Newer
Older
"""
Representations and Inference for Logic (Chapters 7-9, 12)
Covers both Propositional and First-Order Logic. First we have four
important data types:
KB Abstract class holds a knowledge base of logical expressions
KB_Agent Abstract class subclasses agents.Agent
Expr A logical expression, imported from utils.py
substitution Implemented as a dictionary of var:value pairs, {x:1, y:x}
Be careful: some functions take an Expr as argument, and some take a KB.
Logical expressions can be created with Expr or expr, imported from utils, TODO
or with expr, which adds the capability to write a string that uses
the connectives ==>, <==, <=>, or <=/=>. But be careful: these have the
operator precedence of commas; you may need to add parens to make precedence work.
Then we implement various functions for doing logical inference:
pl_true Evaluate a propositional logical sentence in a model
tt_entails Say if a statement is entailed by a KB
pl_resolution Do resolution on propositional sentences
dpll_satisfiable See if a propositional sentence is satisfiable
And a few other functions:
to_cnf Convert to conjunctive normal form
unify Do unification of two FOL sentences
diff, simp Symbolic differentiation and simplification
Donato Meoli
a validé
import heapq
Donato Meoli
a validé
import itertools
import random
Donato Meoli
a validé
from collections import defaultdict, Counter
import networkx as nx
Donato Meoli
a validé
from agents import Agent, Glitter, Bump, Stench, Breeze, Scream
from csp import parse_neighbors, UniversalDict
Donato Meoli
a validé
from search import astar_search, PlanRoute
Donato Meoli
a validé
from utils import (remove_all, unique, first, argmax, probability, isnumber,
issequence, Expr, expr, subexpressions, extend)
class KB:
"""A knowledge base to which you can tell and ask sentences.
To create a KB, first subclass this class and implement
tell, ask_generator, and retract. Why ask_generator instead of ask?
The book is a bit vague on what ask means --
For a Propositional Logic KB, ask(P & Q) returns True or False, but for an
FOL KB, something like ask(Brother(x, y)) might return many substitutions
such as {x: Cain, y: Abel}, {x: Abel, y: Cain}, {x: George, y: Jeb}, etc.
So ask_generator generates these one at a time, and ask either returns the
first one or returns False."""
def __init__(self, sentence=None):
def ask(self, query):
"""Return a substitution that makes the query true, or, failing that, return False."""
def ask_generator(self, query):
"""Yield all the substitutions that make query true."""
def retract(self, sentence):
class PropKB(KB):
"""A KB for propositional logic. Inefficient, with no indexing."""
def __init__(self, sentence=None):
self.clauses = []
if sentence:
self.tell(sentence)
"""Yield the empty substitution {} if KB entails query; else no results."""
if tt_entails(Expr('&', *self.clauses), query):
yield {}
def ask_if_true(self, query):
"""Return True if the KB entails query, else return False."""
Darius Bacon
a validé
for _ in self.ask_generator(query):
Darius Bacon
a validé
return False
def retract(self, sentence):
"""Remove the sentence's clauses from the KB."""
for c in conjuncts(to_cnf(sentence)):
if c in self.clauses:
self.clauses.remove(c)
# ______________________________________________________________________________
def KBAgentProgram(kb):
"""
[Figure 7.1]
A generic logical knowledge-based agent program.
"""
steps = itertools.count()
def program(percept):
kb.tell(make_percept_sentence(percept, t))
action = kb.ask(make_action_query(t))
kb.tell(make_action_sentence(action, t))
return action
return Expr('Percept')(percept, t)
return expr('ShouldDo(action, {})'.format(t))
return Expr('Did')(action[expr('action')], t)
return program
def is_symbol(s):
"""A string s is a symbol if it starts with an alphabetic char.
>>> is_symbol('R2D2')
True
"""
return isinstance(s, str) and s[:1].isalpha()
def is_var_symbol(s):
"""A logic variable symbol is an initial-lowercase string.
>>> is_var_symbol('EXE')
False
"""
return is_symbol(s) and s[0].islower()
def is_prop_symbol(s):
"""A proposition logic symbol is an initial-uppercase string.
>>> is_prop_symbol('exe')
False
"""
return is_symbol(s) and s[0].isupper()
"""Return a set of the variables in expression s.
>>> variables(expr('F(x, x) & G(x, y) & H(y, z) & R(A, z, 2)')) == {x, y, z}
return {x for x in subexpressions(s) if is_variable(x)}
def is_definite_clause(s):
"""Returns True for exprs s of the form A & B & ... & C ==> D,
where all literals are positive. In clause form, this is
~A | ~B | ... | ~C | D, where exactly one clause is positive.
>>> is_definite_clause(expr('Farmer(Mac)'))
True
"""
if is_symbol(s.op):
return True
antecedent, consequent = s.args
return is_symbol(consequent.op) and all(is_symbol(arg.op) for arg in conjuncts(antecedent))
withal
a validé
def parse_definite_clause(s):
"""Return the antecedents and the consequent of a definite clause."""
withal
a validé
assert is_definite_clause(s)
if is_symbol(s.op):
return [], s
else:
antecedent, consequent = s.args
return conjuncts(antecedent), consequent
withal
a validé
A, B, C, D, E, F, G, P, Q, a, x, y, z, u = map(Expr, 'ABCDEFGPQaxyzu')
Donato Meoli
a validé
# ______________________________________________________________________________
def tt_entails(kb, alpha):
"""
[Figure 7.10]
Does kb entail the sentence alpha? Use truth tables. For propositional
kb's and sentences. Note that the 'kb' should be an Expr which is a
conjunction of clauses.
>>> tt_entails(expr('P & Q'), expr('Q'))
True
"""
assert not variables(alpha)
def tt_check_all(kb, alpha, symbols, model):
"""Auxiliary routine to implement tt_entails."""
if not symbols:
if pl_true(kb, model):
result = pl_true(alpha, model)
assert result in (True, False)
return result
else:
return True
else:
P, rest = symbols[0], symbols[1:]
return (tt_check_all(kb, alpha, rest, extend(model, P, True)) and
tt_check_all(kb, alpha, rest, extend(model, P, False)))
def prop_symbols(x):
if not isinstance(x, Expr):
elif is_prop_symbol(x.op):
return {symbol for arg in x.args for symbol in prop_symbols(arg)}
return {symbol for arg in x.args for symbol in constant_symbols(arg)}
def predicate_symbols(x):
"""Return a set of (symbol_name, arity) in x.
All symbols (even functional) with arity > 0 are considered."""
if not isinstance(x, Expr) or not x.args:
return set()
pred_set = {(x.op, len(x.args))} if is_prop_symbol(x.op) else set()
pred_set.update({symbol for arg in x.args for symbol in predicate_symbols(arg)})
return pred_set
def tt_true(s):
"""Is a propositional sentence a tautology?
>>> tt_true('P | ~P')
True
"""
def pl_true(exp, model={}):
"""Return True if the propositional logic expression is true in the model,
and False if it is false. If the model does not specify the value for
every proposition, this may return None to indicate 'not obvious';
this may happen even when the expression is tautological.
