logic.py 33,8 ko
Newer Older
withal's avatar
withal a validé
"""Representations and Inference for Logic (Chapters 7-9, 12)

Covers both Propositional and First-Order Logic. First we have four
important data types:

    KB            Abstract class holds a knowledge base of logical expressions
    KB_Agent      Abstract class subclasses agents.Agent
Peter Norvig's avatar
Peter Norvig a validé
    Expr          A logical expression, imported from utils.py
    substitution  Implemented as a dictionary of var:value pairs, {x:1, y:x}

Be careful: some functions take an Expr as argument, and some take a KB.
Peter Norvig's avatar
Peter Norvig a validé

Logical expressions can be created with Expr or expr, imported from utils, TODO
or with expr, which adds the capability to write a string that uses
the connectives ==>, <==, <=>, or <=/=>. But be careful: these have the
opertor precedence of commas; you may need to add parens to make precendence work.
See logic.ipynb for examples.

Then we implement various functions for doing logical inference:

    pl_true          Evaluate a propositional logical sentence in a model
    tt_entails       Say if a statement is entailed by a KB
    pl_resolution    Do resolution on propositional sentences
    dpll_satisfiable See if a propositional sentence is satisfiable
Chipe1's avatar
Chipe1 a validé
    WalkSAT          Try to find a solution for a set of clauses

And a few other functions:

    to_cnf           Convert to conjunctive normal form
    unify            Do unification of two FOL sentences
withal's avatar
withal a validé
    diff, simp       Symbolic differentiation and simplification
from utils import (
Darius Bacon's avatar
Darius Bacon a validé
    removeall, unique, first, argmax, probability,
    isnumber, issequence, Expr, expr, subexpressions
import agents
import itertools
from collections import defaultdict
# ______________________________________________________________________________
MircoT's avatar
MircoT a validé

MircoT's avatar
MircoT a validé

    """A knowledge base to which you can tell and ask sentences.
    To create a KB, first subclass this class and implement
withal's avatar
withal a validé
    tell, ask_generator, and retract.  Why ask_generator instead of ask?
    The book is a bit vague on what ask means --
    For a Propositional Logic KB, ask(P & Q) returns True or False, but for an
    FOL KB, something like ask(Brother(x, y)) might return many substitutions
withal's avatar
withal a validé
    such as {x: Cain, y: Abel}, {x: Abel, y: Cain}, {x: George, y: Jeb}, etc.
    So ask_generator generates these one at a time, and ask either returns the
    first one or returns False."""

    def __init__(self, sentence=None):
norvig's avatar
norvig a validé
        raise NotImplementedError
withal's avatar
withal a validé
    def tell(self, sentence):
        """Add the sentence to the KB."""
norvig's avatar
norvig a validé
        raise NotImplementedError
    def ask(self, query):
        """Return a substitution that makes the query true, or, failing that, return False."""
SnShine's avatar
SnShine a validé
        return first(self.ask_generator(query), default=False)
    def ask_generator(self, query):
        """Yield all the substitutions that make query true."""
norvig's avatar
norvig a validé
        raise NotImplementedError
        """Remove sentence from the KB."""
norvig's avatar
norvig a validé
        raise NotImplementedError
    """A KB for propositional logic. Inefficient, with no indexing."""

    def __init__(self, sentence=None):
        self.clauses = []
        if sentence:
            self.tell(sentence)

withal's avatar
withal a validé
    def tell(self, sentence):
        """Add the sentence's clauses to the KB."""
withal's avatar
withal a validé
        self.clauses.extend(conjuncts(to_cnf(sentence)))
withal's avatar
withal a validé
    def ask_generator(self, query):
        """Yield the empty substitution {} if KB entails query; else no results."""
        if tt_entails(Expr('&', *self.clauses), query):
            yield {}

    def ask_if_true(self, query):
        """Return True if the KB entails query, else return False."""
        """Remove the sentence's clauses from the KB."""
        for c in conjuncts(to_cnf(sentence)):
            if c in self.clauses:
                self.clauses.remove(c)

# ______________________________________________________________________________
    """A generic logical knowledge-based agent program. [Figure 7.1]"""
    steps = itertools.count()

    def program(percept):
MircoT's avatar
MircoT a validé
        t = next(steps)
        KB.tell(make_percept_sentence(percept, t))
        action = KB.ask(make_action_query(t))
        KB.tell(make_action_sentence(action, t))
        return action
    def make_percept_sentence(percept, t):
        return Expr("Percept")(percept, t)
    def make_action_query(t):
        return expr("ShouldDo(action, {})".format(t))
    def make_action_sentence(action, t):
        return Expr("Did")(action[expr('action')], t)

    return program
    """A string s is a symbol if it starts with an alphabetic char."""
    return isinstance(s, str) and s[:1].isalpha()
    """A logic variable symbol is an initial-lowercase string."""
    return is_symbol(s) and s[0].islower()

