planning.ipynb 397 ko
Newer Older
4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560
     "data": {
      "text/plain": [
       "[MoveToTable(C, A), Move(B, Table, C), Move(A, Table, B)]"
      ]
     },
     "execution_count": 63,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# total-order solution for three_block_tower problem\n",
    "Linearize(three_block_tower()).execute()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[ToTable(A, B), FromTable(B, A), FromTable(C, B)]"
      ]
     },
     "execution_count": 64,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# total-order solution for simple_blocks_world problem\n",
    "Linearize(simple_blocks_world()).execute()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[LeftSock, RightSock, LeftShoe, RightShoe]"
      ]
     },
     "execution_count": 65,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# total-order solution for socks_and_shoes problem\n",
    "Linearize(socks_and_shoes()).execute()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### PARTIAL ORDER  PLANNER\n",
    "A partial-order planning algorithm is significantly different from a total-order planner.\n",
    "The way a partial-order plan works enables it to take advantage of _problem decomposition_ and work on each subproblem separately.\n",
    "It works on several subgoals independently, solves them with several subplans, and then combines the plan.\n",
    "<br>\n",
    "A partial-order planner also follows the **least commitment** strategy, where it delays making choices for as long as possible.\n",
    "Variables are not bound unless it is absolutely necessary and new actions are chosen only if the existing actions cannot fulfil the required precondition.\n",
    "<br>\n",
    "Any planning algorithm that can place two actions into a plan without specifying which comes first is called a **partial-order planner**.\n",
    "A partial-order planner searches through the space of plans rather than the space of states, which makes it perform better for certain problems.\n",
    "<br>\n",
    "<br>\n",
    "Let's have a look at the `PartialOrderPlanner` class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">PartialOrderPlanner</span><span class=\"p\">:</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">pddl</span><span class=\"p\">):</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pddl</span> <span class=\"o\">=</span> <span class=\"n\">pddl</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">initialize</span><span class=\"p\">()</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">initialize</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Initialize all variables&quot;&quot;&quot;</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">causal_links</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">start</span> <span class=\"o\">=</span> <span class=\"n\">Action</span><span class=\"p\">(</span><span class=\"s1\">&#39;Start&#39;</span><span class=\"p\">,</span> <span class=\"p\">[],</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pddl</span><span class=\"o\">.</span><span class=\"n\">init</span><span class=\"p\">)</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">finish</span> <span class=\"o\">=</span> <span class=\"n\">Action</span><span class=\"p\">(</span><span class=\"s1\">&#39;Finish&#39;</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pddl</span><span class=\"o\">.</span><span class=\"n\">goals</span><span class=\"p\">,</span> <span class=\"p\">[])</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actions</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">start</span><span class=\"p\">)</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">finish</span><span class=\"p\">)</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">((</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">start</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">finish</span><span class=\"p\">))</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">agenda</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">precond</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">finish</span><span class=\"o\">.</span><span class=\"n\">precond</span><span class=\"p\">:</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">agenda</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">((</span><span class=\"n\">precond</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">finish</span><span class=\"p\">))</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">expanded_actions</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">expand_actions</span><span class=\"p\">()</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">expand_actions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">name</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Generate all possible actions with variable bindings for precondition selection heuristic&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"n\">objects</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">arg</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pddl</span><span class=\"o\">.</span><span class=\"n\">init</span> <span class=\"k\">for</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">clause</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">expansions</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"n\">action_list</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">name</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pddl</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">if</span> <span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">name</span><span class=\"p\">)</span> <span class=\"o\">==</span> <span class=\"n\">name</span><span class=\"p\">:</span>\n",
       "                    <span class=\"n\">action_list</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">action_list</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pddl</span><span class=\"o\">.</span><span class=\"n\">actions</span>\n",
       "\n",
       "        <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">action_list</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">permutation</span> <span class=\"ow\">in</span> <span class=\"n\">itertools</span><span class=\"o\">.</span><span class=\"n\">permutations</span><span class=\"p\">(</span><span class=\"n\">objects</span><span class=\"p\">,</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">)):</span>\n",
       "                <span class=\"n\">bindings</span> <span class=\"o\">=</span> <span class=\"n\">unify</span><span class=\"p\">(</span><span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">name</span><span class=\"p\">,</span> <span class=\"o\">*</span><span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">),</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">name</span><span class=\"p\">,</span> <span class=\"o\">*</span><span class=\"n\">permutation</span><span class=\"p\">))</span>\n",
       "                <span class=\"k\">if</span> <span class=\"n\">bindings</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "                    <span class=\"n\">new_args</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "                    <span class=\"k\">for</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">:</span>\n",
       "                        <span class=\"k\">if</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">bindings</span><span class=\"p\">:</span>\n",
       "                            <span class=\"n\">new_args</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">bindings</span><span class=\"p\">[</span><span class=\"n\">arg</span><span class=\"p\">])</span>\n",
       "                        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                            <span class=\"n\">new_args</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">arg</span><span class=\"p\">)</span>\n",
