learning.py 37 ko
Newer Older
"""Learning from examples. (Chapters 18)"""
MircoT's avatar
MircoT a validé
import copy
import heapq
import math
import random
from collections import defaultdict
Donato Meoli's avatar
Donato Meoli a validé
from statistics import mean, stdev
from probabilistic_learning import NaiveBayesLearner
from utils import (remove_all, unique, mode, argmax, argmax_random_tie, isclose, dot_product, vector_add,
                   scalar_vector_product, weighted_sample_with_replacement, num_or_str, normalize, clip, sigmoid,
                   print_table, open_data, sigmoid_derivative, probability, relu, relu_derivative, tanh,
                   tanh_derivative, leaky_relu_derivative, elu, elu_derivative, mean_boolean_error, random_weights)
MircoT's avatar
MircoT a validé

    """
    A data set for a machine learning problem. It has the following fields:
    d.examples   A list of examples. Each one is a list of attribute values.
    d.attrs      A list of integers to index into an example, so example[attr]
                 gives a value. Normally the same as range(len(d.examples[0])).
    d.attr_names Optional list of mnemonic names for corresponding attrs.
    d.target     The attribute that a learning algorithm will try to predict.
                 By default the final attribute.
    d.inputs     The list of attrs without the target.
    d.values     A list of lists: each sublist is the set of possible
                 values for the corresponding attribute. If initially None,
                 it is computed from the known examples by self.set_problem.
                 If not None, an erroneous value raises ValueError.
    d.distance   A function from a pair of examples to a non-negative number.
                 Should be symmetric, etc. Defaults to mean_boolean_error
                 since that can handle any field types.
    d.name       Name of the data set (for output display only).
    d.source     URL or other source where the data came from.
    d.exclude    A list of attribute indexes to exclude from d.inputs. Elements
                 of this list can either be integers (attrs) or attr_names.

    Normally, you call the constructor and you're done; then you just
    access fields like d.examples and d.target and d.inputs.
    """
    def __init__(self, examples=None, attrs=None, attr_names=None, target=-1, inputs=None,
                 values=None, distance=mean_boolean_error, name='', source='', exclude=()):
        """
        Accepts any of DataSet's fields. Examples can also be a
        string or file from which to parse examples using parse_csv.
        Optional parameter: exclude, as documented in .set_problem().
        >>> DataSet(examples='1, 2, 3')
        <DataSet(): 1 examples, 3 attributes>
        """
        self.name = name
        self.source = source
        self.values = values
        self.distance = distance
        self.got_values_flag = bool(values)
        # initialize .examples from string or list or data directory
        if isinstance(examples, str):
            self.examples = parse_csv(examples)
Aman Deep Singh's avatar
Aman Deep Singh a validé
        elif examples is None:
            self.examples = parse_csv(open_data(name + '.csv').read())
Aman Deep Singh's avatar
Aman Deep Singh a validé
            self.examples = examples
        # attrs are the indices of examples, unless otherwise stated.
Aman Deep Singh's avatar
Aman Deep Singh a validé
        if self.examples is not None and attrs is None:
            attrs = list(range(len(self.examples[0])))
        # initialize .attr_names from string, list, or by default
        if isinstance(attr_names, str):
            self.attr_names = attr_names.split()
            self.attr_names = attr_names or attrs
        self.set_problem(target, inputs=inputs, exclude=exclude)
    def set_problem(self, target, inputs=None, exclude=()):
        """
        Set (or change) the target and/or inputs.
        This way, one DataSet can be used multiple ways. inputs, if specified,
        is a list of attributes, or specify exclude as a list of attributes
        to not use in inputs. Attributes can be -n .. n, or an attr_name.
        Also computes the list of possible values, if that wasn't done yet.
        """
        self.target = self.attr_num(target)
        exclude = list(map(self.attr_num, exclude))
            self.inputs = remove_all(self.target, inputs)
            self.inputs = [a for a in self.attrs if a != self.target and a not in exclude]
            self.update_values()
        """Check that my fields make sense."""
        assert len(self.attr_names) == len(self.attrs)
        assert self.target in self.attrs
        assert self.target not in self.inputs
        assert set(self.inputs).issubset(set(self.attrs))
            # only check if values are provided while initializing DataSet
            list(map(self.check_example, self.examples))
        """Add an example to the list of examples, checking it first."""
        self.check_example(example)
        self.examples.append(example)

