = initial_state
        self.seq = []

    def __call__(self, percept):
        self.state = self.update_state(self.state, percept)
        if not self.seq:
            goal = self.formulate_goal(self.state)
            problem = self.formulate_problem(self.state, goal)
            self.seq = self.search(problem)
MircoT's avatar
MircoT a validé
            if not self.seq:
                return None
        return self.seq.pop(0)

    def update_state(self, percept):
norvig's avatar
norvig a validé
        raise NotImplementedError

    def formulate_goal(self, state):
norvig's avatar
norvig a validé
        raise NotImplementedError

    def formulate_problem(self, state, goal):
norvig's avatar
norvig a validé
        raise NotImplementedError

    def search(self, problem):
norvig's avatar
norvig a validé
        raise NotImplementedError
# ______________________________________________________________________________
withal's avatar
withal a validé
# Uninformed Search algorithms
def tree_search(problem, frontier):
    """Search through the successors of a problem to find a goal.
    The argument frontier should be an empty queue.
    Don't worry about repeated paths to a state. [Fig. 3.7]"""
    frontier.append(Node(problem.initial))
    while frontier:
        node = frontier.pop()
        if problem.goal_test(node.state):
            return node
        frontier.extend(node.expand(problem))
    return None

def graph_search(problem, frontier):
    """Search through the successors of a problem to find a goal.
    The argument frontier should be an empty queue.
    If two paths reach a state, only use the first one. [Fig. 3.7]"""
    frontier.append(Node(problem.initial))
    explored = set()
    while frontier:
        node = frontier.pop()
withal's avatar
withal a validé
        if problem.goal_test(node.state):
            return node
        explored.add(node.state)
withal's avatar
withal a validé
        frontier.extend(child for child in node.expand(problem)
                        if child.state not in explored and
                        child not in frontier)
def breadth_first_tree_search(problem):
    "Search the shallowest nodes in the search tree first."
    return tree_search(problem, FIFOQueue())
def depth_first_tree_search(problem):
    "Search the deepest nodes in the search tree first."
    return tree_search(problem, Stack())

def depth_first_graph_search(problem):
    "Search the deepest nodes in the search tree first."
    return graph_search(problem, Stack())

def breadth_first_search(problem):
    "[Fig. 3.11]"
    node = Node(problem.initial)
    if problem.goal_test(node.state):
        return node
    frontier = FIFOQueue()
    frontier.append(node)
Larry He's avatar
Larry He a validé
    explored = set()
    while frontier:
        node = frontier.pop()
        explored.add(node.state)
        for child in node.expand(problem):
            if child.state not in explored and child not in frontier:
                if problem.goal_test(child.state):
                    return child
                frontier.append(child)
    return None

def best_first_graph_search(problem, f):
    """Search the nodes with the lowest f scores first.
    You specify the function f(node) that you want to minimize; for example,
    if f is a heuristic estimate to the goal, then we have greedy best
    first search; if f is node.depth then we have breadth-first search.
    There is a subtlety: the line "f = memoize(f, 'f')" means that the f
    values will be cached on the nodes as they are computed. So after doing
    a best first search you can examine the f values of the path returned."""
    f = memoize(f, 'f')
    node = Node(problem.initial)
    if problem.goal_test(node.state):
        return node
    frontier = PriorityQueue(min, f)
    frontier.append(node)
Larry He's avatar
Larry He a validé
    explored = set()
    while frontier:
        node = frontier.pop()
        if problem.goal_test(node.state):
            return node
        explored.add(node.state)
        for child in node.expand(problem):
            if child.state not in explored and child not in frontier:
                frontier.append(child)
            elif child in frontier:
                incumbent = frontier[child]
                if f(child) < f(incumbent):
                    del frontier[incumbent]
                    frontier.append(child)
    return None
def uniform_cost_search(problem):
    "[Fig. 3.14]"
    return best_first_graph_search(problem, lambda node: node.path_cost)
def depth_limited_search(problem, limit=50):
    "[Fig. 3.17]"
    def recursive_dls(node, problem, limit):
        if problem.goal_test(node.state):
            return node
        elif node.depth == limit:
            return 'cutoff'
        else:
            cutoff_occurred = False
withal's avatar
withal a validé
            for child in node.expand(problem):
                result = recursive_dls(child, problem, limit)
                    cutoff_occurred = True
withal's avatar
withal a validé
                elif result is not None:
            return ('cutoff' if cutoff_occurred else None)
    # Body of depth_limited_search:
    return recursive_dls(Node(problem.initial), problem, limit)

def iterative_deepening_search(problem):
    "[Fig. 3.18]"
MircoT's avatar
MircoT a validé
    for depth in range(sys.maxsize):
        result = depth_limited_search(problem, depth)
# ______________________________________________________________________________
# Informed (Heuristic) Search

greedy_best_first_graph_search = best_first_graph_search
MircoT's avatar
MircoT a validé
# Greedy best-first search is accomplished by specifying f(n) = h(n).