       "                    <span class=\"n\">new_expr</span> <span class=\"o\">=</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">name</span><span class=\"p\">),</span> <span class=\"o\">*</span><span class=\"n\">new_args</span><span class=\"p\">)</span>\n",
       "                    <span class=\"n\">new_preconds</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "                    <span class=\"k\">for</span> <span class=\"n\">precond</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">precond</span><span class=\"p\">:</span>\n",
       "                        <span class=\"n\">new_precond_args</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "                        <span class=\"k\">for</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">precond</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">:</span>\n",
       "                            <span class=\"k\">if</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">bindings</span><span class=\"p\">:</span>\n",
       "                                <span class=\"n\">new_precond_args</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">bindings</span><span class=\"p\">[</span><span class=\"n\">arg</span><span class=\"p\">])</span>\n",
       "                            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                                <span class=\"n\">new_precond_args</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">arg</span><span class=\"p\">)</span>\n",
       "                        <span class=\"n\">new_precond</span> <span class=\"o\">=</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">precond</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">),</span> <span class=\"o\">*</span><span class=\"n\">new_precond_args</span><span class=\"p\">)</span>\n",
       "                        <span class=\"n\">new_preconds</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">new_precond</span><span class=\"p\">)</span>\n",
       "                    <span class=\"n\">new_effects</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "                    <span class=\"k\">for</span> <span class=\"n\">effect</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">effect</span><span class=\"p\">:</span>\n",
       "                        <span class=\"n\">new_effect_args</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "                        <span class=\"k\">for</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">effect</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">:</span>\n",
       "                            <span class=\"k\">if</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">bindings</span><span class=\"p\">:</span>\n",
       "                                <span class=\"n\">new_effect_args</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">bindings</span><span class=\"p\">[</span><span class=\"n\">arg</span><span class=\"p\">])</span>\n",
       "                            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                                <span class=\"n\">new_effect_args</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">arg</span><span class=\"p\">)</span>\n",
       "                        <span class=\"n\">new_effect</span> <span class=\"o\">=</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">effect</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">),</span> <span class=\"o\">*</span><span class=\"n\">new_effect_args</span><span class=\"p\">)</span>\n",
       "                        <span class=\"n\">new_effects</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">new_effect</span><span class=\"p\">)</span>\n",
       "                    <span class=\"n\">expansions</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">Action</span><span class=\"p\">(</span><span class=\"n\">new_expr</span><span class=\"p\">,</span> <span class=\"n\">new_preconds</span><span class=\"p\">,</span> <span class=\"n\">new_effects</span><span class=\"p\">))</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"n\">expansions</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">find_open_precondition</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Find open precondition with the least number of possible actions&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"n\">number_of_ways</span> <span class=\"o\">=</span> <span class=\"nb\">dict</span><span class=\"p\">()</span>\n",
       "        <span class=\"n\">actions_for_precondition</span> <span class=\"o\">=</span> <span class=\"nb\">dict</span><span class=\"p\">()</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">element</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">agenda</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">open_precondition</span> <span class=\"o\">=</span> <span class=\"n\">element</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
       "            <span class=\"n\">possible_actions</span> <span class=\"o\">=</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">expanded_actions</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">possible_actions</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">for</span> <span class=\"n\">effect</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">effect</span><span class=\"p\">:</span>\n",
       "                    <span class=\"k\">if</span> <span class=\"n\">effect</span> <span class=\"o\">==</span> <span class=\"n\">open_precondition</span><span class=\"p\">:</span>\n",
       "                        <span class=\"k\">if</span> <span class=\"n\">open_precondition</span> <span class=\"ow\">in</span> <span class=\"n\">number_of_ways</span><span class=\"p\">:</span>\n",
       "                            <span class=\"n\">number_of_ways</span><span class=\"p\">[</span><span class=\"n\">open_precondition</span><span class=\"p\">]</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span>\n",
       "                            <span class=\"n\">actions_for_precondition</span><span class=\"p\">[</span><span class=\"n\">open_precondition</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">)</span>\n",
       "                        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                            <span class=\"n\">number_of_ways</span><span class=\"p\">[</span><span class=\"n\">open_precondition</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"mi\">1</span>\n",
       "                            <span class=\"n\">actions_for_precondition</span><span class=\"p\">[</span><span class=\"n\">open_precondition</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">action</span><span class=\"p\">]</span>\n",
       "\n",
       "        <span class=\"n\">number</span> <span class=\"o\">=</span> <span class=\"nb\">sorted</span><span class=\"p\">(</span><span class=\"n\">number_of_ways</span><span class=\"p\">,</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">number_of_ways</span><span class=\"o\">.</span><span class=\"fm\">__getitem__</span><span class=\"p\">)</span>\n",
       "        \n",
       "        <span class=\"k\">for</span> <span class=\"n\">k</span><span class=\"p\">,</span> <span class=\"n\">v</span> <span class=\"ow\">in</span> <span class=\"n\">number_of_ways</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">():</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">v</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"bp\">None</span>\n",
       "\n",
       "        <span class=\"n\">act1</span> <span class=\"o\">=</span> <span class=\"bp\">None</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">element</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">agenda</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">element</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"n\">number</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]:</span>\n",