>>> pl_true(P, {}) is None
True
"""
op, args = exp.op, exp.args
return model.get(exp)
elif op == '~':
p = pl_true(args[0], model)
if p is None:
return None
else:
return not p
elif op == '|':
result = False
for arg in args:
p = pl_true(arg, model)
if p is True:
return True
if p is None:
result = None
return result
elif op == '&':
result = True
for arg in args:
p = pl_true(arg, model)
if p is False:
return False
if p is None:
result = None
return result
p, q = args
return pl_true(~p | q, model)
return pl_true(p | ~q, model)
pt = pl_true(p, model)
qt = pl_true(q, model)
if op == '<=>':
return pt == qt
elif op == '^': # xor or 'not equivalent'
return pt != qt
else:
raise ValueError('Illegal operator in logic expression' + str(exp))
# ______________________________________________________________________________
def to_cnf(s):
"""
[Page 253]
Convert a propositional logical sentence to conjunctive normal form.
That is, to the form ((A | ~B | ...) & (B | C | ...) & ...)
(~B & ~C)
"""
if isinstance(s, str):
s = expr(s)
s = eliminate_implications(s) # Steps 1, 2 from p. 253
s = move_not_inwards(s) # Step 3
return distribute_and_over_or(s) # Step 4
def eliminate_implications(s):
"""Change implications into equivalent form with only &, |, and ~ as logical operators."""
a, b = args[0], args[-1]
return b | ~a
return a | ~b
elif s.op == '<=>':
return (a | ~b) & (b | ~a)
assert len(args) == 2 # TODO: relax this restriction
return Expr(s.op, *args)
def move_not_inwards(s):
"""Rewrite sentence s by moving negation sign inward.
>>> move_not_inwards(~(A | B))
if s.op == '~':
def NOT(b):
return move_not_inwards(~b)
a = s.args[0]
if a.op == '~':
return move_not_inwards(a.args[0]) # ~~A ==> A
if a.op == '&':
return associate('|', list(map(NOT, a.args)))
if a.op == '|':
return associate('&', list(map(NOT, a.args)))
return s
elif is_symbol(s.op) or not s.args:
return s
else:
return Expr(s.op, *list(map(move_not_inwards, s.args)))
def distribute_and_over_or(s):
"""Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
>>> distribute_and_over_or((A & B) | C)
((A | C) & (B | C))
"""
if s.op == '|':
if s.op != '|':
return distribute_and_over_or(s)
return distribute_and_over_or(s.args[0])
conj = first(arg for arg in s.args if arg.op == '&')
if not conj:
others = [a for a in s.args if a is not conj]
rest = associate('|', others)
return associate('&', [distribute_and_over_or(c | rest)
for c in conj.args])
elif s.op == '&':
return associate('&', list(map(distribute_and_over_or, s.args)))
else:
return s
def associate(op, args):
"""Given an associative op, return an expression with the same
meaning as Expr(op, *args), but flattened -- that is, with nested
instances of the same op promoted to the top level.
>>> associate('&', [(A&B),(B|C),(B&C)])
(A & B & (B | C) & B & C)
>>> associate('|', [A|(B|(C|(A&B)))])
if len(args) == 0:
return _op_identity[op]
elif len(args) == 1:
return args[0]
else:
return Expr(op, *args)
_op_identity = {'&': True, '|': False, '+': 0, '*': 1}
"""Given an associative op, return a flattened list result such
that Expr(op, *result) means the same as Expr(op, *args).
>>> dissociate('&', [A & B])
[A, B]
"""
if arg.op == op:
collect(arg.args)
else:
result.append(arg)
def conjuncts(s):
"""Return a list of the conjuncts in the sentence s.
>>> conjuncts(A & B)
[A, B]
>>> conjuncts(A | B)
[(A | B)]
"""
def disjuncts(s):
"""Return a list of the disjuncts in the sentence s.
>>> disjuncts(A | B)
[A, B]
>>> disjuncts(A & B)
[(A & B)]
"""
# ______________________________________________________________________________
def pl_resolution(kb, alpha):
"""
[Figure 7.12]
Propositional-logic resolution: say if alpha follows from KB.
>>> pl_resolution(horn_clauses_KB, A)
True
"""
clauses = kb.clauses + conjuncts(to_cnf(~alpha))
new = set()
while True:
n = len(clauses)
pairs = [(clauses[i], clauses[j])
for i in range(n) for j in range(i + 1, n)]
for (ci, cj) in pairs:
resolvents = pl_resolve(ci, cj)
new = new.union(set(resolvents))
for c in new:
def pl_resolve(ci, cj):
"""Return all clauses that can be obtained by resolving clauses ci and cj."""
clauses = []
for di in disjuncts(ci):
for dj in disjuncts(cj):
if di == ~dj or ~di == dj:
Donato Meoli
a validé
clauses.append(associate('|', unique(remove_all(di, disjuncts(ci)) + remove_all(dj, disjuncts(cj)))))
return clauses
# ______________________________________________________________________________
"""A KB of propositional definite clauses."""
def tell(self, sentence):
assert is_definite_clause(sentence), "Must be definite clause"
self.clauses.append(sentence)
"""Yield the empty substitution if KB implies query; else nothing."""
if pl_fc_entails(self.clauses, query):
yield {}
def retract(self, sentence):
self.clauses.remove(sentence)
def clauses_with_premise(self, p):
"""Return a list of the clauses in KB that have p in their premise.
This could be cached away for O(1) speed, but we'll recompute it."""
return [c for c in self.clauses if c.op == '==>' and p in conjuncts(c.args[0])]
def pl_fc_entails(kb, q):
"""
[Figure 7.15]
Use forward chaining to see if a PropDefiniteKB entails symbol q.
Surya Teja Cheedella
a validé
>>> pl_fc_entails(horn_clauses_KB, expr('Q'))
True
"""
count = {c: len(conjuncts(c.args[0])) for c in kb.clauses if c.op == '==>'}
agenda = [s for s in kb.clauses if is_prop_symbol(s.op)]
while agenda:
p = agenda.pop()
if not inferred[p]:
inferred[p] = True
for c in kb.clauses_with_premise(p):
count[c] -= 1
if count[c] == 0:
agenda.append(c.args[1])
return False
"""
[Figure 7.13]
Surya Teja Cheedella
a validé
Simple inference in a wumpus world example
"""
wumpus_world_inference = expr('(B11 <=> (P12 | P21)) & ~B11')
Surya Teja Cheedella
a validé
"""
[Figure 7.16]
Surya Teja Cheedella
a validé
Propositional Logic Forward Chaining example
"""
horn_clauses_KB = PropDefiniteKB()
for clause in ['P ==> Q',
'(L & M) ==> P',
'(B & L) ==> M',
'(A & P) ==> L',
'(A & B) ==> L',
'A', 'B']:
horn_clauses_KB.tell(expr(clause))
"""
Definite clauses KB example
"""
definite_clauses_KB = PropDefiniteKB()
for clause in ['(B & F) ==> E',
'(A & E & F) ==> G',
'(B & C) ==> F',
'(A & B) ==> D',
'(E & F) ==> H',
'(H & I) ==>J',
'A', 'B', 'C']:
definite_clauses_KB.tell(expr(clause))
# ______________________________________________________________________________
# Heuristics for SAT Solvers
Donato Meoli
a validé