    """A proposition logic symbol is an initial-uppercase string."""
    return is_symbol(s) and s[0].isupper()
def variables(s):
    """Return a set of the variables in expression s.
Peter Norvig's avatar
Peter Norvig a validé
    >>> variables(expr('F(x, x) & G(x, y) & H(y, z) & R(A, z, 2)')) == {x, y, z}
Peter Norvig's avatar
Peter Norvig a validé
    True
Peter Norvig's avatar
Peter Norvig a validé
    return {x for x in subexpressions(s) if is_variable(x)}
def is_definite_clause(s):
    """Returns True for exprs s of the form A & B & ... & C ==> D,
    where all literals are positive.  In clause form, this is
    ~A | ~B | ... | ~C | D, where exactly one clause is positive.
    >>> is_definite_clause(expr('Farmer(Mac)'))
    True
    """
    if is_symbol(s.op):
        return True
Peter Norvig's avatar
Peter Norvig a validé
    elif s.op == '==>':
        antecedent, consequent = s.args
        return (is_symbol(consequent.op) and
                all(is_symbol(arg.op) for arg in conjuncts(antecedent)))
    """Return the antecedents and the consequent of a definite clause."""
    assert is_definite_clause(s)
    if is_symbol(s.op):
        return [], s
    else:
        antecedent, consequent = s.args
        return conjuncts(antecedent), consequent
MircoT's avatar
MircoT a validé
# Useful constant Exprs used in examples and code:
Peter Norvig's avatar
Peter Norvig a validé
A, B, C, D, E, F, G, P, Q, x, y, z = map(Expr, 'ABCDEFGPQxyz')
# ______________________________________________________________________________
    """Does kb entail the sentence alpha? Use truth tables. For propositional
    kb's and sentences. [Figure 7.10]. Note that the 'kb' should be an
    Expr which is a conjunction of clauses.
    >>> tt_entails(expr('P & Q'), expr('Q'))
    True
    """
    assert not variables(alpha)
    return tt_check_all(kb, alpha, prop_symbols(kb & alpha), {})

def tt_check_all(kb, alpha, symbols, model):
    """Auxiliary routine to implement tt_entails."""
        if pl_true(kb, model):
            result = pl_true(alpha, model)
            assert result in (True, False)
            return result
        else:
            return True
    else:
        P, rest = symbols[0], symbols[1:]
        return (tt_check_all(kb, alpha, rest, extend(model, P, True)) and
                tt_check_all(kb, alpha, rest, extend(model, P, False)))

    """Return a list of all propositional symbols in x."""
    if not isinstance(x, Expr):
        return []
    elif is_prop_symbol(x.op):
        return [x]
    else:
Chipe1's avatar
Chipe1 a validé
        return list(set(symbol for arg in x.args for symbol in prop_symbols(arg)))
Peter Norvig's avatar
Peter Norvig a validé
def tt_true(s):
    """Is a propositional sentence a tautology?
    >>> tt_true('P | ~P')
Peter Norvig's avatar
Peter Norvig a validé
    s = expr(s)
    return tt_entails(True, s)
def pl_true(exp, model={}):
    """Return True if the propositional logic expression is true in the model,
    and False if it is false. If the model does not specify the value for
    every proposition, this may return None to indicate 'not obvious';
    this may happen even when the expression is tautological."""
    if exp in (True, False):
        return exp
    if is_prop_symbol(op):
        return model.get(exp)
    elif op == '~':
        p = pl_true(args[0], model)
MircoT's avatar
MircoT a validé
        if p is None:
            return None
        else:
            return not p
    elif op == '|':
        result = False
        for arg in args:
            p = pl_true(arg, model)
MircoT's avatar
MircoT a validé
            if p is True:
                return True
            if p is None:
                result = None
        return result
    elif op == '&':
        result = True
        for arg in args:
            p = pl_true(arg, model)
MircoT's avatar
MircoT a validé
            if p is False:
                return False
            if p is None:
                result = None
Peter Norvig's avatar
Peter Norvig a validé
    if op == '==>':
        return pl_true(~p | q, model)
Peter Norvig's avatar
Peter Norvig a validé
    elif op == '<==':
        return pl_true(p | ~q, model)
    pt = pl_true(p, model)
MircoT's avatar
MircoT a validé
    if pt is None:
        return None
MircoT's avatar
MircoT a validé
    if qt is None:
        return None
    elif op == '^':  # xor or 'not equivalent'
        raise ValueError("illegal operator in logic expression" + str(exp))
# ______________________________________________________________________________
MircoT's avatar
MircoT a validé
# Convert to Conjunctive Normal Form (CNF)