       "                <span class=\"n\">act1</span> <span class=\"o\">=</span> <span class=\"n\">element</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span>\n",
       "                <span class=\"k\">break</span>\n",
       "\n",
       "        <span class=\"k\">if</span> <span class=\"n\">number</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">expanded_actions</span><span class=\"p\">:</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">expanded_actions</span><span class=\"o\">.</span><span class=\"n\">remove</span><span class=\"p\">(</span><span class=\"n\">number</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"n\">number</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">],</span> <span class=\"n\">act1</span><span class=\"p\">,</span> <span class=\"n\">actions_for_precondition</span><span class=\"p\">[</span><span class=\"n\">number</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]]</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">find_action_for_precondition</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">oprec</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Find action for a given precondition&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"c1\"># either</span>\n",
       "        <span class=\"c1\">#   choose act0 E Actions such that act0 achieves G</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">effect</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">effect</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">if</span> <span class=\"n\">effect</span> <span class=\"o\">==</span> <span class=\"n\">oprec</span><span class=\"p\">:</span>\n",
       "                    <span class=\"k\">return</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"mi\">0</span>\n",
       "\n",
       "        <span class=\"c1\"># or</span>\n",
       "        <span class=\"c1\">#   choose act0 E Actions such that act0 achieves G</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">pddl</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">effect</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">effect</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">if</span> <span class=\"n\">effect</span><span class=\"o\">.</span><span class=\"n\">op</span> <span class=\"o\">==</span> <span class=\"n\">oprec</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">:</span>\n",
       "                    <span class=\"n\">bindings</span> <span class=\"o\">=</span> <span class=\"n\">unify</span><span class=\"p\">(</span><span class=\"n\">effect</span><span class=\"p\">,</span> <span class=\"n\">oprec</span><span class=\"p\">)</span>\n",
       "                    <span class=\"k\">if</span> <span class=\"n\">bindings</span> <span class=\"ow\">is</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "                        <span class=\"k\">break</span>\n",
       "                    <span class=\"k\">return</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">bindings</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">generate_expr</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">bindings</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Generate atomic expression from generic expression given variable bindings&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"n\">new_args</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">clause</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">bindings</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">new_args</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">bindings</span><span class=\"p\">[</span><span class=\"n\">arg</span><span class=\"p\">])</span>\n",
       "            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">new_args</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">arg</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"k\">try</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"o\">.</span><span class=\"n\">name</span><span class=\"p\">),</span> <span class=\"o\">*</span><span class=\"n\">new_args</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">except</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">),</span> <span class=\"o\">*</span><span class=\"n\">new_args</span><span class=\"p\">)</span>\n",
       "        \n",
       "    <span class=\"k\">def</span> <span class=\"nf\">generate_action_object</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">bindings</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Generate action object given a generic action andvariable bindings&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"c1\"># if bindings is 0, it means the action already exists in self.actions</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">bindings</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">action</span>\n",
       "\n",
       "        <span class=\"c1\"># bindings cannot be None</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">new_expr</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">generate_expr</span><span class=\"p\">(</span><span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">bindings</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">new_preconds</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">precond</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">precond</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">new_precond</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">generate_expr</span><span class=\"p\">(</span><span class=\"n\">precond</span><span class=\"p\">,</span> <span class=\"n\">bindings</span><span class=\"p\">)</span>\n",
       "                <span class=\"n\">new_preconds</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">new_precond</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">new_effects</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">effect</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">effect</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">new_effect</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">generate_expr</span><span class=\"p\">(</span><span class=\"n\">effect</span><span class=\"p\">,</span> <span class=\"n\">bindings</span><span class=\"p\">)</span>\n",
       "                <span class=\"n\">new_effects</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">new_effect</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">Action</span><span class=\"p\">(</span><span class=\"n\">new_expr</span><span class=\"p\">,</span> <span class=\"n\">new_preconds</span><span class=\"p\">,</span> <span class=\"n\">new_effects</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">cyclic</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">graph</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Check cyclicity of a directed graph&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"n\">new_graph</span> <span class=\"o\">=</span> <span class=\"nb\">dict</span><span class=\"p\">()</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">element</span> <span class=\"ow\">in</span> <span class=\"n\">graph</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">element</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"ow\">in</span> <span class=\"n\">new_graph</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">new_graph</span><span class=\"p\">[</span><span class=\"n\">element</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]]</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">element</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">])</span>\n",
