text.py 13,2 ko
Newer Older
"""Statistical Language Processing tools.  (Chapter 22)
We define Unigram and Ngram text models, use them to generate random text,
and show the Viterbi algorithm for segmentatioon of letters into words.
Then we show a very simple Information Retrieval system, and an example
working on a tiny sample of Unix manual pages."""

from utils import argmin
from learning import CountingProbDist
import search
from collections import defaultdict
Larry He's avatar
Larry He a validé
import heapq

class UnigramTextModel(CountingProbDist):
MircoT's avatar
MircoT a validé

    """This is a discrete probability distribution over words, so you
    can add, sample, or get P[word], just like with CountingProbDist.  You can
    also generate a random text n words long with P.samples(n)"""

    def samples(self, n):
        "Return a string of n words, random according to the model."
        return ' '.join(self.sample() for i in range(n))
MircoT's avatar
MircoT a validé

class NgramTextModel(CountingProbDist):
MircoT's avatar
MircoT a validé

    """This is a discrete probability distribution over n-tuples of words.
    You can add, sample or get P[(word1, ..., wordn)]. The method P.samples(n)
withal's avatar
withal a validé
    builds up an n-word sequence; P.add and P.add_sequence add data."""

    def __init__(self, n, observation_sequence=[]):
MircoT's avatar
MircoT a validé
        # In addition to the dictionary of n-tuples, cond_prob is a
        # mapping from (w1, ..., wn-1) to P(wn | w1, ... wn-1)
        CountingProbDist.__init__(self)
        self.n = n
MircoT's avatar
MircoT a validé
        self.cond_prob = defaultdict()
        self.add_sequence(observation_sequence)

MircoT's avatar
MircoT a validé
    # __getitem__, top, sample inherited from CountingProbDist
    # Note they deal with tuples, not strings, as inputs

    def add(self, ngram):
        """Count 1 for P[(w1, ..., wn)] and for P(wn | (w1, ..., wn-1)"""
withal's avatar
withal a validé
        CountingProbDist.add(self, ngram)
MircoT's avatar
MircoT a validé
        if ngram[:-1] not in self.cond_prob:
            self.cond_prob[ngram[:-1]] = CountingProbDist()
        self.cond_prob[ngram[:-1]].add(ngram[-1])
    def add_sequence(self, words):
        """Add each of the tuple words[i:i+n], using a sliding window.
        Prefix some copies of the empty word, '', to make the start work."""
        n = self.n
MircoT's avatar
MircoT a validé
        words = ['', ] * (n-1) + words
        for i in range(len(words)-n):
            self.add(tuple(words[i:i+n]))

    def samples(self, nwords):
withal's avatar
withal a validé
        """Build up a random sample of text nwords words long, using
        the conditional probability given the n-1 preceding words."""
        n = self.n
        nminus1gram = ('',) * (n-1)
        output = []
withal's avatar
withal a validé
        for i in range(nwords):
            if nminus1gram not in self.cond_prob:
MircoT's avatar
MircoT a validé
                nminus1gram = ('',) * (n-1)  # Cannot continue, so restart.
            wn = self.cond_prob[nminus1gram].sample()
withal's avatar
withal a validé
            output.append(wn)
            nminus1gram = nminus1gram[1:] + (wn,)
# ______________________________________________________________________________
withal's avatar
withal a validé
    """Find the best segmentation of the string of characters, given the
    UnigramTextModel P."""
    # best[i] = best probability for text[0:i]
    # words[i] = best word ending at position i
    n = len(text)
    words = [''] + list(text)
    best = [1.0] + [0.0] * n
MircoT's avatar
MircoT a validé
    # Fill in the vectors best, words via dynamic programming
    for i in range(n+1):
        for j in range(0, i):
            w = text[j:i]
            if P[w] * best[i - len(w)] >= best[i]:
                best[i] = P[w] * best[i - len(w)]
                words[i] = w
MircoT's avatar
MircoT a validé
    # Now recover the sequence of best words
    sequence = []
    i = len(words)-1
    while i > 0:
        sequence[0:0] = [words[i]]
        i = i - len(words[i])
MircoT's avatar
MircoT a validé
    # Return sequence of best words and overall probability
# ______________________________________________________________________________
# TODO(tmrts): Expose raw index
    """A very simple Information Retrieval System, as discussed in Sect. 23.2.
withal's avatar
withal a validé
    The constructor s = IRSystem('the a') builds an empty system with two
    stopwords. Next, index several documents with s.index_document(text, url).
withal's avatar
withal a validé
    Then ask queries with s.query('query words', n) to retrieve the top n
    matching documents.  Queries are literal words from the document,
    except that stopwords are ignored, and there is one special syntax:
    The query "learn: man cat", for example, runs "man cat" and indexes it."""