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
def no_branching_heuristic(symbols, clauses):
return first(symbols), True
def min_clauses(clauses):
min_len = min(map(lambda c: len(c.args), clauses), default=2)
return filter(lambda c: len(c.args) == (min_len if min_len > 1 else 2), clauses)
def moms(symbols, clauses):
"""
MOMS (Maximum Occurrence in clauses of Minimum Size) heuristic
Returns the literal with the most occurrences in all clauses of minimum size
"""
scores = Counter(l for c in min_clauses(clauses) for l in prop_symbols(c))
return max(symbols, key=lambda symbol: scores[symbol]), True
def momsf(symbols, clauses, k=0):
"""
MOMS alternative heuristic
If f(x) the number of occurrences of the variable x in clauses with minimum size,
we choose the variable maximizing [f(x) + f(-x)] * 2^k + f(x) * f(-x)
Returns x if f(x) >= f(-x) otherwise -x
"""
scores = Counter(l for c in min_clauses(clauses) for l in disjuncts(c))
P = max(symbols,
key=lambda symbol: (scores[symbol] + scores[~symbol]) * pow(2, k) + scores[symbol] * scores[~symbol])
return P, True if scores[P] >= scores[~P] else False
def posit(symbols, clauses):
"""
Freeman's POSIT version of MOMs
Counts the positive x and negative x for each variable x in clauses with minimum size
Returns x if f(x) >= f(-x) otherwise -x
"""
scores = Counter(l for c in min_clauses(clauses) for l in disjuncts(c))
P = max(symbols, key=lambda symbol: scores[symbol] + scores[~symbol])
return P, True if scores[P] >= scores[~P] else False
def zm(symbols, clauses):
"""
Zabih and McAllester's version of MOMs
Counts the negative occurrences only of each variable x in clauses with minimum size
"""
scores = Counter(l for c in min_clauses(clauses) for l in disjuncts(c) if l.op == '~')
return max(symbols, key=lambda symbol: scores[~symbol]), True
def dlis(symbols, clauses):
"""
DLIS (Dynamic Largest Individual Sum) heuristic
Choose the variable and value that satisfies the maximum number of unsatisfied clauses
Like DLCS but we only consider the literal (thus Cp and Cn are individual)
"""
scores = Counter(l for c in clauses for l in disjuncts(c))
P = max(symbols, key=lambda symbol: scores[symbol])
return P, True if scores[P] >= scores[~P] else False
def dlcs(symbols, clauses):
"""
DLCS (Dynamic Largest Combined Sum) heuristic
Cp the number of clauses containing literal x
Cn the number of clauses containing literal -x
Here we select the variable maximizing Cp + Cn
Returns x if Cp >= Cn otherwise -x
"""
scores = Counter(l for c in clauses for l in disjuncts(c))
P = max(symbols, key=lambda symbol: scores[symbol] + scores[~symbol])
return P, True if scores[P] >= scores[~P] else False
def jw(symbols, clauses):
"""
Jeroslow-Wang heuristic
For each literal compute J(l) = \sum{l in clause c} 2^{-|c|}
Return the literal maximizing J
"""
scores = Counter()
for c in clauses:
for l in prop_symbols(c):
scores[l] += pow(2, -len(c.args))
return max(symbols, key=lambda symbol: scores[symbol]), True
def jw2(symbols, clauses):
"""
Two Sided Jeroslow-Wang heuristic
Compute J(l) also counts the negation of l = J(x) + J(-x)
Returns x if J(x) >= J(-x) otherwise -x
"""
scores = Counter()
for c in clauses:
for l in disjuncts(c):
scores[l] += pow(2, -len(c.args))
P = max(symbols, key=lambda symbol: scores[symbol] + scores[~symbol])
return P, True if scores[P] >= scores[~P] else False
# ______________________________________________________________________________
# DPLL-Satisfiable [Figure 7.17]
Donato Meoli
a validé
def dpll_satisfiable(s, branching_heuristic=no_branching_heuristic):
"""Check satisfiability of a propositional sentence.
This differs from the book code in two ways: (1) it returns a model
rather than True when it succeeds; this is more useful. (2) The
function find_pure_symbol is passed a list of unknown clauses, rather
than a list of all clauses and the model; this is more efficient.
>>> dpll_satisfiable(A |'<=>'| B) == {A: True, B: True}
True
"""
Donato Meoli
a validé
return dpll(conjuncts(to_cnf(s)), prop_symbols(s), {}, branching_heuristic)
Donato Meoli
a validé
def dpll(clauses, symbols, model, branching_heuristic=no_branching_heuristic):
"""See if the clauses are true in a partial model."""
unknown_clauses = [] # clauses with an unknown truth value
for c in clauses:
return False
Donato Meoli
a validé
if val is None:
unknown_clauses.append(c)
if not unknown_clauses:
return model
P, value = find_pure_symbol(symbols, unknown_clauses)
if P:
Donato Meoli
a validé
return dpll(clauses, remove_all(P, symbols), extend(model, P, value), branching_heuristic)
P, value = find_unit_clause(clauses, model)
if P:
Donato Meoli
a validé
return dpll(clauses, remove_all(P, symbols), extend(model, P, value), branching_heuristic)
Donato Meoli
a validé
P, value = branching_heuristic(symbols, unknown_clauses)
Donato Meoli
a validé
return (dpll(clauses, remove_all(P, symbols), extend(model, P, value), branching_heuristic) or
dpll(clauses, remove_all(P, symbols), extend(model, P, not value), branching_heuristic))
def find_pure_symbol(symbols, clauses):
"""Find a symbol and its value if it appears only as a positive literal
(or only as a negative) in clauses.
>>> find_pure_symbol([A, B, C], [A|~B,~B|~C,C|A])
(A, True)
"""
for s in symbols:
found_pos, found_neg = False, False
if not found_pos and s in disjuncts(c):
found_pos = True
if not found_neg and ~s in disjuncts(c):
found_neg = True
if found_pos != found_neg:
return s, found_pos
return None, None
def find_unit_clause(clauses, model):
"""Find a forced assignment if possible from a clause with only 1
variable not bound in the model.
>>> find_unit_clause([A|B|C, B|~C, ~A|~B], {A:True})
(B, False)
"""
for clause in clauses:
return None, None
def unit_clause_assign(clause, model):
"""Return a single variable/value pair that makes clause true in
the model, if possible.
>>> unit_clause_assign(A|B|C, {A:True})
(None, None)
>>> unit_clause_assign(B|~C, {A:True})
(None, None)
>>> unit_clause_assign(~A|~B, {A:True})
(B, False)
"""
P, value = None, None
for literal in disjuncts(clause):
sym, positive = inspect_literal(literal)
if sym in model:
if model[sym] == positive:
return None, None # clause already True
elif P:
return None, None # more than 1 unbound variable
def inspect_literal(literal):
"""The symbol in this literal, and the value it should take to
make the literal true.