       "            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">new_graph</span><span class=\"p\">[</span><span class=\"n\">element</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]]</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">element</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]]</span>\n",
       "\n",
       "        <span class=\"n\">path</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "\n",
       "        <span class=\"k\">def</span> <span class=\"nf\">visit</span><span class=\"p\">(</span><span class=\"n\">vertex</span><span class=\"p\">):</span>\n",
       "            <span class=\"n\">path</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">(</span><span class=\"n\">vertex</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">neighbor</span> <span class=\"ow\">in</span> <span class=\"n\">new_graph</span><span class=\"o\">.</span><span class=\"n\">get</span><span class=\"p\">(</span><span class=\"n\">vertex</span><span class=\"p\">,</span> <span class=\"p\">()):</span>\n",
       "                <span class=\"k\">if</span> <span class=\"n\">neighbor</span> <span class=\"ow\">in</span> <span class=\"n\">path</span> <span class=\"ow\">or</span> <span class=\"n\">visit</span><span class=\"p\">(</span><span class=\"n\">neighbor</span><span class=\"p\">):</span>\n",
       "                    <span class=\"k\">return</span> <span class=\"bp\">True</span>\n",
       "            <span class=\"n\">path</span><span class=\"o\">.</span><span class=\"n\">remove</span><span class=\"p\">(</span><span class=\"n\">vertex</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">False</span>\n",
       "\n",
       "        <span class=\"n\">value</span> <span class=\"o\">=</span> <span class=\"nb\">any</span><span class=\"p\">(</span><span class=\"n\">visit</span><span class=\"p\">(</span><span class=\"n\">v</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">v</span> <span class=\"ow\">in</span> <span class=\"n\">new_graph</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">value</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">add_const</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">constraint</span><span class=\"p\">,</span> <span class=\"n\">constraints</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Add the constraint to constraints if the resulting graph is acyclic&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"k\">if</span> <span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">finish</span> <span class=\"ow\">or</span> <span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">start</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">constraints</span>\n",
       "\n",
       "        <span class=\"n\">new_constraints</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">new_constraints</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">(</span><span class=\"n\">constraint</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"k\">if</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">cyclic</span><span class=\"p\">(</span><span class=\"n\">new_constraints</span><span class=\"p\">):</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">constraints</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">new_constraints</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">is_a_threat</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">precondition</span><span class=\"p\">,</span> <span class=\"n\">effect</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Check if effect is a threat to precondition&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"k\">if</span> <span class=\"p\">(</span><span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">effect</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">)</span> <span class=\"o\">==</span> <span class=\"s1\">&#39;Not&#39;</span> <span class=\"o\">+</span> <span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">precondition</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">))</span> <span class=\"ow\">or</span> <span class=\"p\">(</span><span class=\"s1\">&#39;Not&#39;</span> <span class=\"o\">+</span> <span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">effect</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">)</span> <span class=\"o\">==</span> <span class=\"nb\">str</span><span class=\"p\">(</span><span class=\"n\">precondition</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">)):</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">effect</span><span class=\"o\">.</span><span class=\"n\">args</span> <span class=\"o\">==</span> <span class=\"n\">precondition</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">True</span>\n",
       "        <span class=\"k\">return</span> <span class=\"bp\">False</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">protect</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">causal_link</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">constraints</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Check and resolve threats by promotion or demotion&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"n\">threat</span> <span class=\"o\">=</span> <span class=\"bp\">False</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">effect</span> <span class=\"ow\">in</span> <span class=\"n\">action</span><span class=\"o\">.</span><span class=\"n\">effect</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">is_a_threat</span><span class=\"p\">(</span><span class=\"n\">causal_link</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">],</span> <span class=\"n\">effect</span><span class=\"p\">):</span>\n",
       "                <span class=\"n\">threat</span> <span class=\"o\">=</span> <span class=\"bp\">True</span>\n",
       "                <span class=\"k\">break</span>\n",
       "\n",
       "        <span class=\"k\">if</span> <span class=\"n\">action</span> <span class=\"o\">!=</span> <span class=\"n\">causal_link</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"ow\">and</span> <span class=\"n\">action</span> <span class=\"o\">!=</span> <span class=\"n\">causal_link</span><span class=\"p\">[</span><span class=\"mi\">2</span><span class=\"p\">]</span> <span class=\"ow\">and</span> <span class=\"n\">threat</span><span class=\"p\">:</span>\n",
       "            <span class=\"c1\"># try promotion</span>\n",
       "            <span class=\"n\">new_constraints</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">new_constraints</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">((</span><span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">causal_link</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]))</span>\n",
       "            <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">cyclic</span><span class=\"p\">(</span><span class=\"n\">new_constraints</span><span class=\"p\">):</span>\n",
       "                <span class=\"n\">constraints</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">add_const</span><span class=\"p\">((</span><span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">causal_link</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]),</span> <span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                <span class=\"c1\"># try demotion</span>\n",
       "                <span class=\"n\">new_constraints</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "                <span class=\"n\">new_constraints</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">((</span><span class=\"n\">causal_link</span><span class=\"p\">[</span><span class=\"mi\">2</span><span class=\"p\">],</span> <span class=\"n\">action</span><span class=\"p\">))</span>\n",
       "                <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">cyclic</span><span class=\"p\">(</span><span class=\"n\">new_constraints</span><span class=\"p\">):</span>\n",