    def __init__(self, stopwords='the a of'):
        """Create an IR System. Optionally specify stopwords."""
        # index is a map of {word: {docid: count}}, where docid is an int,
MircoT's avatar
MircoT a validé
        # indicating the index into the documents list.
        self.index = defaultdict(lambda: defaultdict(int))
        self.stopwords = set(words(stopwords))
        self.documents = []

    def index_collection(self, filenames):
        "Index a whole collection of files."
        prefix = os.path.dirname(__file__)
            self.index_document(open(filename).read(),
                                os.path.relpath(filename, prefix))

    def index_document(self, text, url):
        "Index the text of a document."
MircoT's avatar
MircoT a validé
        # For now, use first line for title
        title = text[:text.index('\n')].strip()
        docwords = words(text)
        docid = len(self.documents)
        self.documents.append(Document(title, url, len(docwords)))
        for word in docwords:
            if word not in self.stopwords:
                self.index[word][docid] += 1

    def query(self, query_text, n=10):
        """Return a list of n (score, docid) pairs for the best matches.
        Also handle the special syntax for 'learn: command'."""
        if query_text.startswith("learn:"):
            doctext = os.popen(query_text[len("learn:"):], 'r').read()
            self.index_document(doctext, query_text)
            return []
        qwords = [w for w in words(query_text) if w not in self.stopwords]
Peter Norvig's avatar
Peter Norvig a validé
        shortest = argmin(qwords, key=lambda w: len(self.index[w]))
        docids = self.index[shortest]
        return heapq.nlargest(n, ((self.total_score(qwords, docid), docid) for docid in docids))
    def score(self, word, docid):
        "Compute a score for this word on the document with this docid."
MircoT's avatar
MircoT a validé
        # There are many options; here we take a very simple approach
        return (log(1 + self.index[word][docid]) /
                log(1 + self.documents[docid].nwords))
    def total_score(self, words, docid):
Larry He's avatar
Larry He a validé
        "Compute the sum of the scores of these words on the document with this docid."
        return sum(self.score(word, docid) for word in words)

    def present(self, results):
        "Present the results as a list."
        for (score, docid) in results:
            doc = self.documents[docid]
MircoT's avatar
MircoT a validé
            print(
                ("{:5.2}|{:25} | {}".format(100 * score, doc.url,
                                            doc.title[:45].expandtabs())))

    def present_results(self, query_text, n=10):
        "Get results for the query and present them."
        self.present(self.query(query_text, n))

class UnixConsultant(IRSystem):
    """A trivial IR system over a small collection of Unix man pages."""
    def __init__(self):
        IRSystem.__init__(self, stopwords="how do i the a of")
        import os
        aima_root = os.path.dirname(__file__)
        mandir = os.path.join(aima_root, 'aima-data/MAN/')
peter.norvig's avatar
peter.norvig a validé
        man_files = [mandir + f for f in os.listdir(mandir)
withal's avatar
withal a validé
                     if f.endswith('.txt')]
        self.index_collection(man_files)

    """Metadata for a document: title and url; maybe add others later."""
    def __init__(self, title, url, nwords):
        self.title = title
        self.url = url
        self.nwords = nwords
def words(text, reg=re.compile('[a-z0-9]+')):
    """Return a list of the words in text, ignoring punctuation and
    converting everything to lowercase (to canonicalize).
    >>> words("``EGAD!'' Edgar cried.")
    ['egad', 'edgar', 'cried']
    """
    return reg.findall(text.lower())

def canonicalize(text):
    """Return a canonical text: only lowercase letters and blanks.
    >>> canonicalize("``EGAD!'' Edgar cried.")
    'egad edgar cried'
    """
    return ' '.join(words(text))


# ______________________________________________________________________________
MircoT's avatar
MircoT a validé
# Example application (not in book): decode a cipher.
# A cipher is a code that substitutes one character for another.
# A shift cipher is a rotation of the letters in the alphabet,
# such as the famous rot13, which maps A to N, B to M, etc.
alphabet = 'abcdefghijklmnopqrstuvwxyz'

MircoT's avatar
MircoT a validé
# Encoding


def shift_encode(plaintext, n):
    """Encode text with a shift cipher that moves each letter up by n letters.
    >>> shift_encode('abc z', 1)
    'bcd a'
    """
    return encode(plaintext, alphabet[n:] + alphabet[:n])
def rot13(plaintext):
    """Encode text by rotating letters by 13 spaces in the alphabet.
    >>> rot13('hello')
    'uryyb'
    >>> rot13(rot13('hello'))
    'hello'
    """
    return shift_encode(plaintext, 13)