Peter Norvig's avatar
Peter Norvig a validé
    """Convert a propositional logical sentence to conjunctive normal form.
withal's avatar
withal a validé
    That is, to the form ((A | ~B | ...) & (B | C | ...) & ...) [p. 253]
Peter Norvig's avatar
Peter Norvig a validé
    >>> to_cnf('~(B | C)')
Peter Norvig's avatar
Peter Norvig a validé
    s = expr(s)
MircoT's avatar
MircoT a validé
    if isinstance(s, str):
        s = expr(s)
    s = eliminate_implications(s)  # Steps 1, 2 from p. 253
    s = move_not_inwards(s)  # Step 3
    return distribute_and_over_or(s)  # Step 4

def eliminate_implications(s):
    """Change implications into equivalent form with only &, |, and ~ as logical operators."""
Peter Norvig's avatar
Peter Norvig a validé
    s = expr(s)
MircoT's avatar
MircoT a validé
    if not s.args or is_symbol(s.op):
Peter Norvig's avatar
Peter Norvig a validé
        return s  # Atoms are unchanged.
MircoT's avatar
MircoT a validé
    args = list(map(eliminate_implications, s.args))
Peter Norvig's avatar
Peter Norvig a validé
    if s.op == '==>':
Peter Norvig's avatar
Peter Norvig a validé
    elif s.op == '<==':
    elif s.op == '<=>':
        return (a | ~b) & (b | ~a)
Peter Norvig's avatar
Peter Norvig a validé
    elif s.op == '^':
MircoT's avatar
MircoT a validé
        assert len(args) == 2  # TODO: relax this restriction
withal's avatar
withal a validé
        return (a & ~b) | (~a & b)
withal's avatar
withal a validé
        assert s.op in ('&', '|', '~')
def move_not_inwards(s):
    """Rewrite sentence s by moving negation sign inward.
    >>> move_not_inwards(~(A | B))
Peter Norvig's avatar
Peter Norvig a validé
    (~A & ~B)"""
Peter Norvig's avatar
Peter Norvig a validé
    s = expr(s)
        def NOT(b):
            return move_not_inwards(~b)
MircoT's avatar
MircoT a validé
        if a.op == '~':
            return move_not_inwards(a.args[0])  # ~~A ==> A
        if a.op == '&':
            return associate('|', list(map(NOT, a.args)))
        if a.op == '|':
            return associate('&', list(map(NOT, a.args)))
        return s
    elif is_symbol(s.op) or not s.args:
        return s
    else:
MircoT's avatar
MircoT a validé
        return Expr(s.op, *list(map(move_not_inwards, s.args)))
def distribute_and_over_or(s):
    """Given a sentence s consisting of conjunctions and disjunctions
    of literals, return an equivalent sentence in CNF.
    >>> distribute_and_over_or((A & B) | C)
    ((A | C) & (B | C))
    """
Peter Norvig's avatar
Peter Norvig a validé
    s = expr(s)
        s = associate('|', s.args)
        if s.op != '|':
            return distribute_and_over_or(s)
withal's avatar
withal a validé
        if len(s.args) == 0:
            return False
withal's avatar
withal a validé
        if len(s.args) == 1:
            return distribute_and_over_or(s.args[0])
        conj = first(arg for arg in s.args if arg.op == '&')
        others = [a for a in s.args if a is not conj]
        rest = associate('|', others)
MircoT's avatar
MircoT a validé
        return associate('&', [distribute_and_over_or(c | rest)
                               for c in conj.args])
MircoT's avatar
MircoT a validé
        return associate('&', list(map(distribute_and_over_or, s.args)))
def associate(op, args):
    """Given an associative op, return an expression with the same
    meaning as Expr(op, *args), but flattened -- that is, with nested
    instances of the same op promoted to the top level.
    >>> associate('&', [(A&B),(B|C),(B&C)])
    >>> associate('|', [A|(B|(C|(A&B)))])
withal's avatar
withal a validé
    (A | B | C | (A & B))
    args = dissociate(op, args)
    if len(args) == 0:
        return _op_identity[op]
    elif len(args) == 1:
        return args[0]
    else:
        return Expr(op, *args)

_op_identity = {'&': True, '|': False, '+': 0, '*': 1}
def dissociate(op, args):
    """Given an associative op, return a flattened list result such
    that Expr(op, *result) means the same as Expr(op, *args)."""
    result = []
withal's avatar
withal a validé
    def collect(subargs):
        for arg in subargs:
MircoT's avatar
MircoT a validé
            if arg.op == op:
                collect(arg.args)
            else:
                result.append(arg)
withal's avatar
withal a validé
    collect(args)
def conjuncts(s):
    """Return a list of the conjuncts in the sentence s.
    >>> conjuncts(A & B)
    [A, B]
    >>> conjuncts(A | B)
    [(A | B)]
    """
    return dissociate('&', [s])
def disjuncts(s):
    """Return a list of the disjuncts in the sentence s.
    >>> disjuncts(A | B)
    [A, B]
    >>> disjuncts(A & B)
    [(A & B)]
    """
    return dissociate('|', [s])
# ______________________________________________________________________________
def pl_resolution(KB, alpha):
    """Propositional-logic resolution: say if alpha follows from KB. [Figure 7.12]"""
    clauses = KB.clauses + conjuncts(to_cnf(~alpha))
    new = set()
    while True:
        n = len(clauses)
        pairs = [(clauses[i], clauses[j])
                 for i in range(n) for j in range(i+1, n)]
        for (ci, cj) in pairs:
            resolvents = pl_resolve(ci, cj)
            if False in resolvents:
MircoT's avatar
MircoT a validé
                return True
            new = new.union(set(resolvents))
MircoT's avatar
MircoT a validé
        if new.issubset(set(clauses)):
            return False
MircoT's avatar
MircoT a validé
            if c not in clauses:
                clauses.append(c)