def astar_search(problem, h=None):
    """A* search is best-first graph search with f(n) = g(n)+h(n).
    You need to specify the h function when you call astar_search, or
    else in your Problem subclass."""
    h = memoize(h or problem.h, 'h')
    return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
# ______________________________________________________________________________
withal's avatar
withal a validé
# Other search algorithms
def recursive_best_first_search(problem, h=None):
    "[Fig. 3.26]"
    h = memoize(h or problem.h, 'h')
    def RBFS(problem, node, flimit):
withal's avatar
withal a validé
        if problem.goal_test(node.state):
            return node, 0   # (The second value is immaterial)
        successors = node.expand(problem)
        if len(successors) == 0:
            return None, infinity
        for s in successors:
            s.f = max(s.path_cost + h(s), node.f)
MircoT's avatar
MircoT a validé
            # Order by lowest f value
Larry He's avatar
Larry He a validé
            successors.sort(key=lambda x: x.f)
            best = successors[0]
            if best.f > flimit:
                return None, best.f
            if len(successors) > 1:
                alternative = successors[1].f
                alternative = infinity
            result, best.f = RBFS(problem, best, min(flimit, alternative))
    node = Node(problem.initial)
    node.f = h(node)
    result, bestf = RBFS(problem, node, infinity)
    return result
def hill_climbing(problem):
    """From the initial node, keep choosing the neighbor with highest value,
    stopping when no neighbor is better. [Fig. 4.2]"""
    current = Node(problem.initial)
    while True:
        neighbors = current.expand(problem)
        if not neighbors:
            break
        neighbor = argmax_random_tie(neighbors,
Peter Norvig's avatar
Peter Norvig a validé
                                     key=lambda node: problem.value(node.state))
        if problem.value(neighbor.state) <= problem.value(current.state):
            break
def exp_schedule(k=20, lam=0.005, limit=100):
    "One possible schedule function for simulated annealing"
    return lambda t: (k * math.exp(-lam * t) if t < limit else 0)
def simulated_annealing(problem, schedule=exp_schedule()):
    "[Fig. 4.5]"
    current = Node(problem.initial)
MircoT's avatar
MircoT a validé
    for t in range(sys.maxsize):
        T = schedule(t)
        if T == 0:
            return current
        neighbors = current.expand(problem)
        if not neighbors:
            return current
        next = random.choice(neighbors)
        delta_e = problem.value(next.state) - problem.value(current.state)
        if delta_e > 0 or probability(math.exp(delta_e/T)):
            current = next

def and_or_graph_search(problem):
Chipe1's avatar
Chipe1 a validé
    """Used when the environment is  nondeterministic and completely observable
    Contains OR nodes where the agent is free to choose any action
    After every action there is an AND node which contains all possible states
    the agent may reach due to stochastic nature of environment
    The agent must be able to handle all possible states of the AND node(as it
    may end up in any of them) returns a conditional plan to reach goal state,
    or failure if the former is not possible"""
    "[Fig. 4.11]"
    # functions used by and_or_search
Chipe1's avatar
Chipe1 a validé
    def or_search(state, problem, path):
        if problem.goal_test(state):
Chipe1's avatar
Chipe1 a validé
            return []
Chipe1's avatar
Chipe1 a validé
        if state in path:
            return None
Chipe1's avatar
Chipe1 a validé
        for action in problem.actions(state):
            plan = and_search(problem.result(state, action),
                              problem, path + [state, ])
            if plan is not None:
Chipe1's avatar
Chipe1 a validé
                return [action, plan]

    def and_search(states, problem, path):
        "returns plan in form of dictionary where we take action plan[s] if we reach state s"  # noqa
        plan = dict()
Chipe1's avatar
Chipe1 a validé
        for s in states:
            plan[s] = or_search(s, problem, path)
            if plan[s] is None:
Chipe1's avatar
Chipe1 a validé
                return None
        return plan