>>> inspect_literal(P)
(P, True)
>>> inspect_literal(~P)
(P, False)
"""
if literal.op == '~':
Donato Meoli
a validé
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
# ______________________________________________________________________________
# CDCL - Conflict-Driven Clause Learning with 1UIP Learning Scheme,
# 2WL Lazy Data Structure, VSIDS Branching Heuristic & Restarts
def no_restart(conflicts, restarts, queue_lbd, sum_lbd):
return False
def luby(conflicts, restarts, queue_lbd, sum_lbd, unit=512):
# in the state-of-art tested with unit value 1, 2, 4, 6, 8, 12, 16, 32, 64, 128, 256 and 512
def _luby(i):
k = 1
while True:
if i == (1 << k) - 1:
return 1 << (k - 1)
elif (1 << (k - 1)) <= i < (1 << k) - 1:
return _luby(i - (1 << (k - 1)) + 1)
k += 1
return unit * _luby(restarts) == len(queue_lbd)
def glucose(conflicts, restarts, queue_lbd, sum_lbd, x=100, k=0.7):
# in the state-of-art tested with (x, k) as (50, 0.8) and (100, 0.7)
# if there were at least x conflicts since the last restart, and then the average LBD of the last
# x learnt clauses was at least k times higher than the average LBD of all learnt clauses
return len(queue_lbd) >= x and sum(queue_lbd) / len(queue_lbd) * k > sum_lbd / conflicts
def cdcl_satisfiable(s, vsids_decay=0.95, restart_strategy=no_restart):
"""
>>> cdcl_satisfiable(A |'<=>'| B) == {A: True, B: True}
True
"""
clauses = TwoWLClauseDatabase(conjuncts(to_cnf(s)))
symbols = prop_symbols(s)
scores = Counter()
G = nx.DiGraph()
model = {}
dl = 0
conflicts = 0
restarts = 1
sum_lbd = 0
queue_lbd = []
while True:
conflict = unit_propagation(clauses, symbols, model, G, dl)
if conflict:
if dl == 0:
return False
conflicts += 1
dl, learn, lbd = conflict_analysis(G, dl)
queue_lbd.append(lbd)
sum_lbd += lbd
backjump(symbols, model, G, dl)
clauses.add(learn, model)
scores.update(l for l in disjuncts(learn))
for symbol in scores:
scores[symbol] *= vsids_decay
if restart_strategy(conflicts, restarts, queue_lbd, sum_lbd):
backjump(symbols, model, G)
queue_lbd.clear()
restarts += 1
else:
if not symbols:
return model
dl += 1
assign_decision_literal(symbols, model, scores, G, dl)
def assign_decision_literal(symbols, model, scores, G, dl):
P = max(symbols, key=lambda symbol: scores[symbol] + scores[~symbol])
value = True if scores[P] >= scores[~P] else False
symbols.remove(P)
model[P] = value
G.add_node(P, val=value, dl=dl)
def unit_propagation(clauses, symbols, model, G, dl):
def check(c):
if not model or clauses.get_first_watched(c) == clauses.get_second_watched(c):
return True
w1, _ = inspect_literal(clauses.get_first_watched(c))
if w1 in model:
return c in (clauses.get_neg_watched(w1) if model[w1] else clauses.get_pos_watched(w1))
w2, _ = inspect_literal(clauses.get_second_watched(c))
if w2 in model:
return c in (clauses.get_neg_watched(w2) if model[w2] else clauses.get_pos_watched(w2))
def unit_clause(watching):
w, p = inspect_literal(watching)
G.add_node(w, val=p, dl=dl)
G.add_edges_from(zip(prop_symbols(c) - {w}, itertools.cycle([w])), antecedent=c)
symbols.remove(w)
model[w] = p
def conflict_clause(c):
G.add_edges_from(zip(prop_symbols(c), itertools.cycle('K')), antecedent=c)
while True:
bcp = False
for c in filter(check, clauses.get_clauses()):
# we need only visit each clause when one of its two watched literals is assigned to 0 because, until
# this happens, we can guarantee that there cannot be more than n-2 literals in the clause assigned to 0
first_watched = pl_true(clauses.get_first_watched(c), model)
second_watched = pl_true(clauses.get_second_watched(c), model)
if first_watched is None and clauses.get_first_watched(c) == clauses.get_second_watched(c):
unit_clause(clauses.get_first_watched(c))
bcp = True
break
elif first_watched is False and second_watched is not True:
if clauses.update_second_watched(c, model):
bcp = True
else:
# if the only literal with a non-zero value is the other watched literal then
if second_watched is None: # if it is free, then the clause is a unit clause
unit_clause(clauses.get_second_watched(c))
bcp = True
break
else: # else (it is False) the clause is a conflict clause
conflict_clause(c)
return True
elif second_watched is False and first_watched is not True:
if clauses.update_first_watched(c, model):
bcp = True
else:
# if the only literal with a non-zero value is the other watched literal then
if first_watched is None: # if it is free, then the clause is a unit clause
unit_clause(clauses.get_first_watched(c))
bcp = True
break
else: # else (it is False) the clause is a conflict clause
conflict_clause(c)
return True
if not bcp:
return False
def conflict_analysis(G, dl):
conflict_clause = next(G[p]['K']['antecedent'] for p in G.pred['K'])
P = next(node for node in G.nodes() - 'K' if G.nodes[node]['dl'] == dl and G.in_degree(node) == 0)
first_uip = nx.immediate_dominators(G, P)['K']
G.remove_node('K')
conflict_side = nx.descendants(G, first_uip)
while True:
for l in prop_symbols(conflict_clause).intersection(conflict_side):
antecedent = next(G[p][l]['antecedent'] for p in G.pred[l])
conflict_clause = pl_binary_resolution(conflict_clause, antecedent)
# the literal block distance is calculated by taking the decision levels from variables of all
# literals in the clause, and counting how many different decision levels were in this set
lbd = [G.nodes[l]['dl'] for l in prop_symbols(conflict_clause)]
if lbd.count(dl) == 1 and first_uip in prop_symbols(conflict_clause):
return 0 if len(lbd) == 1 else heapq.nlargest(2, lbd)[-1], conflict_clause, len(set(lbd))
def pl_binary_resolution(ci, cj):
for di in disjuncts(ci):
for dj in disjuncts(cj):
if di == ~dj or ~di == dj:
Donato Meoli
a validé
return pl_binary_resolution(associate('|', remove_all(di, disjuncts(ci))),
associate('|', remove_all(dj, disjuncts(cj))))
Donato Meoli
a validé
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
return associate('|', unique(disjuncts(ci) + disjuncts(cj)))
def backjump(symbols, model, G, dl=0):
delete = {node for node in G.nodes() if G.nodes[node]['dl'] > dl}
G.remove_nodes_from(delete)
for node in delete:
del model[node]
symbols |= delete
class TwoWLClauseDatabase:
def __init__(self, clauses):
self.__twl = {}
self.__watch_list = defaultdict(lambda: [set(), set()])
for c in clauses:
self.add(c, None)
def get_clauses(self):
return self.__twl.keys()
def set_first_watched(self, clause, new_watching):
if len(clause.args) > 2:
self.__twl[clause][0] = new_watching
def set_second_watched(self, clause, new_watching):
if len(clause.args) > 2:
self.__twl[clause][1] = new_watching
def get_first_watched(self, clause):
if len(clause.args) == 2:
return clause.args[0]
if len(clause.args) > 2:
return self.__twl[clause][0]
return clause
def get_second_watched(self, clause):
if len(clause.args) == 2:
return clause.args[-1]
if len(clause.args) > 2:
return self.__twl[clause][1]
return clause
def get_pos_watched(self, l):
return self.__watch_list[l][0]
def get_neg_watched(self, l):
return self.__watch_list[l][1]
def add(self, clause, model):
self.__twl[clause] = self.__assign_watching_literals(clause, model)
w1, p1 = inspect_literal(self.get_first_watched(clause))
w2, p2 = inspect_literal(self.get_second_watched(clause))