Peter Norvig's avatar
Peter Norvig a validé
    """Return all clauses that can be obtained by resolving clauses ci and cj."""
    clauses = []
    for di in disjuncts(ci):
        for dj in disjuncts(cj):
            if di == ~dj or ~di == dj:
withal's avatar
withal a validé
                dnew = unique(removeall(di, disjuncts(ci)) +
                              removeall(dj, disjuncts(cj)))
                clauses.append(associate('|', dnew))
# ______________________________________________________________________________
withal's avatar
withal a validé
class PropDefiniteKB(PropKB):
    """A KB of propositional definite clauses."""
        """Add a definite clause to this KB."""
        assert is_definite_clause(sentence), "Must be definite clause"
withal's avatar
withal a validé
    def ask_generator(self, query):
        """Yield the empty substitution if KB implies query; else nothing."""
        if pl_fc_entails(self.clauses, query):
            yield {}
        self.clauses.remove(sentence)

    def clauses_with_premise(self, p):
        """Return a list of the clauses in KB that have p in their premise.
        This could be cached away for O(1) speed, but we'll recompute it."""
withal's avatar
withal a validé
        return [c for c in self.clauses
Peter Norvig's avatar
Peter Norvig a validé
                if c.op == '==>' and p in conjuncts(c.args[0])]
withal's avatar
withal a validé
    """Use forward chaining to see if a PropDefiniteKB entails symbol q.
    >>> pl_fc_entails(horn_clauses_KB, expr('Q'))
    count = {c: len(conjuncts(c.args[0]))
             for c in KB.clauses
             if c.op == '==>'}
    inferred = defaultdict(bool)
    agenda = [s for s in KB.clauses if is_prop_symbol(s.op)]
    while agenda:
        p = agenda.pop()
MircoT's avatar
MircoT a validé
        if p == q:
            return True
        if not inferred[p]:
            inferred[p] = True
            for c in KB.clauses_with_premise(p):
                count[c] -= 1
                if count[c] == 0:
                    agenda.append(c.args[1])
    return False

""" [Figure 7.13]
Simple inference in a wumpus world example
"""
wumpus_world_inference = expr("(B11 <=> (P12 | P21))  &  ~B11")

""" [Figure 7.16]
Propositional Logic Forward Chaining example
"""
horn_clauses_KB = PropDefiniteKB()
Peter Norvig's avatar
Peter Norvig a validé
for s in "P==>Q; (L&M)==>P; (B&L)==>M; (A&P)==>L; (A&B)==>L; A;B".split(';'):
# ______________________________________________________________________________
# DPLL-Satisfiable [Figure 7.17]
def dpll_satisfiable(s):
    """Check satisfiability of a propositional sentence.
    This differs from the book code in two ways: (1) it returns a model
    rather than True when it succeeds; this is more useful. (2) The
    function find_pure_symbol is passed a list of unknown clauses, rather
Peter Norvig's avatar
Peter Norvig a validé
    than a list of all clauses and the model; this is more efficient."""
    clauses = conjuncts(to_cnf(s))
    symbols = prop_symbols(s)
    return dpll(clauses, symbols, {})
def dpll(clauses, symbols, model):
    """See if the clauses are true in a partial model."""
MircoT's avatar
MircoT a validé
    unknown_clauses = []  # clauses with an unknown truth value
MircoT's avatar
MircoT a validé
        val = pl_true(c, model)
        if val is False:
        if val is not True:
            unknown_clauses.append(c)
    if not unknown_clauses:
        return model
    P, value = find_pure_symbol(symbols, unknown_clauses)
    if P:
        return dpll(clauses, removeall(P, symbols), extend(model, P, value))
    P, value = find_unit_clause(clauses, model)
    if P:
        return dpll(clauses, removeall(P, symbols), extend(model, P, value))
    if not symbols:
        raise TypeError("Argument should be of the type Expr.")
    P, symbols = symbols[0], symbols[1:]
    return (dpll(clauses, symbols, extend(model, P, True)) or
            dpll(clauses, symbols, extend(model, P, False)))
def find_pure_symbol(symbols, clauses):
    """Find a symbol and its value if it appears only as a positive literal
    (or only as a negative) in clauses.
    >>> find_pure_symbol([A, B, C], [A|~B,~B|~C,C|A])
    (A, True)
    """
    for s in symbols:
        found_pos, found_neg = False, False
        for c in clauses:
MircoT's avatar
MircoT a validé
            if not found_pos and s in disjuncts(c):
                found_pos = True
            if not found_neg and ~s in disjuncts(c):
                found_neg = True
        if found_pos != found_neg:
            return s, found_pos
def find_unit_clause(clauses, model):
withal's avatar
withal a validé
    """Find a forced assignment if possible from a clause with only 1
    variable not bound in the model.
    >>> find_unit_clause([A|B|C, B|~C, ~A|~B], {A:True})
    (B, False)
    """
    for clause in clauses:
withal's avatar
withal a validé
        P, value = unit_clause_assign(clause, model)
MircoT's avatar
MircoT a validé
        if P:
            return P, value
withal's avatar
withal a validé
def unit_clause_assign(clause, model):
    """Return a single variable/value pair that makes clause true in
    the model, if possible.
    >>> unit_clause_assign(A|B|C, {A:True})
    (None, None)
    >>> unit_clause_assign(B|~C, {A:True})
    (None, None)
    >>> unit_clause_assign(~A|~B, {A:True})
    (B, False)
    """
    P, value = None, None
    for literal in disjuncts(clause):
        sym, positive = inspect_literal(literal)
        if sym in model:
            if model[sym] == positive:
                return None, None  # clause already True
        elif P:
            return None, None      # more than 1 unbound variable
        else:
            P, value = sym, positive
    return P, value