    # body of and or search
Chipe1's avatar
Chipe1 a validé
    return or_search(problem.initial, problem, [])
Tarun Kumar's avatar
Tarun Kumar a validé
class OnlineDFSAgent:

    """The abstract class for an OnlineDFSAgent. Override update_state
    method to convert percept to state. While initilizing the subclass
    a problem needs to be provided which is an instance of a subclass
    of the Problem Class. [Fig. 4.21] """

    def __init__(self, problem):
        self.problem = problem
        self.s = None
        self.a = None
        self.untried = defaultdict(list)
        self.unbacktracked = defaultdict(list)
        self.result = {}

Tarun Kumar's avatar
Tarun Kumar a validé
    def __call__(self, percept):
Tarun Kumar's avatar
Tarun Kumar a validé
        current_state = self.update_state(percept)
        if self.problem.goal_test(current_state):
            self.a = None
        else:
            if current_state not in self.untried.keys():
                self.untried[current_state] = self.problem.actions(
                                                current_state)
Tarun Kumar's avatar
Tarun Kumar a validé
            if self.s is not None:
                if current_state != self.result[(self.s, self.a)]:
                    self.result[(self.s, self.a)] = current_state
                    unbacktracked[current_state].insert(0, self.s)
            if len(self.untried[current_state]) == 0:
                if len(self.unbacktracked[current_state]) == 0:
                    self.a = None
                else:
                    # else a <- an action b such that result[s', b] = POP(unbacktracked[s'])  # noqa
                    unbacktracked_pop = self.unbacktracked[current_state].pop(0)  # noqa
                    for (s, b) in self.result.keys():
                        if self.result[(s, b)] == unbacktracked_pop:
Tarun Kumar's avatar
Tarun Kumar a validé
                            self.a = b
                            break
            else:
                self.a = self.untried[current_state].pop(0)
        self.s = current_state
        return self.a
Tarun Kumar's avatar
Tarun Kumar a validé
    def update_state(self, percept):
        raise NotImplementedError
# ______________________________________________________________________________

class OnlineSearchProblem(Problem):
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
    """
    A problem which is solved by an agent executing
    actions, rather than by just computation.
    Carried in a deterministic and a fully observable environment.
    """
    def __init__(self, initial, goal, graph):
        self.initial = initial
        self.goal = goal
        self.graph = graph

    def actions(self, state):
        return self.graph.dict[state].keys()

    def output(self, state, action):
        return self.graph.dict[state][action]

    def h(self, state):
        """
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
        Returns least possible cost to reach a goal for the given state.
        """
        return self.graph.least_costs[state]

    def c(self, s, a, s1):
        """
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
        Returns a cost estimate for an agent to move from state 's' to state 's1'
        """
        return 1

    def update_state(self, percept):
        raise NotImplementedError

    def goal_test(self, state):
        if state == self.goal:
            return True
        return False


class LRTAStarAgent:

Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
    """ [Fig. 4.24]
    Abstract class for LRTA*-Agent. A problem needs to be
    provided which is an instanace of a subclass of Problem Class.

Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
    Takes a OnlineSearchProblem [Fig. 4.23] as a problem
    """

    def __init__(self, problem):
        self.problem = problem
        # self.result = {}      # no need as we are using problem.result
        self.H = {}
        self.s = None
        self.a = None

    def __call__(self, s1):     # as of now s1 is a state rather than a percept
        if self.problem.goal_test(s1):
            self.a = None
            return(self.a)
        else:
            if s1 not in self.H:
                self.H[s1] = self.problem.h(s1)
            if self.s is not None:
                # self.result[(self.s, self.a)] = s1    # no need as we are using problem.output

                # minimum cost for action b in problem.actions(s)
                self.H[self.s] = min([self.LRTA_cost(self.s, b, self.problem.output(self.s, b), self.H)
                                    for b in self.problem.actions(self.s)])