self.__watch_list[w1][0].add(clause) if p1 else self.__watch_list[w1][1].add(clause)
if w1 != w2:
self.__watch_list[w2][0].add(clause) if p2 else self.__watch_list[w2][1].add(clause)
def remove(self, clause):
w1, p1 = inspect_literal(self.get_first_watched(clause))
w2, p2 = inspect_literal(self.get_second_watched(clause))
del self.__twl[clause]
self.__watch_list[w1][0].discard(clause) if p1 else self.__watch_list[w1][1].discard(clause)
if w1 != w2:
self.__watch_list[w2][0].discard(clause) if p2 else self.__watch_list[w2][1].discard(clause)
def update_first_watched(self, clause, model):
# if a non-zero literal different from the other watched literal is found
found, new_watching = self.__find_new_watching_literal(clause, self.get_first_watched(clause), model)
if found: # then it will replace the watched literal
w, p = inspect_literal(self.get_second_watched(clause))
self.__watch_list[w][0].remove(clause) if p else self.__watch_list[w][1].remove(clause)
self.set_second_watched(clause, new_watching)
w, p = inspect_literal(new_watching)
self.__watch_list[w][0].add(clause) if p else self.__watch_list[w][1].add(clause)
return True
def update_second_watched(self, clause, model):
# if a non-zero literal different from the other watched literal is found
found, new_watching = self.__find_new_watching_literal(clause, self.get_second_watched(clause), model)
if found: # then it will replace the watched literal
w, p = inspect_literal(self.get_first_watched(clause))
self.__watch_list[w][0].remove(clause) if p else self.__watch_list[w][1].remove(clause)
self.set_first_watched(clause, new_watching)
w, p = inspect_literal(new_watching)
self.__watch_list[w][0].add(clause) if p else self.__watch_list[w][1].add(clause)
return True
def __find_new_watching_literal(self, clause, other_watched, model):
# if a non-zero literal different from the other watched literal is found
if len(clause.args) > 2:
for l in disjuncts(clause):
if l != other_watched and pl_true(l, model) is not False:
# then it is returned
return True, l
return False, None
def __assign_watching_literals(self, clause, model=None):
if len(clause.args) > 2:
if model is None or not model:
return [clause.args[0], clause.args[-1]]
else:
return [next(l for l in disjuncts(clause) if pl_true(l, model) is None),
next(l for l in disjuncts(clause) if pl_true(l, model) is False)]
# ______________________________________________________________________________
# Walk-SAT [Figure 7.18]
def WalkSAT(clauses, p=0.5, max_flips=10000):
"""Checks for satisfiability of all clauses by randomly flipping values of variables
>>> WalkSAT([A & ~A], 0.5, 100) is None
True
symbols = {sym for clause in clauses for sym in prop_symbols(clause)}
# model is a random assignment of true/false to the symbols in clauses
model = {s: random.choice([True, False]) for s in symbols}
for i in range(max_flips):
satisfied, unsatisfied = [], []
for clause in clauses:
(satisfied if pl_true(clause, model) else unsatisfied).append(clause)
if not unsatisfied: # if model satisfies all the clauses
return model
clause = random.choice(unsatisfied)
if probability(p):
# Flip the symbol in clause that maximizes number of sat. clauses
# Return the the number of clauses satisfied after flipping the symbol.
model[sym] = not model[sym]
count = len([clause for clause in clauses if pl_true(clause, model)])
model[sym] = not model[sym]
return count
model[sym] = not model[sym]
# If no solution is found within the flip limit, we return failure
# ______________________________________________________________________________
# Map Coloring SAT Problems
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
def MapColoringSAT(colors, neighbors):
"""Make a SAT for the problem of coloring a map with different colors
for any two adjacent regions. Arguments are a list of colors, and a
dict of {region: [neighbor,...]} entries. This dict may also be
specified as a string of the form defined by parse_neighbors."""
if isinstance(neighbors, str):
neighbors = parse_neighbors(neighbors)
colors = UniversalDict(colors)
clauses = []
for state in neighbors.keys():
clause = [expr(state + '_' + c) for c in colors[state]]
clauses.append(clause)
for t in itertools.combinations(clause, 2):
clauses.append([~t[0], ~t[1]])
visited = set()
adj = set(neighbors[state]) - visited
visited.add(state)
for n_state in adj:
for col in colors[n_state]:
clauses.append([expr('~' + state + '_' + col), expr('~' + n_state + '_' + col)])
return associate('&', map(lambda c: associate('|', c), clauses))
australia_sat = MapColoringSAT(list('RGB'), """SA: WA NT Q NSW V; NT: WA Q; NSW: Q V; T: """)
france_sat = MapColoringSAT(list('RGBY'),
"""AL: LO FC; AQ: MP LI PC; AU: LI CE BO RA LR MP; BO: CE IF CA FC RA
AU; BR: NB PL; CA: IF PI LO FC BO; CE: PL NB NH IF BO AU LI PC; FC: BO
CA LO AL RA; IF: NH PI CA BO CE; LI: PC CE AU MP AQ; LO: CA AL FC; LR:
MP AU RA PA; MP: AQ LI AU LR; NB: NH CE PL BR; NH: PI IF CE NB; NO:
PI; PA: LR RA; PC: PL CE LI AQ; PI: NH NO CA IF; PL: BR NB CE PC; RA:
AU BO FC PA LR""")
usa_sat = MapColoringSAT(list('RGBY'),
"""WA: OR ID; OR: ID NV CA; CA: NV AZ; NV: ID UT AZ; ID: MT WY UT;
UT: WY CO AZ; MT: ND SD WY; WY: SD NE CO; CO: NE KA OK NM; NM: OK TX AZ;
ND: MN SD; SD: MN IA NE; NE: IA MO KA; KA: MO OK; OK: MO AR TX;
TX: AR LA; MN: WI IA; IA: WI IL MO; MO: IL KY TN AR; AR: MS TN LA;
LA: MS; WI: MI IL; IL: IN KY; IN: OH KY; MS: TN AL; AL: TN GA FL;
MI: OH IN; OH: PA WV KY; KY: WV VA TN; TN: VA NC GA; GA: NC SC FL;
PA: NY NJ DE MD WV; WV: MD VA; VA: MD DC NC; NC: SC; NY: VT MA CT NJ;
NJ: DE; DE: MD; MD: DC; VT: NH MA; MA: NH RI CT; CT: RI; ME: NH;
HI: ; AK: """)
# ______________________________________________________________________________
# Expr functions for WumpusKB and HybridWumpusAgent
return Expr('FacingEast', time)
return Expr('FacingWest', time)
return Expr('FacingNorth', time)
return Expr('FacingSouth', time)
return Expr('W', x, y)
def pit(x, y):
return Expr('P', x, y)
def breeze(x, y):
return Expr('B', x, y)
def stench(x, y):
return Expr('S', x, y)
def wumpus_alive(time):
return Expr('WumpusAlive', time)
def have_arrow(time):
return Expr('HaveArrow', time)
def percept_stench(time):
return Expr('Stench', time)
def percept_breeze(time):
return Expr('Breeze', time)
def percept_glitter(time):
return Expr('Glitter', time)
def percept_bump(time):
return Expr('Bump', time)
def percept_scream(time):
return Expr('Scream', time)
def move_forward(time):
return Expr('Forward', time)
def shoot(time):
return Expr('Shoot', time)
def turn_left(time):
return Expr('TurnLeft', time)
def turn_right(time):
return Expr('TurnRight', time)
def ok_to_move(x, y, time):
return Expr('OK', x, y, time)
def location(x, y, time=None):
if time is None:
return Expr('L', x, y)
else:
return Expr('L', x, y, time)
# Symbols
def implies(lhs, rhs):
return Expr('==>', lhs, rhs)
return Expr('<=>', lhs, rhs)
# Helper Function
def new_disjunction(sentences):
t = sentences[0]
for i in range(1, len(sentences)):
t |= sentences[i]
return t
# ______________________________________________________________________________
class WumpusKB(PropKB):
"""
Create a Knowledge Base that contains the a temporal "Wumpus physics" and temporal rules with time zero.
