csp.ipynb 258 ko
Newer Older
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   "source": [
    "Now let us finally repeat the above steps for **min_conflicts** solution."
   ]
  },
  {
   "cell_type": "code",
Aman Deep Singh's avatar
Aman Deep Singh a validé
   "execution_count": 51,
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   "metadata": {
    "collapsed": true
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   },
   "outputs": [],
   "source": [
    "conflicts_instru_queen = make_instru(twelve_queens_csp)\n",
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
    "result = min_conflicts(conflicts_instru_queen)"
   ]
  },
  {
   "cell_type": "code",
Aman Deep Singh's avatar
Aman Deep Singh a validé
   "execution_count": 52,
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   "metadata": {
    "collapsed": true
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   },
   "outputs": [],
   "source": [
    "conflicts_step = make_plot_board_step_function(conflicts_instru_queen)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   "source": [
    "The visualization has same features as the above. But here it also highlights the conflicts by labeling the conflicted queens with a red background."
   ]
  },
  {
   "cell_type": "code",
Aman Deep Singh's avatar
Aman Deep Singh a validé
   "execution_count": 53,
   "metadata": {},
   "outputs": [
    {
     "data": {
Aman Deep Singh's avatar
Aman Deep Singh a validé
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAHICAYAAADKoXrqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAADIZJREFUeJzt3T9o3PUfx/H3pemkVE0pLhI8K/6r\n6BChlAh1EQTRSBcFxVXQXXB0KeKgUcHBSScnh6iLUNQSLohF0UGLFg0OOompqbEtbfP9DSWHZ17c\n5Qrn3a99PKBDjk/hnTeFJ59vLtdW0zQFAPSaGvcAADCJBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAg\nASAQSAAIpoc5vNRZnaiP3VmYb497hB5LndVxj7CNHfVnP4PZUX/2M9ik7aiqWjs55AYJAIFAAkAg\nkAz0888/14cfflhnzpwZ9ygA/xmBpMevv/5a33//fffrU6dO1X333VcLCwv18MMPd18/d+5cffXV\nV3X27NlxjAkwcgJJ1yeffFK33nprHThwoI4ePVpVVT/++GNtbGxUVdXJkyfr4sWLdf78+Zqbm6sH\nHnig5ubm6ty5c+McG2AkBJKuY8eO1cWLF6uq6qOPPqqqqkcffbReeumlqqr67LPPanp6un766afu\nLfPkyZN16tSp8QwMMEICeY1rmqb+/vvvqqp6/vnn6/Dhw1VV9eKLL3bP3H333VVVdeDAge7Xhw8f\nrl27dtWzzz5b9957b1WVmyRwVRHIa9gvv/xS+/fvrz179tTRo0er3W7Xp59+WlNTvf8s1tfXq6rq\nr7/+qqqqVqtVN9xwQx05cqTee++92tjYqEOHDtV1111Xzz333H/+fQCMgkBew5aWlmp1dbUuXbpU\nb7/9dlVVTU1N1Y033ljHjx/vntt69+pWIDc3N2t5ebluu+22qqrqdDr1xRdf1ObmZr3zzjvdoAL8\nPxPIa9gjjzxSN998c1VVz81v79699fnnn3e/3grk1pt1vv3221pbW6t2+/KnYxw8eLBmZ2dramqq\nnnnmmdqzZ89/9B0AjM5QHzXH1eWOO+6o3377rR577LGam5vrvr5379768ssva21trW666aZtj1i3\n4rl1g9zc3Ky1tbVaWVmpgwcP/rffBMCIuEFe46ampurIkSP1yiuvdF+bmZnpPkat2v6I9d+BfO21\n12rfvn3iCFxVBJJ6/PHHq9Pp1MrKSlVdvkFWVffnkP8MZNM0tby8XLt27arZ2dlaW1urt956q558\n8snxDA8wIgJJ7du3rw4dOtS9Rf47kFuPWDc2Nro/f7zllltq9+7d9frrr9f6+rpAAlcdgaSqqp54\n4on6+OOP67vvvusG8ptvvqn19fWeG+Q/H6+ePn263nzzzbrrrrvq/vvvH9foACMhkFTV5UA2TVOv\nvvpqzczMVFXVpUuXanl5OQay3W7X4uJi/fnnn/XUU0+Na2yAkRFIqqrq9ttvr3vuuafef//97q9z\nVF1+zLr1iPXMmTPdN+7MzMzUG2+8UVUlkMBVSSDpeuihh+rChQv17rvvdl87fvx49wa5srJSf/zx\nR1Vd/qzW06dP1+zsbN15553jGBdgpPweJF27d++uqur5766+/vrr2tzcrKrq+fCAH374oefvAFxt\nBJIeDz74YL3wwgs7OnvhwoV6+eWXRzwRwHgIJD3Onz9fv//++47Obv3XWABXI4Gkx4kTJ+rEiRM7\nPr9///4RTgMwPt6kAwCBQAJAIJD0ePrpp6tpmh39OXv27LjHBRgZP4OkxwcffFDHjh3b8fnrr79+\nhNMAjI9A0rW4uFiLi4vjHgNgInjECgCBQAJAIJAAEAgkAAQCCQCBQAJAIJAAEAgkAAStpmmGOT/U\n4VFb6qyOe4QeC/PtcY+wjR31Zz+D2VF/9jPYBO6otZNzbpAAEAgkAAQCCQCBQAJAIJAAEAgkAAQC\nCQCBQAJAIJAAEAgkAAQCCQCBQAJAIJAAEAgkAAQCCQCBQAJAIJAAEAgkAAQCCQCBQAJAIJAAEAgk\nAAQCCQCBQAJAIJAAEAgkAAQCCQCBQAJAIJAAEAgkAAQCCQCBQAJAIJAAEAgkAAQCCQDB9DCHlzqr\no5rjiizMt8c9Qo9J20+VHQ1iP4PZUX/2M9ik7Win3CABIBBIAAgEEgACgQSAQCABIBBIAAgEEgAC\ngQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgE\nEgACgQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgACgQSAoNU0zTDn\nhzo8akud1XGP0GNhvj3uEbaxo/7sZzA76s9+BpvAHbV2cs4NEgACgQSAQCABIBBIAAgEEgACgQSA\nQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgAC\ngQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgACgQSAQCABIBBIAAgEEgACgQSAQCABIJge5vBS\nZ3VUc1yRhfn2uEfoMWn7qbKjQexnMDvqz34Gm7Qd7ZQbJAAEAgkAgUACQCCQABAIJAAEAgkAgUAC\nQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkA\ngUACQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQNBqmmaY80Md\nHrWlzuq4R+ixMN8e9wjb2FF/9jOYHfVnP4NN4I5aOznnBgkAgUACQCCQABAIJAAEAgkAgUACQCCQ\nABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUAC\nQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQCCQABBMD3N4qbM6\nqjmuyMJ8e9wj9Ji0/VTZ0SD2M5gd9Wc/g03ajnbKDRIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQ\nSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAg\nASAQSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQSAAIWk3TDHN+\nqMOjttRZHfcIPRbm2+MeYRs76s9+BrOj/uxnsAncUWsn59wgASAQSAAIBBIAAoEEgEAgASAQSAAI\nBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQ\nSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQSAAIBBIAAoEEgEAgASAQSAAIBBIAgulhDi91\nVkc1xxVZmG+Pe4Qek7afKjsaxH4Gs6P+7GewSdvRTrlBAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQA\nBAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQ\nCCQABAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQABK2maYY5P9Th\nUVvqrI57hB4L8+1xj7CNHfVnP4PZUX/2M9gE7qi1k3NukAAQCCQABAIJAIFAAkAgkAAQCCQABAIJ\nAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQA\nBAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQABAIJAIFAAkAgkAAQCCQABAIJAMH0MIeXOquj\nmuOKLMy3xz1Cj0nbT5UdDWI/g9lRf/Yz2KTtaKfcIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKB\nBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQS\nAAKBBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKBBICg1TTNMOeH\nOjxqS53VcY/QY2G+Pe4RtrGj/uxnMDvqz34Gm8AdtXZyzg0SAAKBBIBAIAEgEEgACAQSAAKBBIBA\nIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKB\nBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKBBIBAIAEgEEgACAQSAAKBBIBAIAEgaDVNM+4Z\nAGDiuEECQCCQABAIJAAEAgkAgUACQCCQABAIJAAEAgkAgUACQCCQABD8DzcqnnzyqJa6AAAAAElF\nTkSuQmCC\n",
      "text/plain": [
Aman Deep Singh's avatar
Aman Deep Singh a validé
       "<matplotlib.figure.Figure at 0x25de3e00f28>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
Aman Deep Singh's avatar
Aman Deep Singh a validé
      "The installed widget Javascript is the wrong version. It must satisfy the semver range ~2.1.4.\n"
     ]
    },
    {
     "data": {
      "application/vnd.jupyter.widget-view+json": {
Aman Deep Singh's avatar
Aman Deep Singh a validé
       "model_id": "29f5dba226b3492383ad768b54876588"
      }
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   "source": [
    "iteration_slider = widgets.IntSlider(min=0, max=len(conflicts_instru_queen.assignment_history)-1, step=0, value=0)\n",
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
    "w=widgets.interactive(conflicts_step,iteration=iteration_slider)\n",
    "display(w)\n",
    "\n",
    "visualize_callback = make_visualize(iteration_slider)\n",
    "\n",
Robert Hönig's avatar
Robert Hönig a validé
    "visualize_button = widgets.ToggleButton(description = \"Visualize\", value = False)\n",
    "time_select = widgets.ToggleButtons(description='Extra Delay:',options=['0', '0.1', '0.2', '0.5', '0.7', '1.0'])\n",
    "\n",
    "a = widgets.interactive(visualize_callback, Visualize = visualize_button, time_step=time_select)\n",
    "display(a)"
Tarun Kumar Vangani's avatar
Tarun Kumar Vangani a validé
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.1"
 "nbformat_minor": 1