    def check_example(self, example):
        """Raise ValueError if example has any invalid values."""
        if self.values:
            for a in self.attrs:
                if example[a] not in self.values[a]:
                    raise ValueError('Bad value {} for attribute {} in {}'
                                     .format(example[a], self.attr_names[a], example))
        """Returns the number used for attr, which can be a name, or -n .. n-1."""
MircoT's avatar
MircoT a validé
        if isinstance(attr, str):
MircoT's avatar
MircoT a validé
        elif attr < 0:
            return len(self.attrs) + attr
    def update_values(self):
        self.values = list(map(unique, zip(*self.examples)))

    def sanitize(self, example):
        """Return a copy of example, with non-input attributes replaced by None."""
        return [attr_i if i in self.inputs else None for i, attr_i in enumerate(example)]
    def classes_to_numbers(self, classes=None):
        """Converts class names to numbers."""
        if not classes:
            # if classes were not given, extract them from values
            classes = sorted(self.values[self.target])
        for item in self.examples:
            item[self.target] = classes.index(item[self.target])
Anthony Marakis's avatar
Anthony Marakis a validé
    def remove_examples(self, value=''):
        """Remove examples that contain given value."""
        self.examples = [x for x in self.examples if value not in x]
        self.update_values()
    def split_values_by_classes(self):
        """Split values into buckets according to their class."""
        buckets = defaultdict(lambda: [])
        target_names = self.values[self.target]

        for v in self.examples:
            item = [a for a in v if a not in target_names]  # remove target from item
            buckets[v[self.target]].append(item)  # add item to bucket of its class

        return buckets

    def find_means_and_deviations(self):
        """
        Finds the means and standard deviations of self.dataset.
        means     : a dictionary for each class/target. Holds a list of the means
                    of the features for the class.
        deviations: a dictionary for each class/target. Holds a list of the sample
                    standard deviations of the features for the class.
        """
        target_names = self.values[self.target]
        feature_numbers = len(self.inputs)

        item_buckets = self.split_values_by_classes()
        means = defaultdict(lambda: [0] * feature_numbers)
        deviations = defaultdict(lambda: [0] * feature_numbers)
            # find all the item feature values for item in class t
            features = [[] for _ in range(feature_numbers)]
            for item in item_buckets[t]:
                for i in range(feature_numbers):
                    features[i].append(item[i])
            # calculate means and deviations fo the class
            for i in range(feature_numbers):
                means[t][i] = mean(features[i])
                deviations[t][i] = stdev(features[i])

        return means, deviations

        return '<DataSet({}): {:d} examples, {:d} attributes>'.format(self.name, len(self.examples), len(self.attrs))
def parse_csv(input, delim=','):
    r"""
    Input is a string consisting of lines, each line has comma-delimited
    fields.  Convert this into a list of lists. Blank lines are skipped.
    Fields that look like numbers are converted to numbers.
    The delim defaults to ',' but '\t' and None are also reasonable values.
    >>> parse_csv('1, 2, 3 \n 0, 2, na')
    lines = [line for line in input.splitlines() if line.strip()]
MircoT's avatar
MircoT a validé
    return [list(map(num_or_str, line.split(delim))) for line in lines]
Donato Meoli's avatar
Donato Meoli a validé

def err_ratio(predict, dataset, examples=None, verbose=0):
    """
    Return the proportion of the examples that are NOT correctly predicted.
    verbose - 0: No output; 1: Output wrong; 2 (or greater): Output correct
    """
    examples = examples or dataset.examples
    if len(examples) == 0:
        return 0.0
    right = 0
    for example in examples:
        desired = example[dataset.target]
        output = predict(dataset.sanitize(example))
        if output == desired:
            right += 1
            if verbose >= 2:
                print('   OK: got {} for {}'.format(desired, example))
        elif verbose:
            print('WRONG: got {}, expected {} for {}'.format(output, desired, example))
    return 1 - (right / len(examples))
Donato Meoli's avatar
Donato Meoli a validé