            # costs for action b in problem.actions(s1)
            costs = [self.LRTA_cost(s1, b, self.problem.output(s1, b), self.H)
                        for b in self.problem.actions(s1)]
            # an action b in problem.actions(s1) that minimizes costs
            self.a = list(self.problem.actions(s1))[costs.index(min(costs))]

            self.s = s1
            return self.a

    def LRTA_cost(self, s, a, s1, H):
        """
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
        Returns cost to move from state 's' to state 's1' plus
        estimated cost to get to goal from s1
        """
        print(s, a, s1)
        if s1 is None:
            return(self.problem.h(s))
        else:
            # sometimes we need to get H[s1] which we haven't yet added to H
            # to replace this try, except: we can initialize H with values from problem.h
            try:
                return(self.problem.c(s, a, s1) + self.H[s1])
            except:
                return(self.problem.c(s, a, s1) + self.problem.h(s1))
# ______________________________________________________________________________
def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20):
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
    """
    Call genetic_algorithm on the appropriate parts of a problem.
    This requires the problem to have states that can mate and mutate,
    plus a value method that scores states."""
    s = problem.initial_state
    states = [problem.result(s, a) for a in problem.actions(s)]
    return genetic_algorithm(states[:n], problem.value, ngen, pmut)
def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.1):
    "[Fig. 4.8]"
    for i in range(ngen):
        new_population = []
        for i in len(population):
MircoT's avatar
MircoT a validé
            fitnesses = list(map(fitness_fn, population))
            p1, p2 = weighted_sample_with_replacement(population, fitnesses, 2)
            child = p1.mate(p2)
            if random.uniform(0, 1) < pmut:
                child.mutate()
            new_population.append(child)
        population = new_population
Peter Norvig's avatar
Peter Norvig a validé
    return argmax(population, key=fitness_fn)
    "Abstract class for individuals in a genetic search."
    def __init__(self, genes):
        self.genes = genes

    def mate(self, other):
        "Return a new individual crossing self and other."
        c = random.randrange(len(self.genes))
        return self.__class__(self.genes[:c] + other.genes[c:])

    def mutate(self):
        "Change a few of my genes."
norvig's avatar
norvig a validé
        raise NotImplementedError
# _____________________________________________________________________________
# The remainder of this file implements examples for the search algorithms.

# ______________________________________________________________________________
    """A graph connects nodes (verticies) by edges (links).  Each edge can also
    have a length associated with it.  The constructor call is something like:
withal's avatar
withal a validé
        g = Graph({'A': {'B': 1, 'C': 2})
    this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
    A to B,  and an edge of length 2 from A to C.  You can also do:
        g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
    This makes an undirected graph, so inverse links are also added. The graph
    stays undirected; if you add more links with g.connect('B', 'C', 3), then
    inverse link is also added.  You can use g.nodes() to get a list of nodes,
    g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
withal's avatar
withal a validé
    length of the link from A to B.  'Lengths' can actually be any object at
    all, and nodes can be any hashable object."""

    def __init__(self, dict=None, directed=True):
        self.dict = dict or {}
        self.directed = directed
MircoT's avatar
MircoT a validé
        if not directed:
            self.make_undirected()

    def make_undirected(self):
        "Make a digraph into an undirected graph by adding symmetric edges."
MircoT's avatar
MircoT a validé
        for a in list(self.dict.keys()):
            for (b, distance) in list(self.dict[a].items()):
                self.connect1(b, a, distance)

    def connect(self, A, B, distance=1):
        """Add a link from A and B of given distance, and also add the inverse
        link if the graph is undirected."""
        self.connect1(A, B, distance)
MircoT's avatar
MircoT a validé
        if not self.directed:
            self.connect1(B, A, distance)

    def connect1(self, A, B, distance):
        "Add a link from A to B of given distance, in one direction only."
MircoT's avatar
MircoT a validé
        self.dict.setdefault(A, {})[B] = distance

    def get(self, a, b=None):
        """Return a link distance or a dict of {node: distance} entries.
        .get(a,b) returns the distance or None;
        .get(a) returns a dict of {node: distance} entries, possibly {}."""
        links = self.dict.setdefault(a, {})
MircoT's avatar
MircoT a validé
        if b is None:
            return links
        else:
            return links.get(b)

    def nodes(self):
        "Return a list of nodes in the graph."
MircoT's avatar
MircoT a validé
        return list(self.dict.keys())


def UndirectedGraph(dict=None):
    "Build a Graph where every edge (including future ones) goes both ways."
    return Graph(dict=dict, directed=False)