       "                    <span class=\"n\">constraints</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">add_const</span><span class=\"p\">((</span><span class=\"n\">causal_link</span><span class=\"p\">[</span><span class=\"mi\">2</span><span class=\"p\">],</span> <span class=\"n\">action</span><span class=\"p\">),</span> <span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "                <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                    <span class=\"c1\"># both promotion and demotion fail</span>\n",
       "                    <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">&#39;Unable to resolve a threat caused by&#39;</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"s1\">&#39;onto&#39;</span><span class=\"p\">,</span> <span class=\"n\">causal_link</span><span class=\"p\">)</span>\n",
       "                    <span class=\"k\">return</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">constraints</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">convert</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">constraints</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Convert constraints into a dict of Action to set orderings&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"n\">graph</span> <span class=\"o\">=</span> <span class=\"nb\">dict</span><span class=\"p\">()</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">constraint</span> <span class=\"ow\">in</span> <span class=\"n\">constraints</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span> <span class=\"ow\">in</span> <span class=\"n\">graph</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">graph</span><span class=\"p\">[</span><span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]]</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">(</span><span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">])</span>\n",
       "            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">graph</span><span class=\"p\">[</span><span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]]</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "                <span class=\"n\">graph</span><span class=\"p\">[</span><span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]]</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">(</span><span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">])</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">graph</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">toposort</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">graph</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Generate topological ordering of constraints&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"k\">if</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">graph</span><span class=\"p\">)</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span>\n",
       "\n",
       "        <span class=\"n\">graph</span> <span class=\"o\">=</span> <span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">copy</span><span class=\"p\">()</span>\n",
       "\n",
       "        <span class=\"k\">for</span> <span class=\"n\">k</span><span class=\"p\">,</span> <span class=\"n\">v</span> <span class=\"ow\">in</span> <span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">():</span>\n",
       "            <span class=\"n\">v</span><span class=\"o\">.</span><span class=\"n\">discard</span><span class=\"p\">(</span><span class=\"n\">k</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"n\">extra_elements_in_dependencies</span> <span class=\"o\">=</span> <span class=\"n\">_reduce</span><span class=\"p\">(</span><span class=\"nb\">set</span><span class=\"o\">.</span><span class=\"n\">union</span><span class=\"p\">,</span> <span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">values</span><span class=\"p\">())</span> <span class=\"o\">-</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">keys</span><span class=\"p\">())</span>\n",
       "\n",
       "        <span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">update</span><span class=\"p\">({</span><span class=\"n\">element</span><span class=\"p\">:</span><span class=\"nb\">set</span><span class=\"p\">()</span> <span class=\"k\">for</span> <span class=\"n\">element</span> <span class=\"ow\">in</span> <span class=\"n\">extra_elements_in_dependencies</span><span class=\"p\">})</span>\n",
       "        <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">ordered</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">element</span> <span class=\"k\">for</span> <span class=\"n\">element</span><span class=\"p\">,</span> <span class=\"n\">dependency</span> <span class=\"ow\">in</span> <span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">()</span> <span class=\"k\">if</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">dependency</span><span class=\"p\">)</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">ordered</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">break</span>\n",
       "            <span class=\"k\">yield</span> <span class=\"n\">ordered</span>\n",
       "            <span class=\"n\">graph</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">element</span><span class=\"p\">:</span> <span class=\"p\">(</span><span class=\"n\">dependency</span> <span class=\"o\">-</span> <span class=\"n\">ordered</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">element</span><span class=\"p\">,</span> <span class=\"n\">dependency</span> <span class=\"ow\">in</span> <span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">items</span><span class=\"p\">()</span> <span class=\"k\">if</span> <span class=\"n\">element</span> <span class=\"ow\">not</span> <span class=\"ow\">in</span> <span class=\"n\">ordered</span><span class=\"p\">}</span>\n",
       "        <span class=\"k\">if</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">graph</span><span class=\"p\">)</span> <span class=\"o\">!=</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">raise</span> <span class=\"ne\">ValueError</span><span class=\"p\">(</span><span class=\"s1\">&#39;The graph is not acyclic and cannot be linearly ordered&#39;</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">display_plan</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Display causal links, constraints and the plan&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">&#39;Causal Links&#39;</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">causal_link</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">causal_links</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"n\">causal_link</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">&#39;</span><span class=\"se\">\\n</span><span class=\"s1\">Constraints&#39;</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">constraint</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">],</span> <span class=\"s1\">&#39;&lt;&#39;</span><span class=\"p\">,</span> <span class=\"n\">constraint</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">])</span>\n",
       "\n",
       "        <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">&#39;</span><span class=\"se\">\\n</span><span class=\"s1\">Partial Order Plan&#39;</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"nb\">reversed</span><span class=\"p\">(</span><span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">toposort</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">convert</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span><span class=\"p\">))))))</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">execute</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">display</span><span class=\"o\">=</span><span class=\"bp\">True</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Execute the algorithm&quot;&quot;&quot;</span>\n",
       "\n",