def grade_learner(predict, tests):
    """
    Grades the given learner based on how many tests it passes.
    tests is a list with each element in the form: (values, output).
    """
    return mean(int(predict(X) == y) for X, y in tests)
def train_test_split(dataset, start=None, end=None, test_split=None):
    """
    If you are giving 'start' and 'end' as parameters,
    then it will return the testing set from index 'start' to 'end'
    and the rest for training.
    If you give 'test_split' as a parameter then it will return
    test_split * 100% as the testing set and the rest as
    training set.
    """
    examples = dataset.examples
    if test_split is None:
        train = examples[:start] + examples[end:]
        val = examples[start:end]
        total_size = len(examples)
        val_size = int(total_size * test_split)
        train_size = total_size - val_size
        train = examples[:train_size]
        val = examples[train_size:total_size]
Donato Meoli's avatar
Donato Meoli a validé

def cross_validation_wrapper(learner, dataset, k=10, trials=1):
    """
    [Figure 18.8]
    Return the optimal value of size having minimum error on validation set.
    errT: a training error array, indexed by size
    errV: a validation error array, indexed by size
    """
    errs = []
    size = 1
    while True:
        errT, errV = cross_validation(learner, dataset, size, k, trials)
        # check for convergence provided err_val is not empty
        if errT and not isclose(errT[-1], errT, rel_tol=1e-6):
            best_size = 0
            min_val = math.inf
            i = 0
            while i < size:
                if errs[i] < min_val:
                    min_val = errs[i]
                    best_size = i
                i += 1
            return learner(dataset, best_size)
        errs.append(errV)
        size += 1
def cross_validation(learner, dataset, size=None, k=10, trials=1):
    """
    Do k-fold cross_validate and return their mean.
    That is, keep out 1/k of the examples for testing on each of k runs.
    Shuffle the examples first; if trials>1, average over several shuffles.
    Returns Training error, Validation error
    """
    k = k or len(dataset.examples)
    if trials > 1:
        trial_errT = 0
        trial_errV = 0
        for t in range(trials):
            errT, errV = cross_validation(learner, dataset, size, k, trials)
            trial_errT += errT
            trial_errV += errV
        return trial_errT / trials, trial_errV / trials
    else:
        fold_errT = 0
        fold_errV = 0
        n = len(dataset.examples)
        examples = dataset.examples
        random.shuffle(dataset.examples)
        for fold in range(k):
            train_data, val_data = train_test_split(dataset, fold * (n // k), (fold + 1) * (n // k))
            dataset.examples = train_data
            h = learner(dataset, size)
            fold_errT += err_ratio(h, dataset, train_data)
            fold_errV += err_ratio(h, dataset, val_data)
            # reverting back to original once test is completed
            dataset.examples = examples
        return fold_errT / k, fold_errV / k
Donato Meoli's avatar
Donato Meoli a validé

def leave_one_out(learner, dataset, size=None):
    """Leave one out cross-validation over the dataset."""
    return cross_validation(learner, dataset, size, len(dataset.examples))
# TODO learning_curve needs to be fixed
def learning_curve(learner, dataset, trials=10, sizes=None):
    if sizes is None:
        sizes = list(range(2, len(dataset.examples) - 10, 2))
    def score(learner, size):
        random.shuffle(dataset.examples)
        return train_test_split(learner, dataset, 0, size)
Donato Meoli's avatar
Donato Meoli a validé

    return [(size, mean([score(learner, size) for _ in range(trials)])) for size in sizes]
def PluralityLearner(dataset):
    """
    A very dumb algorithm: always pick the result that was most popular
    in the training data. Makes a baseline for comparison.
    """
    most_popular = mode([e[dataset.target] for e in dataset.examples])
Donato Meoli's avatar
Donato Meoli a validé

    def predict(example):
        """Always return same result: the most popular from the training set."""
        return most_popular
Donato Meoli's avatar
Donato Meoli a validé

Donato Meoli's avatar
Donato Meoli a validé

    """
    A fork of a decision tree holds an attribute to test, and a dict
    of branches, one for each of the attribute's values.
    """
    def __init__(self, attr, attr_name=None, default_child=None, branches=None):
        """Initialize by saying what attribute this node tests."""
C.G.Vedant's avatar
C.G.Vedant a validé
        self.default_child = default_child
        """Given an example, classify it using the attribute and the branches."""
        attr_val = example[self.attr]
        if attr_val in self.branches:
            return self.branches[attr_val](example)
C.G.Vedant's avatar
C.G.Vedant a validé
        else:
            # return default class when attribute is unknown
            return self.default_child(example)
        """Add a branch.  If self.attr = val, go to the given subtree."""
        self.branches[val] = subtree

    def display(self, indent=0):
MircoT's avatar
MircoT a validé
        print('Test', name)
        for (val, subtree) in self.branches.items():
            print(' ' * 4 * indent, name, '=', val, '==>', end=' ')
            subtree.display(indent + 1)
        return 'DecisionFork({0!r}, {1!r}, {2!r})'.format(self.attr, self.attr_name, self.branches)
    """A leaf of a decision tree holds just a result."""