MircoT's avatar
MircoT a validé
def RandomGraph(nodes=list(range(10)), min_links=2, width=400, height=300,
MircoT's avatar
MircoT a validé
                curvature=lambda: random.uniform(1.1, 1.5)):
    """Construct a random graph, with the specified nodes, and random links.
    The nodes are laid out randomly on a (width x height) rectangle.
    Then each node is connected to the min_links nearest neighbors.
    Because inverse links are added, some nodes will have more connections.
    The distance between nodes is the hypotenuse times curvature(),
    where curvature() defaults to a random number between 1.1 and 1.5."""
    g = UndirectedGraph()
    g.locations = {}
MircoT's avatar
MircoT a validé
    # Build the cities
    for node in nodes:
        g.locations[node] = (random.randrange(width), random.randrange(height))
MircoT's avatar
MircoT a validé
    # Build roads from each city to at least min_links nearest neighbors.
    for i in range(min_links):
        for node in nodes:
            if len(g.get(node)) < min_links:
                here = g.locations[node]
MircoT's avatar
MircoT a validé
                    if n is node or g.get(node, n):
                        return infinity
                    return distance(g.locations[n], here)
Peter Norvig's avatar
Peter Norvig a validé
                neighbor = argmin(nodes, key=distance_to_node)
                d = distance(g.locations[neighbor], here) * curvature()
withal's avatar
withal a validé
                g.connect(node, neighbor, int(d))
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
""" [Fig. 3.2]
Simplified road map of Romania
"""
romania_map = UndirectedGraph(dict(
    Arad=dict(Zerind=75, Sibiu=140, Timisoara=118),
    Bucharest=dict(Urziceni=85, Pitesti=101, Giurgiu=90, Fagaras=211),
    Craiova=dict(Drobeta=120, Rimnicu=146, Pitesti=138),
    Drobeta=dict(Mehadia=75),
    Eforie=dict(Hirsova=86),
    Fagaras=dict(Sibiu=99),
    Hirsova=dict(Urziceni=98),
    Iasi=dict(Vaslui=92, Neamt=87),
    Lugoj=dict(Timisoara=111, Mehadia=70),
    Oradea=dict(Zerind=71, Sibiu=151),
    Pitesti=dict(Rimnicu=97),
    Rimnicu=dict(Sibiu=80),
    Urziceni=dict(Vaslui=142)))
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
romania_map.locations = dict(
    Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288),
    Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449),
    Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506),
    Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537),
    Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410),
    Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350),
    Vaslui=(509, 444), Zerind=(108, 531))

Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
""" [Fig. 4.9]
Chipe1's avatar
Chipe1 a validé
Eight possible states of the vacumm world
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
Each state is represented as
   *       "State of the left room"      "State of the right room"   "Room in which the agent is present"
1 - DDL     Dirty                         Dirty                       Left
2 - DDR     Dirty                         Dirty                       Right
3 - DCL     Dirty                         Clean                       Left
4 - DCR     Dirty                         Clean                       Right
5 - CDL     Clean                         Dirty                       Left
6 - CDR     Clean                         Dirty                       Right
7 - CCL     Clean                         Clean                       Left
8 - CCR     Clean                         Clean                       Right
Chipe1's avatar
Chipe1 a validé
"""
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
vacumm_world = Graph(dict(
Chipe1's avatar
Chipe1 a validé
    State_1 = dict(Suck = ['State_7', 'State_5'], Right = ['State_2']),
    State_2 = dict(Suck = ['State_8', 'State_4'], Left = ['State_2']),
    State_3 = dict(Suck = ['State_7'], Right = ['State_4']),
    State_4 = dict(Suck = ['State_4', 'State_2'], Left = ['State_3']),
    State_5 = dict(Suck = ['State_5', 'State_1'], Right = ['State_6']),
    State_6 = dict(Suck = ['State_8'], Left = ['State_5']),
    State_7 = dict(Suck = ['State_7', 'State_3'], Right = ['State_8']),
    State_8 = dict(Suck = ['State_8', 'State_6'], Left = ['State_7'])
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
""" [Fig. 4.23]
One-dimensional state space Graph

"""
one_dim_state_space = Graph(dict(
    State_1 = dict(Right = 'State_2'),
    State_2 = dict(Right = 'State_3', Left = 'State_1'),
    State_3 = dict(Right = 'State_4', Left = 'State_2'),
    State_4 = dict(Right = 'State_5', Left = 'State_3'),
    State_5 = dict(Right = 'State_6', Left = 'State_4'),
    State_6 = dict(Left = 'State_5')
    ))
one_dim_state_space.least_costs = dict(
    State_1 = 8,
    State_2 = 9,
    State_3 = 2,
    State_4 = 2,
    State_5 = 4,
    State_6 = 3)
Chipe1's avatar
Chipe1 a validé