       "        <span class=\"n\">step</span> <span class=\"o\">=</span> <span class=\"mi\">1</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">tries</span> <span class=\"o\">=</span> <span class=\"mi\">1</span>\n",
       "        <span class=\"k\">while</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">agenda</span><span class=\"p\">)</span> <span class=\"o\">&gt;</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">step</span> <span class=\"o\">+=</span> <span class=\"mi\">1</span>\n",
       "            <span class=\"c1\"># select &lt;G, act1&gt; from Agenda</span>\n",
       "            <span class=\"k\">try</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">G</span><span class=\"p\">,</span> <span class=\"n\">act1</span><span class=\"p\">,</span> <span class=\"n\">possible_actions</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">find_open_precondition</span><span class=\"p\">()</span>\n",
       "            <span class=\"k\">except</span> <span class=\"ne\">IndexError</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">&#39;Probably Wrong&#39;</span><span class=\"p\">)</span>\n",
       "                <span class=\"k\">break</span>\n",
       "\n",
       "            <span class=\"n\">act0</span> <span class=\"o\">=</span> <span class=\"n\">possible_actions</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
       "            <span class=\"c1\"># remove &lt;G, act1&gt; from Agenda</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">agenda</span><span class=\"o\">.</span><span class=\"n\">remove</span><span class=\"p\">((</span><span class=\"n\">G</span><span class=\"p\">,</span> <span class=\"n\">act1</span><span class=\"p\">))</span>\n",
       "\n",
       "            <span class=\"c1\"># For actions with variable number of arguments, use least commitment principle</span>\n",
       "            <span class=\"c1\"># act0_temp, bindings = self.find_action_for_precondition(G)</span>\n",
       "            <span class=\"c1\"># act0 = self.generate_action_object(act0_temp, bindings)</span>\n",
       "\n",
       "            <span class=\"c1\"># Actions = Actions U {act0}</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">(</span><span class=\"n\">act0</span><span class=\"p\">)</span>\n",
       "\n",
       "            <span class=\"c1\"># Constraints = add_const(start &lt; act0, Constraints)</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">add_const</span><span class=\"p\">((</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">start</span><span class=\"p\">,</span> <span class=\"n\">act0</span><span class=\"p\">),</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "\n",
       "            <span class=\"c1\"># for each CL E CausalLinks do</span>\n",
       "            <span class=\"c1\">#   Constraints = protect(CL, act0, Constraints)</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">causal_link</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">causal_links</span><span class=\"p\">:</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">protect</span><span class=\"p\">(</span><span class=\"n\">causal_link</span><span class=\"p\">,</span> <span class=\"n\">act0</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "\n",
       "            <span class=\"c1\"># Agenda = Agenda U {&lt;P, act0&gt;: P is a precondition of act0}</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">precondition</span> <span class=\"ow\">in</span> <span class=\"n\">act0</span><span class=\"o\">.</span><span class=\"n\">precond</span><span class=\"p\">:</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">agenda</span><span class=\"o\">.</span><span class=\"n\">add</span><span class=\"p\">((</span><span class=\"n\">precondition</span><span class=\"p\">,</span> <span class=\"n\">act0</span><span class=\"p\">))</span>\n",
       "\n",
       "            <span class=\"c1\"># Constraints = add_const(act0 &lt; act1, Constraints)</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">add_const</span><span class=\"p\">((</span><span class=\"n\">act0</span><span class=\"p\">,</span> <span class=\"n\">act1</span><span class=\"p\">),</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "\n",
       "            <span class=\"c1\"># CausalLinks U {&lt;act0, G, act1&gt;}</span>\n",
       "            <span class=\"k\">if</span> <span class=\"p\">(</span><span class=\"n\">act0</span><span class=\"p\">,</span> <span class=\"n\">G</span><span class=\"p\">,</span> <span class=\"n\">act1</span><span class=\"p\">)</span> <span class=\"ow\">not</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">causal_links</span><span class=\"p\">:</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">causal_links</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">((</span><span class=\"n\">act0</span><span class=\"p\">,</span> <span class=\"n\">G</span><span class=\"p\">,</span> <span class=\"n\">act1</span><span class=\"p\">))</span>\n",
       "\n",
       "            <span class=\"c1\"># for each A E Actions do</span>\n",
       "            <span class=\"c1\">#   Constraints = protect(&lt;act0, G, act1&gt;, A, Constraints)</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">:</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">protect</span><span class=\"p\">((</span><span class=\"n\">act0</span><span class=\"p\">,</span> <span class=\"n\">G</span><span class=\"p\">,</span> <span class=\"n\">act1</span><span class=\"p\">),</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span><span class=\"p\">)</span>\n",
       "\n",
       "            <span class=\"k\">if</span> <span class=\"n\">step</span> <span class=\"o\">&gt;</span> <span class=\"mi\">200</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"s1\">&#39;Couldn</span><span class=\"se\">\\&#39;</span><span class=\"s1\">t find a solution&#39;</span><span class=\"p\">)</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"bp\">None</span>\n",
       "\n",
       "        <span class=\"k\">if</span> <span class=\"n\">display</span><span class=\"p\">:</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">display_plan</span><span class=\"p\">()</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">constraints</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">causal_links</span>                \n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(PartialOrderPlanner)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will first describe the data-structures and helper methods used, followed by the algorithm used to find a partial-order plan."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Each plan has the following four components:\n",
    "\n",
    "1. **`actions`**: a set of actions that make up the steps of the plan.\n",
    "`actions` is always a subset of `pddl.actions` the set of possible actions for the given planning problem. \n",
    "The `start` and `finish` actions are dummy actions defined to bring uniformity to the problem. The `start` action has no preconditions and its effects constitute the initial state of the planning problem. \n",
    "The `finish` action has no effects and its preconditions constitute the goal state of the planning problem.\n",
    "The empty plan consists of just these two dummy actions.\n",
    "2. **`constraints`**: a set of temporal constraints that define the order of performing the actions relative to each other.\n",
    "`constraints` does not define a linear ordering, rather it usually represents a directed graph which is also acyclic if the plan is consistent.\n",
    "Each ordering is of the form A &lt; B, which reads as \"A before B\" and means that action A _must_ be executed sometime before action B, but not necessarily immediately before.\n",
    "`constraints` stores these as a set of tuples `(Action(A), Action(B))` which is interpreted as given above.\n",