    def __init__(self, result):
        self.result = result

    def __call__(self, example):
        return self.result

MircoT's avatar
MircoT a validé
        print('RESULT =', self.result)
    def __repr__(self):
        return repr(self.result)
Donato Meoli's avatar
Donato Meoli a validé

    target, values = dataset.target, dataset.values
    def decision_tree_learning(examples, attrs, parent_examples=()):
            return plurality_value(parent_examples)
            return DecisionLeaf(examples[0][target])
        A = choose_attribute(attrs, examples)
        tree = DecisionFork(A, dataset.attr_names[A], plurality_value(examples))
        for (v_k, exs) in split_by(A, examples):
            subtree = decision_tree_learning(exs, remove_all(A, attrs), examples)
            tree.add(v_k, subtree)
        return tree
        """
        Return the most popular target value for this set of examples.
        (If target is binary, this is the majority; otherwise plurality).
        """
Donato Meoli's avatar
Donato Meoli a validé
        popular = argmax_random_tie(values[target], key=lambda v: count(target, v, examples))
        """Count the number of examples that have example[attr] = val."""
        return sum(e[attr] == val for e in examples)
        """Are all these examples in the same target class?"""
withal's avatar
withal a validé
        class0 = examples[0][target]
        return all(e[target] == class0 for e in examples)

    def choose_attribute(attrs, examples):
        """Choose the attribute with the highest information gain."""
Donato Meoli's avatar
Donato Meoli a validé
        return argmax_random_tie(attrs, key=lambda a: information_gain(a, examples))
withal's avatar
withal a validé

    def information_gain(attr, examples):
        """Return the expected reduction in entropy from splitting by attr."""
Donato Meoli's avatar
Donato Meoli a validé

            return information_content([count(target, v, examples) for v in values[target]])
Donato Meoli's avatar
Donato Meoli a validé

        remainder = sum((len(examples_i) / N) * I(examples_i) for (v, examples_i) in split_by(attr, examples))
        """Return a list of (val, examples) pairs for each val of attr."""
        return [(v, [e for e in examples if e[attr] == v]) for v in values[attr]]

    return decision_tree_learning(dataset.examples, dataset.inputs)
def information_content(values):
    """Number of bits to represent the probability distribution in values."""
    probabilities = normalize(remove_all(0, values))
    return sum(-p * math.log2(p) for p in probabilities)
Donato Meoli's avatar
Donato Meoli a validé

    """
    [Figure 18.11]
    A decision list implemented as a list of (test, value) pairs.
    """
    def decision_list_learning(examples):
            return [(True, False)]
        t, o, examples_t = find_examples(examples)
            raise Exception
        return [(t, o)] + decision_list_learning(examples - examples_t)
        """
        Find a set of examples that all have the same outcome under
        some test. Return a tuple of the test, outcome, and examples.
        """
        raise NotImplementedError
        """Does the example pass the test?"""
        raise NotImplementedError
        """Predict the outcome for the first passing test."""
        for test, outcome in predict.decision_list:
            if passes(example, test):
                return outcome
Donato Meoli's avatar
Donato Meoli a validé

    predict.decision_list = decision_list_learning(set(dataset.examples))

    return predict

Donato Meoli's avatar
Donato Meoli a validé

def NearestNeighborLearner(dataset, k=1):
    """k-NearestNeighbor: the k nearest neighbors vote."""

    def predict(example):
        """Find the k closest items, and have them vote for the best."""
        best = heapq.nsmallest(k, ((dataset.distance(e, example), e) for e in dataset.examples))
        return mode(e[dataset.target] for (d, e) in best)

    return predict


def LinearLearner(dataset, learning_rate=0.01, epochs=100):
    """
    [Section 18.6.3]
    Linear classifier with hard threshold.
    """
    idx_i = dataset.inputs
    idx_t = dataset.target
    examples = dataset.examples
    num_examples = len(examples)