MircoT's avatar
MircoT a validé
def translate(plaintext, function):
    """Translate chars of a plaintext with the given function."""
    result = ""
    for char in plaintext:
        result += function(char)
    return result

MircoT's avatar
MircoT a validé
def maketrans(from_, to_):
    """Create a translation table and return the proper function."""
    trans_table = {}
    for n, char in enumerate(from_):
        trans_table[char] = to_[n]

    return lambda char: trans_table.get(char, char)

def encode(plaintext, code):
    "Encodes text, using a code which is a permutation of the alphabet."
    trans = maketrans(alphabet + alphabet.upper(), code + code.upper())

MircoT's avatar
MircoT a validé
    return translate(plaintext, trans)
def bigrams(text):
    """Return a list of pairs in text (a sequence of letters or words).
    >>> bigrams('this')
    ['th', 'hi', 'is']
    >>> bigrams(['this', 'is', 'a', 'test'])
    [['this', 'is'], ['is', 'a'], ['a', 'test']]
    """
    return [text[i:i+2] for i in range(len(text) - 1)]

MircoT's avatar
MircoT a validé
# Decoding a Shift (or Caesar) Cipher

    """There are only 26 possible encodings, so we can try all of them,
withal's avatar
withal a validé
    and return the one with the highest probability, according to a
    bigram probability distribution."""
    def __init__(self, training_text):
        training_text = canonicalize(training_text)
        self.P2 = CountingProbDist(bigrams(training_text), default=1)

    def score(self, plaintext):
        "Return a score for text based on how common letters pairs are."
        s = 1.0
        for bi in bigrams(plaintext):
            s = s * self.P2[bi]
    def decode(self, ciphertext):
        "Return the shift decoding of text with the best score."
MircoT's avatar
MircoT a validé
        list_ = [(self.score(shift), shift)
                 for shift in all_shifts(ciphertext)]
MircoT's avatar
MircoT a validé
        return max(list_, key=lambda elm: elm[0])[1]
def all_shifts(text):
    "Return a list of all 26 possible encodings of text by a shift cipher."

    yield from (shift_encode(text, i) for i, _ in enumerate(alphabet))
MircoT's avatar
MircoT a validé
# Decoding a General Permutation Cipher

    """This is a much harder problem than the shift decoder.  There are 26!
    permutations, so we can't try them all.  Instead we have to search.
    We want to search well, but there are many things to consider:
    Unigram probabilities (E is the most common letter); Bigram probabilities
    (TH is the most common bigram); word probabilities (I and A are the most
    common one-letter words, etc.); etc.
      We could represent a search state as a permutation of the 26 letters,
    and alter the solution through hill climbing.  With an initial guess
withal's avatar
withal a validé
    based on unigram probabilities, this would probably fare well. However,
withal's avatar
withal a validé
    I chose instead to have an incremental representation. A state is
    represented as a letter-to-letter map; for example {'z': 'e'} to
    represent that 'z' will be translated to 'e'.
    def __init__(self, training_text, ciphertext=None):
        self.Pwords = UnigramTextModel(words(training_text))
MircoT's avatar
MircoT a validé
        self.P1 = UnigramTextModel(training_text)  # By letter
        self.P2 = NgramTextModel(2, training_text)  # By letter pair

    def decode(self, ciphertext):
        "Search for a decoding of the ciphertext."
        self.ciphertext = ciphertext
        problem = PermutationDecoderProblem(decoder=self)
        return search.best_first_tree_search(
            problem, lambda node: self.score(node.state))
    def score(self, code):
        """Score is product of word scores, unigram scores, and bigram scores.
        This can get very small, so we use logs and exp."""
        text = permutation_decode(self.ciphertext, code)
        logP = (sum([log(self.Pwords[word]) for word in words(text)]) +
                sum([log(self.P1[c]) for c in text]) +
                sum([log(self.P2[b]) for b in bigrams(text)]))
        return exp(logP)

class PermutationDecoderProblem(search.Problem):
    def __init__(self, initial=None, goal=None, decoder=None):
        self.initial = initial or {}
        self.decoder = decoder

    def actions(self, state):
MircoT's avatar
MircoT a validé
        # Find the best
withal's avatar
withal a validé
        p, plainchar = max([(self.decoder.P1[c], c)
                            for c in alphabet if c not in state])
        succs = [extend(state, plainchar, cipherchar)]  # ???? # noqa
    def goal_test(self, state):
        "We're done when we get all 26 letters assigned."
        return len(state) >= 26


withal's avatar
withal a validé