    "A constraint cannot be added to `constraints` if it breaks the acyclicity of the existing graph.\n",
    "3. **`causal_links`**: a set of causal-links. \n",
    "A causal link between two actions _A_ and _B_ in the plan is written as _A_ --_p_--> _B_ and is read as \"A achieves p for B\".\n",
    "This imples that _p_ is an effect of _A_ and a precondition of _B_.\n",
    "It also asserts that _p_ must remain true from the time of action _A_ to the time of action _B_.\n",
    "Any violation of this rule is called a threat and must be resolved immediately by adding suitable ordering constraints.\n",
    "`causal_links` stores this information as tuples `(Action(A), precondition(p), Action(B))` which is interpreted as given above.\n",
    "Causal-links can also be called **protection-intervals**, because the link _A_ --_p_--> _B_ protects _p_ from being negated over the interval from _A_ to _B_.\n",
    "4. **`agenda`**: a set of open-preconditions.\n",
    "A precondition is open if it is not achieved by some action in the plan.\n",
    "Planners will work to reduce the set of open preconditions to the empty set, without introducing a contradiction.\n",
    "`agenda` stored this information as tuples `(precondition(p), Action(A))` where p is a precondition of the action A.\n",
    "\n",
    "A **consistent plan** is a plan in which there are no cycles in the ordering constraints and no conflicts with the causal-links.\n",
    "A consistent plan with no open preconditions is a **solution**.\n",
    "<br>\n",
    "Let's briefly glance over the helper functions before going into the actual algorithm.\n",
4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872
    "**`expand_actions`**: generates all possible actions with variable bindings for use as a heuristic of selection of an open precondition.\n",
    "<br>\n",
    "**`find_open_precondition`**: finds a precondition from the agenda with the least number of actions that fulfil that precondition.\n",
    "This heuristic helps form mandatory ordering constraints and causal-links to further simplify the problem and reduce the probability of encountering a threat.\n",
    "<br>\n",
    "**`find_action_for_precondition`**: finds an action that fulfils the given precondition along with the absolutely necessary variable bindings in accordance with the principle of _least commitment_.\n",
    "In case of multiple possible actions, the action with the least number of effects is chosen to minimize the chances of encountering a threat.\n",
    "<br>\n",
    "**`cyclic`**: checks if a directed graph is cyclic.\n",
    "<br>\n",
    "**`add_const`**: adds `constraint` to `constraints` if the newly formed graph is acyclic and returns `constraints` otherwise.\n",
    "<br>\n",
    "**`is_a_threat`**: checks if the given `effect` negates the given `precondition`.\n",
    "<br>\n",
    "**`protect`**: checks if the given `action` poses a threat to the given `causal_link`.\n",
    "If so, the threat is resolved by either promotion or demotion, whichever generates acyclic temporal constraints.\n",
    "If neither promotion or demotion work, the chosen action is not the correct fit or the planning problem cannot be solved altogether.\n",
    "<br>\n",
    "**`convert`**: converts a graph from a list of edges to an `Action` : `set` mapping, for use in topological sorting.\n",
    "<br>\n",
    "**`toposort`**: a generator function that generates a topological ordering of a given graph as a list of sets.\n",
    "Each set contains an action or several actions.\n",
    "If a set has more that one action in it, it means that permutations between those actions also produce a valid plan.\n",
    "<br>\n",
    "**`display_plan`**: displays the `causal_links`, `constraints` and the partial order plan generated from `toposort`.\n",
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The **`execute`** method executes the algorithm, which is summarized below:\n",
    "<br>\n",
    "1. An open precondition is selected (a sub-goal that we want to achieve).\n",
    "2. An action that fulfils the open precondition is chosen.\n",
    "3. Temporal constraints are updated.\n",
    "4. Existing causal links are protected. Protection is a method that checks if the causal links conflict\n",
    "   and if they do, temporal constraints are added to fix the threats.\n",
    "5. The set of open preconditions is updated.\n",
    "6. Temporal constraints of the selected action and the next action are established.\n",
    "7. A new causal link is added between the selected action and the owner of the open precondition.\n",
    "8. The set of new causal links is checked for threats and if found, the threat is removed by either promotion or demotion.\n",
    "   If promotion or demotion is unable to solve the problem, the planning problem cannot be solved with the current sequence of actions\n",
    "   or it may not be solvable at all.\n",
    "9. These steps are repeated until the set of open preconditions is empty."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A partial-order plan can be used to generate different valid total-order plans.\n",
    "This step is called **linearization** of the partial-order plan.\n",
    "All possible linearizations of a partial-order plan for `socks_and_shoes` looks like this.\n",
    "<br>\n",
    "![title](images/pop.jpg)\n",
    "<br>\n",
    "Linearization can be carried out in many ways, but the most efficient way is to represent the set of temporal constraints as a directed graph.\n",
    "We can easily realize that the graph should also be acyclic as cycles in constraints means that the constraints are inconsistent.\n",
    "This acyclicity is enforced by the `add_const` method, which adds a new constraint only if the acyclicity of the existing graph is not violated.\n",
    "The `protect` method also checks for acyclicity of the newly-added temporal constraints to make a decision between promotion and demotion in case of a threat.\n",
    "This property of a graph created from the temporal constraints of a valid partial-order plan allows us to use topological sort to order the constraints linearly.\n",
    "A topological sort may produce several different valid solutions for a given directed acyclic graph."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we know how `PartialOrderPlanner` works, let's solve a few problems using it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Causal Links\n",
      "(Action(PutOn(Spare, Axle)), At(Spare, Axle), Action(Finish))\n",
      "(Action(Start), Tire(Spare), Action(PutOn(Spare, Axle)))\n",
      "(Action(Remove(Flat, Axle)), NotAt(Flat, Axle), Action(PutOn(Spare, Axle)))\n",
      "(Action(Start), At(Flat, Axle), Action(Remove(Flat, Axle)))\n",
      "(Action(Remove(Spare, Trunk)), At(Spare, Ground), Action(PutOn(Spare, Axle)))\n",
      "(Action(Start), At(Spare, Trunk), Action(Remove(Spare, Trunk)))\n",
      "(Action(Remove(Flat, Axle)), At(Flat, Ground), Action(Finish))\n",
      "\n",
      "Constraints\n",
      "Action(Start) < Action(Finish)\n",
      "Action(Start) < Action(Remove(Spare, Trunk))\n",
      "Action(Remove(Flat, Axle)) < Action(PutOn(Spare, Axle))\n",
      "Action(Remove(Flat, Axle)) < Action(Finish)\n",
      "Action(Remove(Spare, Trunk)) < Action(PutOn(Spare, Axle))\n",
      "Action(Start) < Action(PutOn(Spare, Axle))\n",
      "Action(Start) < Action(Remove(Flat, Axle))\n",
      "Action(PutOn(Spare, Axle)) < Action(Finish)\n",
      "\n",
      "Partial Order Plan\n",
      "[{Action(Start)}, {Action(Remove(Flat, Axle)), Action(Remove(Spare, Trunk))}, {Action(PutOn(Spare, Axle))}, {Action(Finish)}]\n"
     ]
    }
   ],
   "source": [
    "st = spare_tire()\n",
    "pop = PartialOrderPlanner(st)\n",