    # X transpose
    X_col = [dataset.values[i] for i in idx_i]  # vertical columns of X

    # add dummy
    ones = [1 for _ in range(len(examples))]
    X_col = [ones] + X_col

    # initialize random weights
    num_weights = len(idx_i) + 1
    w = random_weights(min_value=-0.5, max_value=0.5, num_weights=num_weights)

    for epoch in range(epochs):
        err = []
        # pass over all examples
        for example in examples:
            x = [1] + example
            t = example[idx_t]
            err.append(t - y)

        # update weights
        for i in range(len(w)):
            w[i] = w[i] + learning_rate * (dot_product(err, X_col[i]) / num_examples)
        return dot_product(w, x)
    return predict


def LogisticLinearLeaner(dataset, learning_rate=0.01, epochs=100):
    """
    [Section 18.6.4]
    Linear classifier with logistic regression.
    """
    idx_i = dataset.inputs
    idx_t = dataset.target
    examples = dataset.examples
    num_examples = len(examples)

    # X transpose
    X_col = [dataset.values[i] for i in idx_i]  # vertical columns of X

    # add dummy
    ones = [1 for _ in range(len(examples))]
    X_col = [ones] + X_col

    # initialize random weights
    num_weights = len(idx_i) + 1
    w = random_weights(min_value=-0.5, max_value=0.5, num_weights=num_weights)

    for epoch in range(epochs):
        err = []
        h = []
        # pass over all examples
        for example in examples:
            x = [1] + example
            y = sigmoid(dot_product(w, x))
            h.append(sigmoid_derivative(y))
            t = example[idx_t]
            err.append(t - y)

        # update weights
        for i in range(len(w)):
            buffer = [x * y for x, y in zip(err, h)]
            w[i] = w[i] + learning_rate * (dot_product(buffer, X_col[i]) / num_examples)
        return sigmoid(dot_product(w, x))

    return predict


def NeuralNetLearner(dataset, hidden_layer_sizes=None, learning_rate=0.01, epochs=100, activation=sigmoid):
    """
    Layered feed-forward network.
    hidden_layer_sizes: List of number of hidden units per hidden layer
    learning_rate: Learning rate of gradient descent
    epochs: Number of passes over the dataset
    if hidden_layer_sizes is None:
        hidden_layer_sizes = [3]
    i_units = len(dataset.inputs)
    o_units = len(dataset.values[dataset.target])

    # construct a network
Nouman Ahmed's avatar
Nouman Ahmed a validé
    raw_net = network(i_units, hidden_layer_sizes, o_units, activation)
Donato Meoli's avatar
Donato Meoli a validé
    learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs, activation)
MircoT's avatar
MircoT a validé
    def predict(example):
        i_nodes = learned_net[0]

        for v, n in zip(example, i_nodes):
            n.value = v

        for layer in learned_net[1:]:
            for node in layer:
                inc = [n.value for n in node.inputs]
                in_val = dot_product(inc, node.weights)
                node.value = node.activation(in_val)

        o_nodes = learned_net[-1]
        prediction = find_max_node(o_nodes)
        return prediction
MircoT's avatar
MircoT a validé

    return predict
Nouman Ahmed's avatar
Nouman Ahmed a validé
def BackPropagationLearner(dataset, net, learning_rate, epochs, activation=sigmoid):
    """
    [Figure 18.23]
    The back-propagation algorithm for multilayer networks.
    """
    # initialise weights
    for layer in net:
        for node in layer:
            node.weights = random_weights(min_value=-0.5, max_value=0.5, num_weights=len(node.weights))

    examples = dataset.examples
    # As of now dataset.target gives an int instead of list,
    # Changing dataset class will have effect on all the learners.
    # Will be taken care of later.
    o_nodes = net[-1]
    i_nodes = net[0]
    o_units = len(o_nodes)
    idx_t = dataset.target
    idx_i = dataset.inputs
    n_layers = len(net)

    inputs, targets = init_examples(examples, idx_i, idx_t, o_units)
    for epoch in range(epochs):
        for e in range(len(examples)):
            i_val = inputs[e]
            t_val = targets[e]

            for v, n in zip(i_val, i_nodes):
                n.value = v

            for layer in net[1:]:
                for node in layer:
                    inc = [n.value for n in node.inputs]
                    in_val = dot_product(inc, node.weights)
                    node.value = node.activation(in_val)