super().__init__()
self.dimrow = dimrow
self.tell(~wumpus(1, 1))
self.tell(~pit(1, 1))
for y in range(1, dimrow + 1):
for x in range(1, dimrow + 1):
pits_in = list()
wumpus_in = list()
pits_in.append(pit(x - 1, y))
wumpus_in.append(wumpus(x - 1, y))
if y < dimrow: # North room exists
pits_in.append(pit(x, y + 1))
wumpus_in.append(wumpus(x, y + 1))
pits_in.append(pit(x + 1, y))
wumpus_in.append(wumpus(x + 1, y))
pits_in.append(pit(x, y - 1))
wumpus_in.append(wumpus(x, y - 1))
self.tell(equiv(breeze(x, y), new_disjunction(pits_in)))
self.tell(equiv(stench(x, y), new_disjunction(wumpus_in)))
# Rule that describes existence of at least one Wumpus
wumpus_at_least = list()
for y in range(1, dimrow + 1):
wumpus_at_least.append(wumpus(x, y))
self.tell(new_disjunction(wumpus_at_least))
# Rule that describes existence of at most one Wumpus
for i in range(1, dimrow + 1):
for j in range(1, dimrow + 1):
for u in range(1, dimrow + 1):
for v in range(1, dimrow + 1):
if i != u or j != v:
self.tell(~wumpus(i, j) | ~wumpus(u, v))
self.tell(location(1, 1, 0))
self.tell(implies(location(i, j, 0), equiv(percept_breeze(0), breeze(i, j))))
self.tell(implies(location(i, j, 0), equiv(percept_stench(0), stench(i, j))))
self.tell(~location(i, j, 0))
self.tell(wumpus_alive(0))
self.tell(have_arrow(0))
self.tell(facing_east(0))
self.tell(~facing_north(0))
self.tell(~facing_south(0))
self.tell(~facing_west(0))
def make_action_sentence(self, action, time):
actions = [move_forward(time), shoot(time), turn_left(time), turn_right(time)]
for a in actions:
if action is a:
self.tell(action)
else:
self.tell(~a)
def make_percept_sentence(self, percept, time):
# Glitter, Bump, Stench, Breeze, Scream
flags = [0, 0, 0, 0, 0]
if isinstance(percept, Glitter):
flags[0] = 1
self.tell(percept_glitter(time))
elif isinstance(percept, Bump):
flags[1] = 1
self.tell(percept_bump(time))
elif isinstance(percept, Stench):
flags[2] = 1
self.tell(percept_stench(time))
elif isinstance(percept, Breeze):
flags[3] = 1
self.tell(percept_breeze(time))
elif isinstance(percept, Scream):
flags[4] = 1
self.tell(percept_scream(time))
if flags[i] == 0:
if i == 0:
self.tell(~percept_glitter(time))
elif i == 1:
self.tell(~percept_bump(time))
elif i == 2:
self.tell(~percept_stench(time))
elif i == 3:
self.tell(~percept_breeze(time))
elif i == 4:
self.tell(~percept_scream(time))
def add_temporal_sentences(self, time):
if time == 0:
return
t = time - 1
# current location rules
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
self.tell(implies(location(i, j, time), equiv(percept_breeze(time), breeze(i, j))))
self.tell(implies(location(i, j, time), equiv(percept_stench(time), stench(i, j))))
s = list()
s.append(equiv(location(i, j, time), location(i, j, time) & ~move_forward(time) | percept_bump(time)))
s.append(location(i - 1, j, t) & facing_east(t) & move_forward(t))
s.append(location(i + 1, j, t) & facing_west(t) & move_forward(t))
s.append(location(i, j - 1, t) & facing_north(t) & move_forward(t))
if j != self.dimrow:
s.append(location(i, j + 1, t) & facing_south(t) & move_forward(t))
self.tell(new_disjunction(s))
# add sentence about safety of location i,j
self.tell(equiv(ok_to_move(i, j, time), ~pit(i, j) & ~wumpus(i, j) & wumpus_alive(time)))
a = facing_north(t) & turn_right(t)
b = facing_south(t) & turn_left(t)
c = facing_east(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_east(time), a | b | c)
self.tell(s)
a = facing_north(t) & turn_left(t)
b = facing_south(t) & turn_right(t)
c = facing_west(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_west(time), a | b | c)
self.tell(s)
a = facing_east(t) & turn_left(t)
b = facing_west(t) & turn_right(t)
c = facing_north(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_north(time), a | b | c)
self.tell(s)
a = facing_west(t) & turn_left(t)
b = facing_east(t) & turn_right(t)
c = facing_south(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_south(time), a | b | c)
self.tell(s)
self.tell(equiv(move_forward(t), ~turn_right(t) & ~turn_left(t)))
self.tell(equiv(have_arrow(time), have_arrow(t) & ~shoot(t)))
# Rule about Wumpus (dead or alive)
self.tell(equiv(wumpus_alive(time), wumpus_alive(t) & ~percept_scream(time)))
def ask_if_true(self, query):
return pl_resolution(self, query)
# ______________________________________________________________________________
def __init__(self, x, y, orientation):
self.X = x
self.Y = y
self.orientation = orientation
def get_location(self):
return self.X, self.Y
def set_location(self, x, y):
self.X = x
self.Y = y
def get_orientation(self):
return self.orientation
def set_orientation(self, orientation):
self.orientation = orientation
def __eq__(self, other):
Donato Meoli
a validé
if other.get_location() == self.get_location() and other.get_orientation() == self.get_orientation():
return True
else:
return False
# ______________________________________________________________________________
"""
[Figure 7.20]
An agent for the wumpus world that does logical inference.
"""
self.kb = WumpusKB(self.dimrow)
self.t = 0
self.plan = list()
self.current_position = WumpusPosition(1, 1, 'UP')
def execute(self, percept):
self.kb.make_percept_sentence(percept, self.t)
self.kb.add_temporal_sentences(self.t)
temp = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if self.kb.ask_if_true(location(i, j, self.t)):
temp.append(i)
temp.append(j)
if self.kb.ask_if_true(facing_north(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'UP')
elif self.kb.ask_if_true(facing_south(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'DOWN')
elif self.kb.ask_if_true(facing_west(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'LEFT')
elif self.kb.ask_if_true(facing_east(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'RIGHT')
safe_points = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if self.kb.ask_if_true(ok_to_move(i, j, self.t)):
if self.kb.ask_if_true(percept_glitter(self.t)):
goals = list()
goals.append([1, 1])
self.plan.append('Grab')
actions = self.plan_route(self.current_position, goals, safe_points)
self.plan.extend(actions)
self.plan.append('Climb')
if len(self.plan) == 0:
unvisited = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
for k in range(self.t):
if self.kb.ask_if_true(location(i, j, k)):
unvisited.append([i, j])
unvisited_and_safe = list()
for u in unvisited:
for s in safe_points:
if u not in unvisited_and_safe and s == u:
unvisited_and_safe.append(u)
temp = self.plan_route(self.current_position, unvisited_and_safe, safe_points)
if len(self.plan) == 0 and self.kb.ask_if_true(have_arrow(self.t)):
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if not self.kb.ask_if_true(wumpus(i, j)):
possible_wumpus.append([i, j])
temp = self.plan_shot(self.current_position, possible_wumpus, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0:
not_unsafe = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if not self.kb.ask_if_true(ok_to_move(i, j, self.t)):
temp = self.plan_route(self.current_position, not_unsafe, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0:
start = list()
start.append([1, 1])
temp = self.plan_route(self.current_position, start, safe_points)
self.plan.extend(temp)
action = self.plan[0]
self.plan = self.plan[1:]
self.kb.make_action_sentence(action, self.t)
self.t += 1
return action
def plan_route(self, current, goals, allowed):
problem = PlanRoute(current, goals, allowed, self.dimrow)
return astar_search(problem).solution()
def plan_shot(self, current, goals, allowed):
shooting_positions = set()
for loc in goals:
x = loc[0]
y = loc[1]
for i in range(1, self.dimrow + 1):
if i < x:
shooting_positions.add(WumpusPosition(i, y, 'EAST'))
if i > x:
shooting_positions.add(WumpusPosition(i, y, 'WEST'))
if i < y:
shooting_positions.add(WumpusPosition(x, i, 'NORTH'))
if i > y:
shooting_positions.add(WumpusPosition(x, i, 'SOUTH'))
# Can't have a shooting position from any of the rooms the Wumpus could reside
orientations = ['EAST', 'WEST', 'NORTH', 'SOUTH']
for orientation in orientations:
shooting_positions.remove(WumpusPosition(loc[0], loc[1], orientation))
actions = list()
actions.extend(self.plan_route(current, shooting_positions, allowed))
actions.append('Shoot')
return actions
# ______________________________________________________________________________
Donato Meoli
a validé
def SAT_plan(init, transition, goal, t_max, SAT_solver=cdcl_satisfiable):
Converts a planning problem to Satisfaction problem by translating it to a cnf sentence.