    "pop.execute()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We observe that in the given partial order plan, Remove(Flat, Axle) and Remove(Spare, Trunk) are in the same set.\n",
    "This means that the order of performing these actions does not affect the final outcome.\n",
    "That aside, we also see that the PutOn(Spare, Axle) action has to be performed after both the Remove actions are complete, which seems logically consistent."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Causal Links\n",
      "(Action(FromTable(B, A)), On(B, A), Action(Finish))\n",
      "(Action(FromTable(C, B)), On(C, B), Action(Finish))\n",
      "(Action(Start), Clear(C), Action(FromTable(C, B)))\n",
      "(Action(Start), Clear(A), Action(FromTable(B, A)))\n",
      "(Action(Start), OnTable(C), Action(FromTable(C, B)))\n",
      "(Action(Start), OnTable(B), Action(FromTable(B, A)))\n",
      "(Action(ToTable(A, B)), Clear(B), Action(FromTable(C, B)))\n",
      "(Action(Start), On(A, B), Action(ToTable(A, B)))\n",
      "(Action(ToTable(A, B)), Clear(B), Action(FromTable(B, A)))\n",
      "(Action(Start), Clear(A), Action(ToTable(A, B)))\n",
      "\n",
      "Constraints\n",
      "Action(Start) < Action(FromTable(B, A))\n",
      "Action(Start) < Action(FromTable(C, B))\n",
      "Action(Start) < Action(ToTable(A, B))\n",
      "Action(ToTable(A, B)) < Action(FromTable(C, B))\n",
      "Action(Start) < Action(Finish)\n",
      "Action(ToTable(A, B)) < Action(FromTable(B, A))\n",
      "Action(FromTable(C, B)) < Action(Finish)\n",
      "Action(FromTable(B, A)) < Action(Finish)\n",
      "Action(FromTable(B, A)) < Action(FromTable(C, B))\n",
      "\n",
      "Partial Order Plan\n",
      "[{Action(Start)}, {Action(ToTable(A, B))}, {Action(FromTable(B, A))}, {Action(FromTable(C, B))}, {Action(Finish)}]\n"
     ]
    }
   ],
   "source": [
    "sbw = simple_blocks_world()\n",
    "pop = PartialOrderPlanner(sbw)\n",
    "pop.execute()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "We see that this plan does not have flexibility in selecting actions, ie, actions should be performed in this order and this order only, to successfully reach the goal state."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Causal Links\n",
      "(Action(RightShoe), RightShoeOn, Action(Finish))\n",
      "(Action(LeftShoe), LeftShoeOn, Action(Finish))\n",
      "(Action(LeftSock), LeftSockOn, Action(LeftShoe))\n",
      "(Action(RightSock), RightSockOn, Action(RightShoe))\n",
      "\n",
      "Constraints\n",
      "Action(Start) < Action(RightSock)\n",
      "Action(Start) < Action(LeftSock)\n",
      "Action(RightSock) < Action(RightShoe)\n",
      "Action(RightShoe) < Action(Finish)\n",
      "Action(Start) < Action(LeftShoe)\n",
      "Action(LeftSock) < Action(LeftShoe)\n",
      "Action(Start) < Action(RightShoe)\n",
      "Action(Start) < Action(Finish)\n",
      "Action(LeftShoe) < Action(Finish)\n",
      "\n",
      "Partial Order Plan\n",
      "[{Action(Start)}, {Action(LeftSock), Action(RightSock)}, {Action(RightShoe), Action(LeftShoe)}, {Action(Finish)}]\n"
     ]
    }
   ],
   "source": [
    "ss = socks_and_shoes()\n",
    "pop = PartialOrderPlanner(ss)\n",
    "pop.execute()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "This plan again doesn't have constraints in selecting socks or shoes.\n",
    "As long as both socks are worn before both shoes, we are fine.\n",
    "Notice however, there is one valid solution,\n",
    "<br>\n",
    "LeftSock -> LeftShoe -> RightSock -> RightShoe\n",
    "<br>\n",
    "that the algorithm could not find as it cannot be represented as a general partially-ordered plan but is a specific total-order solution."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Runtime differences\n",
    "Let's briefly take a look at the running time of all the three algorithms on the `socks_and_shoes` problem."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "ss = socks_and_shoes()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "333 µs ± 8.86 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "GraphPlan(ss).execute()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.29 ms ± 43.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "Linearize(ss).execute()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "425 µs ± 17 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "PartialOrderPlanner(ss).execute(display=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We observe that `GraphPlan` is about 4 times faster than `Linearize` because `Linearize` essentially runs a `GraphPlan` subroutine under the hood and then carries out some transformations on the solved planning-graph.\n",
    "<br>\n",
    "We also find that `GraphPlan` is slightly faster than `PartialOrderPlanner`, but this is mainly due to the `expand_actions` method in `PartialOrderPlanner` that slows it down as it generates all possible permutations of actions and variable bindings.\n",
    "<br>\n",
    "Without heuristic functions, `PartialOrderPlanner` will be atleast as fast as `GraphPlan`, if not faster, but will have a higher tendency to encounter threats and conflicts which might take additional time to resolve.\n",
    "<br>\n",
    "Different planning algorithms work differently for different problems."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## PLANNING IN THE REAL WORLD\n",
    "---\n",
    "## PROBLEM\n",
    "The `Problem` class is a wrapper for `PlanningProblem` with some additional functionality and data-structures to handle real-world planning problems that involve time and resource constraints.\n",
    "The `Problem` class includes everything that the `PlanningProblem` class includes.\n",
    "Additionally, it also includes the following attributes essential to define a real-world planning problem:\n",
    "- a list of `jobs` to be done\n",
    "- a dictionary of `resources`\n",
    "\n",
    "It also overloads the `act` method to call the `do_action` method of the `HLA` class, \n",
    "and also includes a new method `refinements` that finds refinements or primitive actions for high level actions.\n",
    "<br>\n",
    "`hierarchical_search` and `angelic_search` are also built into the `Problem` class to solve such planning problems."
   "execution_count": 74,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">Problem</span><span class=\"p\">(</span><span class=\"n\">PlanningProblem</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;</span>\n",
       "<span class=\"sd\">    Define real-world problems by aggregating resources as numerical quantities instead of</span>\n",
       "<span class=\"sd\">    named entities.</span>\n",
       "<span class=\"sd\">    This class is identical to PDLL, except that it overloads the act function to handle</span>\n",
       "<span class=\"sd\">    resource and ordering conditions imposed by HLA as opposed to Action.</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">init</span><span class=\"p\">,</span> <span class=\"n\">goals</span><span class=\"p\">,</span> <span class=\"n\">actions</span><span class=\"p\">,</span> <span class=\"n\">jobs</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">resources</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">):</span>\n",
       "        <span class=\"nb\">super</span><span class=\"p\">()</span><span class=\"o\">.</span><span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"n\">init</span><span class=\"p\">,</span> <span class=\"n\">goals</span><span class=\"p\">,</span> <span class=\"n\">actions</span><span class=\"p\">)</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">jobs</span> <span class=\"o\">=</span> <span class=\"n\">jobs</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">resources</span> <span class=\"o\">=</span> <span class=\"n\">resources</span> <span class=\"ow\">or</span> <span class=\"p\">{}</span>\n",