withal's avatar
withal a validé
def inspect_literal(literal):
    """The symbol in this literal, and the value it should take to
    make the literal true.
    >>> inspect_literal(P)
    (P, True)
    >>> inspect_literal(~P)
    (P, False)
withal's avatar
withal a validé
        return literal.args[0], False
withal's avatar
withal a validé
        return literal, True
# ______________________________________________________________________________
def WalkSAT(clauses, p=0.5, max_flips=10000):
Chipe1's avatar
Chipe1 a validé
    """Checks for satisfiability of all clauses by randomly flipping values of variables
    """
    # Set of all symbols in all clauses
Chipe1's avatar
Chipe1 a validé
    symbols = set(sym for clause in clauses for sym in prop_symbols(clause))
MircoT's avatar
MircoT a validé
    # model is a random assignment of true/false to the symbols in clauses
    model = {s: random.choice([True, False]) for s in symbols}
    for i in range(max_flips):
        satisfied, unsatisfied = [], []
        for clause in clauses:
Chipe1's avatar
Chipe1 a validé
            (satisfied if pl_true(clause, model) else unsatisfied).append(clause)
MircoT's avatar
MircoT a validé
        if not unsatisfied:  # if model satisfies all the clauses
            return model
        clause = random.choice(unsatisfied)
        if probability(p):
            sym = random.choice(prop_symbols(clause))
        else:
MircoT's avatar
MircoT a validé
            # Flip the symbol in clause that maximizes number of sat. clauses
Chipe1's avatar
Chipe1 a validé
            def sat_count(sym):
                # Return the the number of clauses satisfied after flipping the symbol.
Chipe1's avatar
Chipe1 a validé
                model[sym] = not model[sym]
                count = len([clause for clause in clauses if pl_true(clause, model)])
                model[sym] = not model[sym]
                return count
Peter Norvig's avatar
Peter Norvig a validé
            sym = argmax(prop_symbols(clause), key=sat_count)
    # If no solution is found within the flip limit, we return failure
Chipe1's avatar
Chipe1 a validé
    return None
# ______________________________________________________________________________
withal's avatar
withal a validé
class HybridWumpusAgent(agents.Agent):
    """An agent for the wumpus world that does logical inference. [Figure 7.20]"""
        raise NotImplementedError
withal's avatar
withal a validé
def plan_route(current, goals, allowed):
    raise NotImplementedError
# ______________________________________________________________________________
withal's avatar
withal a validé
def SAT_plan(init, transition, goal, t_max, SAT_solver=dpll_satisfiable):
C.G.Vedant's avatar
C.G.Vedant a validé
    """Converts a planning problem to Satisfaction problem by translating it to a cnf sentence.
    # Functions used by SAT_plan
C.G.Vedant's avatar
C.G.Vedant a validé
    def translate_to_SAT(init, transition, goal, time):
        clauses = []
        states = [state for state in transition]
        # Symbol claiming state s at time t
        state_counter = itertools.count()
C.G.Vedant's avatar
C.G.Vedant a validé
        for s in states:
            for t in range(time+1):
                state_sym[s, t] = Expr("State_{}".format(next(state_counter)))
        # Add initial state axiom
C.G.Vedant's avatar
C.G.Vedant a validé
        clauses.append(state_sym[init, 0])

        # Add goal state axiom
C.G.Vedant's avatar
C.G.Vedant a validé
        clauses.append(state_sym[goal, time])

        # All possible transitions
        transition_counter = itertools.count()
C.G.Vedant's avatar
C.G.Vedant a validé
        for s in states:
            for action in transition[s]:
                s_ = transition[s][action]
                for t in range(time):
                    # Action 'action' taken from state 's' at time 't' to reach 's_'
                    action_sym[s, action, t] = Expr(
                        "Transition_{}".format(next(transition_counter)))
C.G.Vedant's avatar
C.G.Vedant a validé