# Principal states and territories of Australia
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
australia_map = UndirectedGraph(dict(
    T=dict(),
    SA=dict(WA=1, NT=1, Q=1, NSW=1, V=1),
    NT=dict(WA=1, Q=1),
    NSW=dict(Q=1, V=1)))
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
australia_map.locations = dict(WA=(120, 24), NT=(135, 20), SA=(135, 30),
                           Q=(145, 20), NSW=(145, 32), T=(145, 42),
                           V=(145, 37))
class GraphProblem(Problem):
    "The problem of searching a graph from one node to another."
    def __init__(self, initial, goal, graph):
        Problem.__init__(self, initial, goal)
        self.graph = graph

    def actions(self, A):
        "The actions at a graph node are just its neighbors."
MircoT's avatar
MircoT a validé
        return list(self.graph.get(A).keys())

    def result(self, state, action):
        "The result of going to a neighbor is just that neighbor."
        return action

    def path_cost(self, cost_so_far, A, action, B):
MircoT's avatar
MircoT a validé
        return cost_so_far + (self.graph.get(A, B) or infinity)

    def h(self, node):
        "h function is straight-line distance from a node's state to goal."
        locs = getattr(self.graph, 'locations', None)
        if locs:
            return int(distance(locs[node.state], locs[self.goal]))
        else:
            return infinity

Chipe1's avatar
Chipe1 a validé
class GraphProblemStochastic(GraphProblem):
    """
    A version of Graph Problem where an action can lead to undeterministic output i.e. multiple possible states
    Define the graph as dict(A = dict(Action = [[<Result 1>, <Result 2>, ...],<cost>], ...), ...)
    A the dictionary format is different, make sure the graph is created as a directed graph
    """
SnShine's avatar
SnShine a validé

Chipe1's avatar
Chipe1 a validé
    def result(self, state, action):
        return self.graph.get(state, action)

    def path_cost():
        raise NotImplementedError


# ______________________________________________________________________________
class NQueensProblem(Problem):
    """The problem of placing N queens on an NxN board with none attacking
withal's avatar
withal a validé
    each other.  A state is represented as an N-element array, where
    a value of r in the c-th entry means there is a queen at column c,
    row r, and a value of None means that the c-th column has not been
    filled in yet.  We fill in columns left to right.
    >>> depth_first_tree_search(NQueensProblem(8))
    <Node [7, 3, 0, 2, 5, 1, 6, 4]>
    """
    def __init__(self, N):
        self.N = N
        self.initial = [None] * N

    def actions(self, state):
        "In the leftmost empty column, try all non-conflicting rows."
        if state[-1] is not None:
MircoT's avatar
MircoT a validé
            return []  # All columns filled; no successors
            return [row for row in range(self.N)
                    if not self.conflicted(state, row, col)]

    def result(self, state, row):
        "Place the next queen at the given row."
        col = state.index(None)
        new = state[:]
        new[col] = row
        return new

    def conflicted(self, state, row, col):
        "Would placing a queen at (row, col) conflict with anything?"
        return any(self.conflict(row, col, state[c], c)
                   for c in range(col))

    def conflict(self, row1, col1, row2, col2):
        "Would putting two queens in (row1, col1) and (row2, col2) conflict?"
        return (row1 == row2 or  # same row
                col1 == col2 or  # same column
                row1-col1 == row2-col2 or  # same \ diagonal
                row1+col1 == row2+col2)   # same / diagonal

    def goal_test(self, state):
        "Check if all columns filled, no conflicts."
withal's avatar
withal a validé
        if state[-1] is None:
        return not any(self.conflicted(state, state[col], col)
                       for col in range(len(state)))
# ______________________________________________________________________________
withal's avatar
withal a validé
# Inverse Boggle: Search for a high-scoring Boggle board. A good domain for
# iterative-repair and related search techniques, as suggested by Justin Boyan.

ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

cubes16 = ['FORIXB', 'MOQABJ', 'GURILW', 'SETUPL',
           'CMPDAE', 'ACITAO', 'SLCRAE', 'ROMASH',
           'NODESW', 'HEFIYE', 'ONUDTK', 'TEVIGN',
           'ANEDVZ', 'PINESH', 'ABILYT', 'GKYLEU']

def random_boggle(n=4):
    """Return a random Boggle board of size n x n.
    We represent a board as a linear list of letters."""
    cubes = [cubes16[i % 16] for i in range(n*n)]
    random.shuffle(cubes)
MircoT's avatar
MircoT a validé
    return list(map(random.choice, cubes))
withal's avatar
withal a validé
# The best 5x5 board found by Boyan, with our word list this board scores
# 2274 words, for a score of 9837

boyan_best = list('RSTCSDEIAEGNLRPEATESMSSID')

def print_boggle(board):
    "Print the board in a 2-d array."
MircoT's avatar
MircoT a validé
    n2 = len(board)
    n = exact_sqrt(n2)
MircoT's avatar
MircoT a validé
        if i % n == 0 and i > 0:
            print()
        if board[i] == 'Q':
            print('Qu', end=' ')
        else:
            print(str(board[i]) + ' ', end=' ')
MircoT's avatar
MircoT a validé
    print()
def boggle_neighbors(n2, cache={}):
    """Return a list of lists, where the i-th element is the list of indexes
    for the neighbors of square i."""
    if cache.get(n2):
        return cache.get(n2)
    n = exact_sqrt(n2)
    neighbors = [None] * n2
    for i in range(n2):
        neighbors[i] = []
        on_top = i < n
        on_bottom = i >= n2 - n
        on_left = i % n == 0
        on_right = (i+1) % n == 0
        if not on_top:
            neighbors[i].append(i - n)
MircoT's avatar
MircoT a validé
            if not on_left:
                neighbors[i].append(i - n - 1)
            if not on_right:
                neighbors[i].append(i - n + 1)
withal's avatar
withal a validé
            neighbors[i].append(i + n)
MircoT's avatar
MircoT a validé
            if not on_left:
                neighbors[i].append(i + n - 1)
            if not on_right:
                neighbors[i].append(i + n + 1)
        if not on_left:
            neighbors[i].append(i - 1)
        if not on_right:
            neighbors[i].append(i + 1)
    cache[n2] = neighbors
    return neighbors

def exact_sqrt(n2):
    "If n2 is a perfect square, return its square root, else raise error."
    n = int(math.sqrt(n2))
    assert n * n == n2
    return n

# _____________________________________________________________________________
    """This class holds a list of words. You can use (word in wordlist)
    to check if a word is in the list, or wordlist.lookup(prefix)
    to see if prefix starts any of the words in the list."""
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
    def __init__(self, file, min_len=3):
        lines = file.read().upper().split()
        self.words = [word for word in lines if len(word) >= min_len]
        self.words.sort()
        self.bounds = {}
        for c in ALPHABET:
            c2 = chr(ord(c) + 1)
            self.bounds[c] = (bisect.bisect(self.words, c),
                              bisect.bisect(self.words, c2))

    def lookup(self, prefix, lo=0, hi=None):
        """See if prefix is in dictionary, as a full word or as a prefix.
        Return two values: the first is the lowest i such that
        words[i].startswith(prefix), or is None; the second is
        True iff prefix itself is in the Wordlist."""
        words = self.words
MircoT's avatar
MircoT a validé
        if hi is None:
            hi = len(words)
        i = bisect.bisect_left(words, prefix, lo, hi)
withal's avatar
withal a validé
        if i < len(words) and words[i].startswith(prefix):
            return i, (words[i] == prefix)
withal's avatar
withal a validé
        else:
withal's avatar
withal a validé
    def __contains__(self, word):
        return self.lookup(word)[1]
withal's avatar
withal a validé
    def __len__(self):
# _____________________________________________________________________________
    """A class that allows you to find all the words in a Boggle board. """

MircoT's avatar
MircoT a validé
    wordlist = None  # A class variable, holding a wordlist

    def __init__(self, board=None):
        if BoggleFinder.wordlist is None:
Peter Norvig's avatar
Peter Norvig a validé
            BoggleFinder.wordlist = Wordlist(DataFile("EN-text/wordlist.txt"))
        self.found = {}
        if board:
            self.set_board(board)