            delta = [[] for _ in range(n_layers)]
            err = [t_val[i] - o_nodes[i].value for i in range(o_units)]
Nouman Ahmed's avatar
Nouman Ahmed a validé
            if node.activation == sigmoid:
                delta[-1] = [sigmoid_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
            elif node.activation == relu:
Nouman Ahmed's avatar
Nouman Ahmed a validé
                delta[-1] = [relu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
            elif node.activation == tanh:
                delta[-1] = [tanh_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
            elif node.activation == elu:
                delta[-1] = [elu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
            else:
                delta[-1] = [leaky_relu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]

            h_layers = n_layers - 2
            for i in range(h_layers, 0, -1):
                layer = net[i]
                h_units = len(layer)
Donato Meoli's avatar
Donato Meoli a validé
                nx_layer = net[i + 1]
                # weights from each ith layer node to each i + 1th layer node
                w = [[node.weights[k] for node in nx_layer] for k in range(h_units)]
Nouman Ahmed's avatar
Nouman Ahmed a validé
                if activation == sigmoid:
                    delta[i] = [sigmoid_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
Donato Meoli's avatar
Donato Meoli a validé
                                for j in range(h_units)]
                elif activation == relu:
                    delta[i] = [relu_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
Donato Meoli's avatar
Donato Meoli a validé
                                for j in range(h_units)]
                elif activation == tanh:
                    delta[i] = [tanh_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
Donato Meoli's avatar
Donato Meoli a validé
                                for j in range(h_units)]
                elif activation == elu:
                    delta[i] = [elu_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
Donato Meoli's avatar
Donato Meoli a validé
                                for j in range(h_units)]
                    delta[i] = [leaky_relu_derivative(layer[j].value) * dot_product(w[j], delta[i + 1])
Donato Meoli's avatar
Donato Meoli a validé
                                for j in range(h_units)]
            for i in range(1, n_layers):
                layer = net[i]
Donato Meoli's avatar
Donato Meoli a validé
                inc = [node.value for node in net[i - 1]]
                units = len(layer)
                for j in range(units):
                    layer[j].weights = vector_add(layer[j].weights,
Donato Meoli's avatar
Donato Meoli a validé
                                                  scalar_vector_product(learning_rate * delta[i][j], inc))
    return net
def PerceptronLearner(dataset, learning_rate=0.01, epochs=100):
    """Logistic Regression, NO hidden layer"""
    i_units = len(dataset.inputs)
    o_units = len(dataset.values[dataset.target])
    hidden_layer_sizes = []
    raw_net = network(i_units, hidden_layer_sizes, o_units)
    learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs)
MircoT's avatar
MircoT a validé
    def predict(example):
        o_nodes = learned_net[1]
            in_val = dot_product(example, node.weights)
            node.value = node.activation(in_val)
        return find_max_node(o_nodes)

    return predict
    """
    Single Unit of Multiple Layer Neural Network
    inputs: Incoming connections
    weights: Weights to incoming connections
    """

Nouman Ahmed's avatar
Nouman Ahmed a validé
    def __init__(self, activation=sigmoid, weights=None, inputs=None):
        self.weights = weights or []
        self.inputs = inputs or []
Nouman Ahmed's avatar
Nouman Ahmed a validé
        self.activation = activation
Nouman Ahmed's avatar
Nouman Ahmed a validé
def network(input_units, hidden_layer_sizes, output_units, activation=sigmoid):
    """
    Create Directed Acyclic Network of given number layers.
    hidden_layers_sizes : List number of neuron units in each hidden layer
    excluding input and output layers
    """
    layers_sizes = [input_units] + hidden_layer_sizes + [output_units]
    net = [[NNUnit(activation) for _ in range(size)]
           for size in layers_sizes]
    n_layers = len(net)

    for i in range(1, n_layers):
        for n in net[i]:
Donato Meoli's avatar
Donato Meoli a validé
            for k in net[i - 1]:
                n.inputs.append(k)
                n.weights.append(0)
    return net


def init_examples(examples, idx_i, idx_t, o_units):
Anthony Marakis's avatar
Anthony Marakis a validé
    inputs, targets = {}, {}
Anthony Marakis's avatar
Anthony Marakis a validé
    for i, e in enumerate(examples):
        inputs[i] = [e[i] for i in idx_i]

        if o_units > 1:
            # one-hot representation of e's target
            t = [0 for i in range(o_units)]
            t[e[idx_t]] = 1
            targets[i] = t
        else:
            targets[i] = [e[idx_t]]

    return inputs, targets


def find_max_node(nodes):
    return nodes.index(argmax(nodes, key=lambda node: node.value))