                    # Change the state from s to s_
Peter Norvig's avatar
Peter Norvig a validé
                    clauses.append(action_sym[s, action, t] |'==>'| state_sym[s, t])
                    clauses.append(action_sym[s, action, t] |'==>'| state_sym[s_, t + 1])
        # Allow only one state at any time
C.G.Vedant's avatar
C.G.Vedant a validé
        for t in range(time+1):
            # must be a state at any time
            clauses.append(associate('|', [state_sym[s, t] for s in states]))
C.G.Vedant's avatar
C.G.Vedant a validé

            for s in states:
                for s_ in states[states.index(s) + 1:]:
                    # for each pair of states s, s_ only one is possible at time t
C.G.Vedant's avatar
C.G.Vedant a validé
                    clauses.append((~state_sym[s, t]) | (~state_sym[s_, t]))

        # Restrict to one transition per timestep
C.G.Vedant's avatar
C.G.Vedant a validé
        for t in range(time):
            # list of possible transitions at time t
C.G.Vedant's avatar
C.G.Vedant a validé
            transitions_t = [tr for tr in action_sym if tr[2] == t]

            # make sure at least one of the transitions happens
            clauses.append(associate('|', [action_sym[tr] for tr in transitions_t]))
C.G.Vedant's avatar
C.G.Vedant a validé

            for tr in transitions_t:
                for tr_ in transitions_t[transitions_t.index(tr) + 1:]:
                    # there cannot be two transitions tr and tr_ at time t
                    clauses.append(~action_sym[tr] | ~action_sym[tr_])
        # Combine the clauses to form the cnf
C.G.Vedant's avatar
C.G.Vedant a validé
        return associate('&', clauses)

    def extract_solution(model):
        true_transitions = [t for t in action_sym if model[action_sym[t]]]
        # Sort transitions based on time, which is the 3rd element of the tuple
        true_transitions.sort(key=lambda x: x[2])
        return [action for s, action, time in true_transitions]
    # Body of SAT_plan algorithm
withal's avatar
withal a validé
    for t in range(t_max):
        # dictionaries to help extract the solution from model
        state_sym = {}
        action_sym = {}

withal's avatar
withal a validé
        cnf = translate_to_SAT(init, transition, goal, t)
        model = SAT_solver(cnf)
        if model is not False:
            return extract_solution(model)
    return None

# ______________________________________________________________________________
def unify(x, y, s):
    """Unify expressions x,y with substitution s; return a substitution that
    would make x,y equal, or None if x,y can not unify. x and y can be
    variables (e.g. Expr('x')), constants, lists, or Exprs. [Figure 9.1]"""
    if s is None:
        return None
    elif x == y:
        return s
    elif is_variable(x):
        return unify_var(x, y, s)
    elif is_variable(y):
        return unify_var(y, x, s)
    elif isinstance(x, Expr) and isinstance(y, Expr):
        return unify(x.args, y.args, unify(x.op, y.op, s))
    elif isinstance(x, str) or isinstance(y, str):
        return None
    elif issequence(x) and issequence(y) and len(x) == len(y):
MircoT's avatar
MircoT a validé
        if not x:
            return s
        return unify(x[1:], y[1:], unify(x[0], y[0], s))
    else:
        return None

    """A variable is an Expr with no args and a lowercase symbol as the op."""
Peter Norvig's avatar
Peter Norvig a validé
    return isinstance(x, Expr) and not x.args and x.op[0].islower()
def unify_var(var, x, s):
    if var in s:
        return unify(s[var], x, s)
C.G.Vedant's avatar
C.G.Vedant a validé
    elif x in s:
        return unify(var, s[x], s)
    elif occur_check(var, x, s):
        return None
    else:
        return extend(s, var, x)