>>> transition = {'A': {'Left': 'A', 'Right': 'B'}, 'B': {'Left': 'A', 'Right': 'C'}, 'C': {'Left': 'B', 'Right': 'C'}}
Donato Meoli
a validé
>>> SAT_plan('A', transition, 'C', 1) is None
def translate_to_SAT(init, transition, goal, time):
clauses = []
states = [state for state in transition]
Surya Teja Cheedella
a validé
state_sym[s, t] = Expr('S_{}'.format(next(state_counter)))
Donato Meoli
a validé
clauses.append(state_sym[first(clause[0] for clause in state_sym
if set(conjuncts(clause[0])).issuperset(conjuncts(goal))), time]) \
if isinstance(goal, Expr) else clauses.append(state_sym[goal, time])
transition_counter = itertools.count()
for s in states:
for action in transition[s]:
s_ = transition[s][action]
for t in range(time):
# Action 'action' taken from state 's' at time 't' to reach 's_'
action_sym[s, action, t] = Expr('T_{}'.format(next(transition_counter)))
clauses.append(action_sym[s, action, t] | '==>' | state_sym[s, t])
clauses.append(action_sym[s, action, t] | '==>' | state_sym[s_, t + 1])
# must be a state at any time
clauses.append(associate('|', [state_sym[s, t] for s in states]))
for s_ in states[states.index(s) + 1:]:
# for each pair of states s, s_ only one is possible at time t
clauses.append((~state_sym[s, t]) | (~state_sym[s_, t]))
transitions_t = [tr for tr in action_sym if tr[2] == t]
# make sure at least one of the transitions happens
clauses.append(associate('|', [action_sym[tr] for tr in transitions_t]))
for tr_ in transitions_t[transitions_t.index(tr) + 1:]:
# there cannot be two transitions tr and tr_ at time t
clauses.append(~action_sym[tr] | ~action_sym[tr_])
return associate('&', clauses)
def extract_solution(model):
true_transitions = [t for t in action_sym if model[action_sym[t]]]
# Sort transitions based on time, which is the 3rd element of the tuple
true_transitions.sort(key=lambda x: x[2])
return [action for s, action, time in true_transitions]
Donato Meoli
a validé
for t in range(t_max + 1):
# dictionaries to help extract the solution from model
state_sym = {}
action_sym = {}
cnf = translate_to_SAT(init, transition, goal, t)
model = SAT_solver(cnf)
if model is not False:
return extract_solution(model)
return None
# ______________________________________________________________________________
"""
[Figure 9.1]
Unify expressions x,y with substitution s; return a substitution that
would make x,y equal, or None if x,y can not unify. x and y can be
variables (e.g. Expr('x')), constants, lists, or Exprs.
return None
elif x == y:
return s
elif is_variable(x):
return unify_var(x, y, s)
elif is_variable(y):
return unify_var(y, x, s)
elif isinstance(x, Expr) and isinstance(y, Expr):
return unify(x.args, y.args, unify(x.op, y.op, s))
elif isinstance(x, str) or isinstance(y, str):
elif issequence(x) and issequence(y) and len(x) == len(y):
return unify(x[1:], y[1:], unify(x[0], y[0], s))
else:
return None
def is_variable(x):
"""A variable is an Expr with no args and a lowercase symbol as the op."""
return isinstance(x, Expr) and not x.args and x.op[0].islower()
def unify_var(var, x, s):
if var in s:
return unify(s[var], x, s)
return None
else:
new_s = extend(s, var, x)
cascade_substitution(new_s)
return new_s
def occur_check(var, x, s):
"""Return true if variable var occurs anywhere in x
(or in subst(s, x), if s has a binding for x)."""
if var == x:
return True
elif isinstance(x, Expr):
return (occur_check(var, x.op, s) or
occur_check(var, x.args, s))
def subst(s, x):
"""Substitute the substitution s into the expression x.
>>> subst({x: 42, y:0}, F(x) + y)
(F(42) + 0)
"""
return [subst(s, xi) for xi in x]
return tuple([subst(s, xi) for xi in x])
return x
return s.get(x, x)
return Expr(x.op, *[subst(s, arg) for arg in x.args])
Donato Meoli
a validé
def cascade_substitution(s):
"""This method allows to return a correct unifier in normal form
and perform a cascade substitution to s.
For every mapping in s perform a cascade substitution on s.get(x)
and if it is replaced with a function ensure that all the function
terms are correct updates by passing over them again.
Donato Meoli
a validé
>>> s = {x: y, y: G(z)}
>>> cascade_substitution(s)
>>> s == {x: G(z), y: G(z)}
True
"""
for x in s:
s[x] = subst(s, s.get(x))
if isinstance(s.get(x), Expr) and not is_variable(s.get(x)):
# Ensure Function Terms are correct updates by passing over them again
s[x] = subst(s, s.get(x))
Donato Meoli
a validé
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
def unify_mm(x, y, s={}):
"""Unify expressions x,y with substitution s using an efficient rule-based
unification algorithm by Martelli & Montanari; return a substitution that
would make x,y equal, or None if x,y can not unify. x and y can be
variables (e.g. Expr('x')), constants, lists, or Exprs.
>>> unify_mm(x, 3, {})
{x: 3}
"""
set_eq = extend(s, x, y)
s = set_eq.copy()
while True:
trans = 0
for x, y in set_eq.items():
if x == y:
# if x = y this mapping is deleted (rule b)
del s[x]
elif not is_variable(x) and is_variable(y):
# if x is not a variable and y is a variable, rewrite it as y = x in s (rule a)
if s.get(y, None) is None:
s[y] = x
del s[x]
else:
# if a mapping already exist for variable y then apply
# variable elimination (there is a chance to apply rule d)
s[x] = vars_elimination(y, s)
elif not is_variable(x) and not is_variable(y):
# in which case x and y are not variables, if the two root function symbols
# are different, stop with failure, else apply term reduction (rule c)
if x.op is y.op and len(x.args) == len(y.args):
term_reduction(x, y, s)
del s[x]
else:
return None
elif isinstance(y, Expr):
# in which case x is a variable and y is a function or a variable (e.g. F(z) or y),
# if y is a function, we must check if x occurs in y, then stop with failure, else
# try to apply variable elimination to y (rule d)
if occur_check(x, y, s):
return None
s[x] = vars_elimination(y, s)
if y == s.get(x):
trans += 1
else:
trans += 1
if trans == len(set_eq):
# if no transformation has been applied, stop with success
return s
set_eq = s.copy()
def term_reduction(x, y, s):
"""Apply term reduction to x and y if both are functions and the two root function
symbols are equals (e.g. F(x1, x2, ..., xn) and F(x1', x2', ..., xn')) by returning
a new mapping obtained by replacing x: y with {x1: x1', x2: x2', ..., xn: xn'}
"""
for i in range(len(x.args)):
if x.args[i] in s:
s[s.get(x.args[i])] = y.args[i]
else:
s[x.args[i]] = y.args[i]
def vars_elimination(x, s):
"""Apply variable elimination to x: if x is a variable and occurs in s, return
the term mapped by x, else if x is a function recursively applies variable
elimination to each term of the function."""