Donato Meoli's avatar
Donato Meoli a validé

    """Given a list of learning algorithms, have them vote."""
Donato Meoli's avatar
Donato Meoli a validé

    def train(dataset):
        predictors = [learner(dataset) for learner in learners]
        def predict(example):
            return mode(predictor(example) for predictor in predictors)
Donato Meoli's avatar
Donato Meoli a validé

Donato Meoli's avatar
Donato Meoli a validé

Donato Meoli's avatar
Donato Meoli a validé

    examples, target = dataset.examples, dataset.target
    N = len(examples)
    epsilon = 1 / (2 * N)
    w = [1 / N] * N
    h, z = [], []
    for k in range(K):
        h_k = L(dataset, w)
        h.append(h_k)
        error = sum(weight for example, weight in zip(examples, w) if example[target] != h_k(example))
        # avoid divide-by-0 from either 0% or 100% error rates
        error = clip(error, epsilon, 1 - epsilon)
        for j, example in enumerate(examples):
            if example[target] == h_k(example):
                w[j] *= error / (1 - error)
        w = normalize(w)
        z.append(math.log((1 - error) / error))
    return weighted_majority(h, z)


def weighted_majority(predictors, weights):
    """Return a predictor that takes a weighted vote."""
Donato Meoli's avatar
Donato Meoli a validé

withal's avatar
withal a validé
    def predict(example):
        return weighted_mode((predictor(example) for predictor in predictors), weights)
Donato Meoli's avatar
Donato Meoli a validé

withal's avatar
withal a validé
    return predict

withal's avatar
withal a validé
def weighted_mode(values, weights):
    """
    Return the value with the greatest total weight.
    >>> weighted_mode('abbaa', [1, 2, 3, 1, 2])
withal's avatar
withal a validé
    totals = defaultdict(int)
    for v, w in zip(values, weights):
        totals[v] += w
    return max(totals, key=totals.__getitem__)
Donato Meoli's avatar
Donato Meoli a validé

def RandomForest(dataset, n=5):
    """An ensemble of Decision Trees trained using bagging and feature bagging."""

    def data_bagging(dataset, m=0):
        """Sample m examples with replacement"""
        n = len(dataset.examples)
        return weighted_sample_with_replacement(m or n, dataset.examples, [1] * n)

    def feature_bagging(dataset, p=0.7):
        """Feature bagging with probability p to retain an attribute"""
        inputs = [i for i in dataset.inputs if probability(p)]
        return inputs or dataset.inputs

    def predict(example):
        print([predictor(example) for predictor in predictors])
        return mode(predictor(example) for predictor in predictors)

    predictors = [DecisionTreeLearner(DataSet(examples=data_bagging(dataset), attrs=dataset.attrs,
                                              attr_names=dataset.attr_names, target=dataset.target,
                                              inputs=feature_bagging(dataset))) for _ in range(n)]

    return predict
def WeightedLearner(unweighted_learner):
    """
    [Page 749 footnote 14]
    Given a learner that takes just an unweighted dataset, return
    one that takes also a weight for each example.
    """
Donato Meoli's avatar
Donato Meoli a validé

    def train(dataset, weights):
        return unweighted_learner(replicated_dataset(dataset, weights))
Donato Meoli's avatar
Donato Meoli a validé

def replicated_dataset(dataset, weights, n=None):
    """Copy dataset, replicating each example in proportion to its weight."""
    n = n or len(dataset.examples)
    result = copy.copy(dataset)
    result.examples = weighted_replicate(dataset.examples, weights, n)
    return result

def weighted_replicate(seq, weights, n):
    """
    Return n selections from seq, with the count of each element of
    seq proportional to the corresponding weight (filling in fractions
    randomly).
    >>> weighted_replicate('ABC', [1, 2, 1], 4)
    assert len(seq) == len(weights)
    weights = normalize(weights)
Donato Meoli's avatar
Donato Meoli a validé
    wholes = [int(w * n) for w in weights]
    fractions = [(w * n) % 1 for w in weights]
    return (flatten([x] * nx for x, nx in zip(seq, wholes)) +
            weighted_sample_with_replacement(n - sum(wholes), seq, fractions))
orings = DataSet(name='orings', target='Distressed', attr_names='Rings Distressed Temp Pressure Flightnum')