def occur_check(var, x, s):
    """Return true if variable var occurs anywhere in x
    (or in subst(s, x), if s has a binding for x)."""
    elif is_variable(x) and x in s:
        return occur_check(var, s[x], s)
        return (occur_check(var, x.op, s) or
                occur_check(var, x.args, s))
withal's avatar
withal a validé
    elif isinstance(x, (list, tuple)):
norvig's avatar
norvig a validé
        return first(e for e in x if occur_check(var, e, s))
    else:
        return False
    """Copy the substitution s and extend it by setting var to val; return copy."""
    s2 = s.copy()
    s2[var] = val
    return s2
def subst(s, x):
    """Substitute the substitution s into the expression x.
    >>> subst({x: 42, y:0}, F(x) + y)
    (F(42) + 0)
    """
withal's avatar
withal a validé
    if isinstance(x, list):
        return [subst(s, xi) for xi in x]
withal's avatar
withal a validé
    elif isinstance(x, tuple):
        return tuple([subst(s, xi) for xi in x])
withal's avatar
withal a validé
    elif not isinstance(x, Expr):
withal's avatar
withal a validé
    elif is_var_symbol(x.op):
withal's avatar
withal a validé
    else:
        return Expr(x.op, *[subst(s, arg) for arg in x.args])
    """A simple forward-chaining algorithm. [Figure 9.3]"""
    while new is not None:
        new = []
        for rule in KB:
            p, q = parse_definite_clause(standardize_variables(rule))
            for p_ in random.KB.clauses:
                if p != p_:
                    for theta in (subst(theta, p) == subst(theta, p_)):
                        q_ = subst(theta, q)
                        if  not unify(q_,KB.sentence in KB) or not unify(q_, new):
                            new.append(q_)
                            phi = unify(q_,alpha)
                            if phi is not None:
                                return phi
        KB.tell(new)
    return None
withal's avatar
withal a validé
def standardize_variables(sentence, dic=None):
Peter Norvig's avatar
Peter Norvig a validé
    """Replace all the variables in sentence with new variables."""
MircoT's avatar
MircoT a validé
    if dic is None:
        dic = {}
    if not isinstance(sentence, Expr):
withal's avatar
withal a validé
    elif is_var_symbol(sentence.op):
        if sentence in dic:
            return dic[sentence]
        else:
            v = Expr('v_{}'.format(next(standardize_variables.counter)))
            dic[sentence] = v
            return v
withal's avatar
withal a validé
    else:
        return Expr(sentence.op,
withal's avatar
withal a validé
                    *[standardize_variables(a, dic) for a in sentence.args])
withal's avatar
withal a validé
standardize_variables.counter = itertools.count()
# ______________________________________________________________________________
class FolKB(KB):
    """A knowledge base consisting of first-order definite clauses.
    >>> kb0 = FolKB([expr('Farmer(Mac)'), expr('Rabbit(Pete)'),
    ...              expr('(Rabbit(r) & Farmer(f)) ==> Hates(f, r)')])
    >>> kb0.tell(expr('Rabbit(Flopsie)'))
    >>> kb0.retract(expr('Rabbit(Pete)'))
    >>> kb0.ask(expr('Hates(Mac, x)'))[x]
    Flopsie
    >>> kb0.ask(expr('Wife(Pete, x)'))
    False
withal's avatar
withal a validé
    def __init__(self, initial_clauses=[]):
MircoT's avatar
MircoT a validé
        self.clauses = []  # inefficient: no indexing
        for clause in initial_clauses:
            self.tell(clause)

    def tell(self, sentence):
        if is_definite_clause(sentence):
            self.clauses.append(sentence)
        else:
            raise Exception("Not a definite clause: {}".format(sentence))

    def ask_generator(self, query):
withal's avatar
withal a validé
        return fol_bc_ask(self, query)

    def retract(self, sentence):
        self.clauses.remove(sentence)

withal's avatar
withal a validé
    def fetch_rules_for_goal(self, goal):
        return self.clauses

spottedMetal's avatar
spottedMetal a validé
test_kb = FolKB(
    map(expr, ['Farmer(Mac)',
               'Rabbit(Pete)',
               'Mother(MrsMac, Mac)',
               'Mother(MrsRabbit, Pete)',
               '(Rabbit(r) & Farmer(f)) ==> Hates(f, r)',
               '(Mother(m, c)) ==> Loves(m, c)',
               '(Mother(m, r) & Rabbit(r)) ==> Rabbit(m)',
               '(Farmer(f)) ==> Human(f)',
               # Note that this order of conjuncts
               # would result in infinite recursion:
               # '(Human(h) & Mother(m, h)) ==> Human(m)'
               '(Mother(m, h) & Human(h)) ==> Human(m)'
               ]))
             ['(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)',  # noqa
MircoT's avatar
MircoT a validé
              'Owns(Nono, M1)',
              'Missile(M1)',
              '(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)',
              'Missile(x) ==> Weapon(x)',
              'Enemy(x, America) ==> Hostile(x)',
              'American(West)',
              'Enemy(Nono, America)'
              ]))
withal's avatar
withal a validé
def fol_bc_ask(KB, query):
    """A simple backward-chaining algorithm for first-order logic. [Figure 9.6]
    KB should be an instance of FolKB, and query an atomic sentence."""
withal's avatar
withal a validé
    return fol_bc_or(KB, query, {})

withal's avatar
withal a validé
def fol_bc_or(KB, goal, theta):
    for rule in KB.fetch_rules_for_goal(goal):
        lhs, rhs = parse_definite_clause(standardize_variables(rule))
        for theta1 in fol_bc_and(KB, lhs, unify(rhs, goal, theta)):
            yield theta1

withal's avatar
withal a validé
def fol_bc_and(KB, goals, theta):
    if theta is None:
        pass
    elif not goals:
        yield theta
withal's avatar
withal a validé
    else:
        first, rest = goals[0], goals[1:]
        for theta1 in fol_bc_or(KB, subst(theta, first), theta):
            for theta2 in fol_bc_and(KB, rest, theta1):
                yield theta2
# ______________________________________________________________________________