    def set_board(self, board=None):
        "Set the board, and find all the words in it."
        if board is None:
            board = random_boggle()
        self.board = board
        self.neighbors = boggle_neighbors(len(board))
        self.found = {}
        for i in range(len(board)):
            lo, hi = self.wordlist.bounds[board[i]]
            self.find(lo, hi, i, [], '')
        return self
    def find(self, lo, hi, i, visited, prefix):
        """Looking in square i, find the words that continue the prefix,
        considering the entries in self.wordlist.words[lo:hi], and not
        revisiting the squares in visited."""
withal's avatar
withal a validé
        if i in visited:
            return
        wordpos, is_word = self.wordlist.lookup(prefix, lo, hi)
        if wordpos is not None:
withal's avatar
withal a validé
            if is_word:
                self.found[prefix] = True
            visited.append(i)
            c = self.board[i]
MircoT's avatar
MircoT a validé
            if c == 'Q':
                c = 'QU'
withal's avatar
withal a validé
            for j in self.neighbors[i]:
                self.find(wordpos, hi, j, visited, prefix)
            visited.pop()

withal's avatar
withal a validé
    def words(self):
MircoT's avatar
MircoT a validé
        return list(self.found.keys())

    scores = [0, 0, 0, 0, 1, 2, 3, 5] + [11] * 100

    def score(self):
        "The total score for the words found, according to the rules."
        return sum([self.scores[len(w)] for w in self.words()])

    def __len__(self):
        "The number of words found."
        return len(self.found)

# _____________________________________________________________________________
peter.norvig's avatar
peter.norvig a validé
def boggle_hill_climbing(board=None, ntimes=100, verbose=True):
    """Solve inverse Boggle by hill-climbing: find a high-scoring board by
    starting with a random one and changing it."""
    finder = BoggleFinder()
    if board is None:
        board = random_boggle()
    best = len(finder.set_board(board))
    for _ in range(ntimes):
        i, oldc = mutate_boggle(board)
        new = len(finder.set_board(board))
        if new > best:
            best = new
MircoT's avatar
MircoT a validé
            if verbose:
                print(best, _, board)
MircoT's avatar
MircoT a validé
            board[i] = oldc  # Change back
peter.norvig's avatar
peter.norvig a validé
    if verbose:
def mutate_boggle(board):
    i = random.randrange(len(board))
    oldc = board[i]
MircoT's avatar
MircoT a validé
    # random.choice(boyan_best)
    board[i] = random.choice(random.choice(cubes16))
# ______________________________________________________________________________
withal's avatar
withal a validé
# Code to compare searchers on various problems.
class InstrumentedProblem(Problem):
    """Delegates to a problem, and keeps statistics."""

withal's avatar
withal a validé
    def __init__(self, problem):
        self.problem = problem
        self.succs = self.goal_tests = self.states = 0
        self.found = None
    def actions(self, state):
        self.succs += 1
        return self.problem.actions(state)

    def result(self, state, action):
        self.states += 1
        return self.problem.result(state, action)
    def goal_test(self, state):
        self.goal_tests += 1
        result = self.problem.goal_test(state)
withal's avatar
withal a validé
        if result:
    def path_cost(self, c, state1, action, state2):
        return self.problem.path_cost(c, state1, action, state2)

    def value(self, state):
        return self.problem.value(state)

withal's avatar
withal a validé
        return getattr(self.problem, attr)

    def __repr__(self):
        return '<%4d/%4d/%4d/%s>' % (self.succs, self.goal_tests,
                                     self.states, str(self.found)[:4])
def compare_searchers(problems, header,
                      searchers=[breadth_first_tree_search,
                                 breadth_first_search,
                                 depth_first_graph_search,
                                 iterative_deepening_search,
                                 recursive_best_first_search]):
    def do(searcher, problem):
        p = InstrumentedProblem(problem)
        searcher(p)
        return p
    table = [[name(s)] + [do(s, p) for p in problems] for s in searchers]
    print_table(table, header)

def compare_graph_searchers():
Peter Norvig's avatar
Peter Norvig a validé
    """Prints a table of search results."""
Surya Teja Cheedella's avatar
Surya Teja Cheedella a validé
    compare_searchers(problems=[GraphProblem('Arad', 'Bucharest', romania_map),
                                GraphProblem('Oradea', 'Neamt', romania_map),
                                GraphProblem('Q', 'WA', australia_map)],
                      header=['Searcher', 'romania_map(Arad, Bucharest)',
                              'romania_map(Oradea, Neamt)', 'australia_map'])
# ______________________________________________________________________________
peter.norvig's avatar
peter.norvig a validé

Peter Norvig's avatar
Peter Norvig a validé