zoo = DataSet(name='zoo', target='type', exclude=['name'],
              attr_names='name hair feathers eggs milk airborne aquatic predator toothed backbone '
                         'breathes venomous fins legs tail domestic catsize type')
iris = DataSet(name='iris', target='class', attr_names='sepal-len sepal-width petal-len petal-width class')
def RestaurantDataSet(examples=None):
    """
    [Figure 18.3]
    Build a DataSet of Restaurant waiting examples.
    """
    return DataSet(name='restaurant', target='Wait', examples=examples,
                   attr_names='Alternate Bar Fri/Sat Hungry Patrons Price Raining Reservation Type WaitEstimate Wait')
restaurant = RestaurantDataSet()

def T(attr_name, branches):
    branches = {value: (child if isinstance(child, DecisionFork) else DecisionLeaf(child))
                for value, child in branches.items()}
    return DecisionFork(restaurant.attr_num(attr_name), attr_name, print, branches)
A decision tree for deciding whether to wait for a table at a hotel.
"""

waiting_decision_tree = T('Patrons',
                          {'None': 'No', 'Some': 'Yes',
                           'Full': T('WaitEstimate',
                                     {'>60': 'No', '0-10': 'Yes',
                                      '30-60': T('Alternate',
                                                 {'No': T('Reservation',
                                                          {'Yes': 'Yes',
                                                           'No': T('Bar', {'No': 'No',
                                                                           'Yes': 'Yes'})}),
                                                  'Yes': T('Fri/Sat', {'No': 'No', 'Yes': 'Yes'})}),
                                      '10-30': T('Hungry',
                                                 {'No': 'Yes',
                                                  'Yes': T('Alternate',
                                                           {'No': 'Yes',
                                                            'Yes': T('Raining',
                                                                     {'No': 'No',
                                                                      'Yes': 'Yes'})})})})})
def SyntheticRestaurant(n=20):
    """Generate a DataSet with n examples."""
Donato Meoli's avatar
Donato Meoli a validé

MircoT's avatar
MircoT a validé
        example = list(map(random.choice, restaurant.values))
        example[restaurant.target] = waiting_decision_tree(example)
Donato Meoli's avatar
Donato Meoli a validé

    return RestaurantDataSet([gen() for _ in range(n)])
    """
    Return a DataSet with n k-bit examples of the majority problem:
    k random bits followed by a 1 if more than half the bits are 1, else 0.
    """
        bits = [random.choice([0, 1]) for _ in range(k)]
        bits.append(int(sum(bits) > k / 2))
    return DataSet(name='majority', examples=examples)
def Parity(k, n, name='parity'):
    """
    Return a DataSet with n k-bit examples of the parity problem:
    k random bits followed by a 1 if an odd number of bits are 1, else 0.
    """
        bits = [random.choice([0, 1]) for _ in range(k)]
        bits.append(sum(bits) % 2)
        examples.append(bits)
    return DataSet(name=name, examples=examples)

def Xor(n):
    """Return a DataSet with n examples of 2-input xor."""
Donato Meoli's avatar
Donato Meoli a validé
    """2 inputs are chosen uniformly from (0.0 .. 2.0]; output is xor of ints."""
        x, y = [random.uniform(0.0, 2.0) for _ in '12']
        examples.append([x, y, x != y])
    return DataSet(name='continuous xor', examples=examples)
Donato Meoli's avatar
Donato Meoli a validé

def compare(algorithms=None, datasets=None, k=10, trials=1):
    """
    Compare various learners on various datasets using cross-validation.
    Print results as a table.
    """
    # default list of algorithms
    algorithms = algorithms or [PluralityLearner, NaiveBayesLearner, NearestNeighborLearner, DecisionTreeLearner]
    # default list of datasets
    datasets = datasets or [iris, orings, zoo, restaurant, SyntheticRestaurant(20),
                            Majority(7, 100), Parity(7, 100), Xor(100)]
    print_table([[a.__name__.replace('Learner', '')] + [cross_validation(a, d, k=k, trials=trials) for d in datasets]
                 for a in algorithms], header=[''] + [d.name[0:7] for d in datasets], numfmt='%.2f')