if not isinstance(x, Expr):
return x
if is_variable(x):
return s.get(x, x)
return Expr(x.op, *[vars_elimination(arg, s) for arg in x.args])
"""Replace all the variables in sentence with new variables."""
if not isinstance(sentence, Expr):
return sentence
if sentence in dic:
return dic[sentence]
else:
v = Expr('v_{}'.format(next(standardize_variables.counter)))
dic[sentence] = v
return v
return Expr(sentence.op, *[standardize_variables(a, dic) for a in sentence.args])
standardize_variables.counter = itertools.count()
# ______________________________________________________________________________
def parse_clauses_from_dimacs(dimacs_cnf):
"""Converts a string into CNF clauses according to the DIMACS format used in SAT competitions"""
return map(lambda c: associate('|', c),
map(lambda c: [expr('~X' + str(abs(l))) if l < 0 else expr('X' + str(l)) for l in c],
map(lambda line: map(int, line.split()),
filter(None, ' '.join(
filter(lambda line: line[0] not in ('c', 'p'),
filter(None, dimacs_cnf.strip().replace('\t', ' ').split('\n')))).split(' 0')))))
# ______________________________________________________________________________
class FolKB(KB):
"""A knowledge base consisting of first-order definite clauses.
>>> kb0 = FolKB([expr('Farmer(Mac)'), expr('Rabbit(Pete)'),
... expr('(Rabbit(r) & Farmer(f)) ==> Hates(f, r)')])
>>> kb0.tell(expr('Rabbit(Flopsie)'))
>>> kb0.retract(expr('Rabbit(Pete)'))
>>> kb0.ask(expr('Hates(Mac, x)'))[x]
Flopsie
>>> kb0.ask(expr('Wife(Pete, x)'))
False
def __init__(self, initial_clauses=None):
if initial_clauses:
for clause in initial_clauses:
self.tell(clause)
def tell(self, sentence):
if is_definite_clause(sentence):
self.clauses.append(sentence)
else:
raise Exception('Not a definite clause: {}'.format(sentence))
def ask_generator(self, query):
def retract(self, sentence):
self.clauses.remove(sentence)
def fetch_rules_for_goal(self, goal):
return self.clauses
def fol_fc_ask(kb, alpha):
"""
[Figure 9.3]
A simple forward-chaining algorithm.
"""
kb_consts = list({c for clause in kb.clauses for c in constant_symbols(clause)})
def enum_subst(p):
query_vars = list({v for clause in p for v in variables(clause)})
for assignment_list in itertools.product(kb_consts, repeat=len(query_vars)):
theta = {x: y for x, y in zip(query_vars, assignment_list)}
yield theta
# check if we can answer without new inferences
for q in kb.clauses:
for rule in kb.clauses:
if set(subst(theta, p)).issubset(set(kb.clauses)):
if all([unify(x, q_) is None for x in kb.clauses + new]):
if phi is not None:
yield phi
if not new:
break
for clause in new:
kb.tell(clause)
def fol_bc_ask(kb, query):
"""
[Figure 9.6]
A simple backward-chaining algorithm for first-order logic.
KB should be an instance of FolKB, and query an atomic sentence.
"""
return fol_bc_or(kb, query, {})
def fol_bc_or(kb, goal, theta):
for rule in kb.fetch_rules_for_goal(goal):
lhs, rhs = parse_definite_clause(standardize_variables(rule))
for theta1 in fol_bc_and(kb, lhs, unify(rhs, goal, theta)):
def fol_bc_and(kb, goals, theta):
if theta is None:
pass
elif not goals:
for theta1 in fol_bc_or(kb, subst(theta, first), theta):
for theta2 in fol_bc_and(kb, rest, theta1):
# A simple KB that defines the relevant conditions of the Wumpus World as in Fig 7.4.
# See Sec. 7.4.3
wumpus_kb = PropKB()
P11, P12, P21, P22, P31, B11, B21 = expr('P11, P12, P21, P22, P31, B11, B21')
wumpus_kb.tell(~P11)
wumpus_kb.tell(B11 | '<=>' | (P12 | P21))
wumpus_kb.tell(B21 | '<=>' | (P11 | P22 | P31))
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
test_kb = FolKB(map(expr, ['Farmer(Mac)',
'Rabbit(Pete)',
'Mother(MrsMac, Mac)',
'Mother(MrsRabbit, Pete)',
'(Rabbit(r) & Farmer(f)) ==> Hates(f, r)',
'(Mother(m, c)) ==> Loves(m, c)',
'(Mother(m, r) & Rabbit(r)) ==> Rabbit(m)',
'(Farmer(f)) ==> Human(f)',
# Note that this order of conjuncts
# would result in infinite recursion:
# '(Human(h) & Mother(m, h)) ==> Human(m)'
'(Mother(m, h) & Human(h)) ==> Human(m)']))
crime_kb = FolKB(map(expr, ['(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)',
'Owns(Nono, M1)',
'Missile(M1)',
'(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)',
'Missile(x) ==> Weapon(x)',
'Enemy(x, America) ==> Hostile(x)',
'American(West)',
'Enemy(Nono, America)']))
# ______________________________________________________________________________
# Example application (not in the book).
# You can use the Expr class to do symbolic differentiation. This used to be
# a part of AI; now it is considered a separate field, Symbolic Algebra.
def diff(y, x):
"""Return the symbolic derivative, dy/dx, as an Expr.
However, you probably want to simplify the results with simp.
>>> diff(x * x, x)
((x * 1) + (x * 1))
"""
else:
u, op, v = y.args[0], y.op, y.args[-1]
elif op == '-' and len(y.args) == 1:
return -diff(u, x)
elif op == '-':
return diff(u, x) - diff(v, x)
elif op == '*':
return u * diff(v, x) + v * diff(u, x)
elif op == '/':
return (v * diff(u, x) - u * diff(v, x)) / (v * v)
elif op == '**' and isnumber(x.op):
return v * u ** (v - 1) * diff(u, x)
return (v * u ** (v - 1) * diff(u, x) +
u ** v * Expr('log')(u) * diff(v, x))
elif op == 'log':
return diff(u, x) / u
else:
raise ValueError('Unknown op: {} in diff({}, {})'.format(op, y, x))
def simp(x):
if isnumber(x) or not x.args:
u, op, v = args[0], x.op, args[-1]
if u.op == '-' and len(u.args) == 1:
return u.args[0] # --y ==> y
if u == 0 or v == 0:
return 0
if u == 1:
if u == 0:
return 0
if v == 0:
return 1
if u == 1:
return 1
if v == 1:
raise ValueError('Unknown op: ' + op)
# If we fall through to here, we can not simplify further
return Expr(op, *args)
def d(y, x):
"""Differentiate and then simplify.
>>> d(x * x - x, x)
((2 * x) - 1)
"""