# Example application (not in the book).
# You can use the Expr class to do symbolic differentiation.  This used to be
# a part of AI; now it is considered a separate field, Symbolic Algebra.

def diff(y, x):
    """Return the symbolic derivative, dy/dx, as an Expr.
    However, you probably want to simplify the results with simp.
    >>> diff(x * x, x)
    ((x * 1) + (x * 1))
    """
MircoT's avatar
MircoT a validé
    if y == x:
Peter Norvig's avatar
Peter Norvig a validé
        return 1
MircoT's avatar
MircoT a validé
    elif not y.args:
Peter Norvig's avatar
Peter Norvig a validé
        return 0
    else:
        u, op, v = y.args[0], y.op, y.args[-1]
MircoT's avatar
MircoT a validé
        if op == '+':
            return diff(u, x) + diff(v, x)
        elif op == '-' and len(y.args) == 1:
MircoT's avatar
MircoT a validé
            return -diff(u, x)
        elif op == '-':
            return diff(u, x) - diff(v, x)
        elif op == '*':
            return u * diff(v, x) + v * diff(u, x)
        elif op == '/':
            return (v * diff(u, x) - u * diff(v, x)) / (v * v)
        elif op == '**' and isnumber(x.op):
            return (v * u ** (v - 1) * diff(u, x))
MircoT's avatar
MircoT a validé
        elif op == '**':
            return (v * u ** (v - 1) * diff(u, x) +
                    u ** v * Expr('log')(u) * diff(v, x))
MircoT's avatar
MircoT a validé
        elif op == 'log':
            return diff(u, x) / u
        else:
            raise ValueError("Unknown op: {} in diff({}, {})".format(op, y, x))
    """Simplify the expression x."""
    if isnumber(x) or not x.args:
MircoT's avatar
MircoT a validé
        return x
MircoT's avatar
MircoT a validé
    args = list(map(simp, x.args))
    u, op, v = args[0], x.op, args[-1]
withal's avatar
withal a validé
    if op == '+':
Peter Norvig's avatar
Peter Norvig a validé
        if v == 0:
MircoT's avatar
MircoT a validé
            return u
Peter Norvig's avatar
Peter Norvig a validé
        if u == 0:
MircoT's avatar
MircoT a validé
            return v
        if u == v:
Peter Norvig's avatar
Peter Norvig a validé
            return 2 * u
MircoT's avatar
MircoT a validé
        if u == -v or v == -u:
Peter Norvig's avatar
Peter Norvig a validé
            return 0
withal's avatar
withal a validé
    elif op == '-' and len(args) == 1:
MircoT's avatar
MircoT a validé
        if u.op == '-' and len(u.args) == 1:
            return u.args[0]  # --y ==> y
withal's avatar
withal a validé
    elif op == '-':
Peter Norvig's avatar
Peter Norvig a validé
        if v == 0:
MircoT's avatar
MircoT a validé
            return u
Peter Norvig's avatar
Peter Norvig a validé
        if u == 0:
MircoT's avatar
MircoT a validé
            return -v
        if u == v:
Peter Norvig's avatar
Peter Norvig a validé
            return 0
MircoT's avatar
MircoT a validé
        if u == -v or v == -u:
Peter Norvig's avatar
Peter Norvig a validé
            return 0
withal's avatar
withal a validé
    elif op == '*':
Peter Norvig's avatar
Peter Norvig a validé
        if u == 0 or v == 0:
            return 0
        if u == 1:
MircoT's avatar
MircoT a validé
            return v
Peter Norvig's avatar
Peter Norvig a validé
        if v == 1:
MircoT's avatar
MircoT a validé
            return u
        if u == v:
            return u ** 2
withal's avatar
withal a validé
    elif op == '/':
Peter Norvig's avatar
Peter Norvig a validé
        if u == 0:
            return 0
        if v == 0:
MircoT's avatar
MircoT a validé
            return Expr('Undefined')
        if u == v:
Peter Norvig's avatar
Peter Norvig a validé
            return 1
MircoT's avatar
MircoT a validé
        if u == -v or v == -u:
Peter Norvig's avatar
Peter Norvig a validé
            return 0
withal's avatar
withal a validé
    elif op == '**':
Peter Norvig's avatar
Peter Norvig a validé
        if u == 0:
            return 0
        if v == 0:
            return 1
        if u == 1:
            return 1
        if v == 1:
MircoT's avatar
MircoT a validé
            return u
withal's avatar
withal a validé
    elif op == 'log':
Peter Norvig's avatar
Peter Norvig a validé
        if u == 1:
            return 0
MircoT's avatar
MircoT a validé
    else:
        raise ValueError("Unknown op: " + op)
    # If we fall through to here, we can not simplify further
    """Differentiate and then simplify."""
withal's avatar
withal a validé
    return simp(diff(y, x))