"""Statistical Language Processing tools. (Chapter 22) We define Unigram and Ngram text models, use them to generate random text, and show the Viterbi algorithm for segmentatioon of letters into words. Then we show a very simple Information Retrieval system, and an example working on a tiny sample of Unix manual pages.""" from utils import argmin from learning import CountingProbDist import search from math import log, exp from collections import defaultdict import heapq import re import os class UnigramTextModel(CountingProbDist): """This is a discrete probability distribution over words, so you can add, sample, or get P[word], just like with CountingProbDist. You can also generate a random text n words long with P.samples(n)""" def samples(self, n): "Return a string of n words, random according to the model." return ' '.join(self.sample() for i in range(n)) class NgramTextModel(CountingProbDist): """This is a discrete probability distribution over n-tuples of words. You can add, sample or get P[(word1, ..., wordn)]. The method P.samples(n) builds up an n-word sequence; P.add and P.add_sequence add data.""" def __init__(self, n, observation_sequence=[], default=0): # In addition to the dictionary of n-tuples, cond_prob is a # mapping from (w1, ..., wn-1) to P(wn | w1, ... wn-1) CountingProbDist.__init__(self, default=default) self.n = n self.cond_prob = defaultdict() self.add_sequence(observation_sequence) # __getitem__, top, sample inherited from CountingProbDist # Note they deal with tuples, not strings, as inputs def add(self, ngram): """Count 1 for P[(w1, ..., wn)] and for P(wn | (w1, ..., wn-1)""" CountingProbDist.add(self, ngram) if ngram[:-1] not in self.cond_prob: self.cond_prob[ngram[:-1]] = CountingProbDist() self.cond_prob[ngram[:-1]].add(ngram[-1]) def add_sequence(self, words): """Add each of the tuple words[i:i+n], using a sliding window. Prefix some copies of the empty word, '', to make the start work.""" n = self.n words = ['', ] * (n - 1) + words for i in range(len(words) - n + 1): self.add(tuple(words[i:i + n])) def samples(self, nwords): """Build up a random sample of text nwords words long, using the conditional probability given the n-1 preceding words.""" n = self.n nminus1gram = ('',) * (n-1) output = [] for i in range(nwords): if nminus1gram not in self.cond_prob: nminus1gram = ('',) * (n-1) # Cannot continue, so restart. wn = self.cond_prob[nminus1gram].sample() output.append(wn) nminus1gram = nminus1gram[1:] + (wn,) return ' '.join(output) # ______________________________________________________________________________ def viterbi_segment(text, P): """Find the best segmentation of the string of characters, given the UnigramTextModel P.""" # best[i] = best probability for text[0:i] # words[i] = best word ending at position i n = len(text) words = [''] + list(text) best = [1.0] + [0.0] * n # Fill in the vectors best, words via dynamic programming for i in range(n+1): for j in range(0, i): w = text[j:i] if P[w] * best[i - len(w)] >= best[i]: best[i] = P[w] * best[i - len(w)] words[i] = w # Now recover the sequence of best words sequence = [] i = len(words) - 1 while i > 0: sequence[0:0] = [words[i]] i = i - len(words[i]) # Return sequence of best words and overall probability return sequence, best[-1] # ______________________________________________________________________________ # TODO(tmrts): Expose raw index class IRSystem: """A very simple Information Retrieval System, as discussed in Sect. 23.2. The constructor s = IRSystem('the a') builds an empty system with two stopwords. Next, index several documents with s.index_document(text, url). Then ask queries with s.query('query words', n) to retrieve the top n matching documents. Queries are literal words from the document, except that stopwords are ignored, and there is one special syntax: The query "learn: man cat", for example, runs "man cat" and indexes it.""" def __init__(self, stopwords='the a of'): """Create an IR System. Optionally specify stopwords.""" # index is a map of {word: {docid: count}}, where docid is an int, # indicating the index into the documents list. self.index = defaultdict(lambda: defaultdict(int)) self.stopwords = set(words(stopwords)) self.documents = [] def index_collection(self, filenames): "Index a whole collection of files." prefix = os.path.dirname(__file__) for filename in filenames: self.index_document(open(filename).read(), os.path.relpath(filename, prefix)) def index_document(self, text, url): "Index the text of a document." # For now, use first line for title title = text[:text.index('\n')].strip() docwords = words(text) docid = len(self.documents) self.documents.append(Document(title, url, len(docwords))) for word in docwords: if word not in self.stopwords: self.index[word][docid] += 1 def query(self, query_text, n=10): """Return a list of n (score, docid) pairs for the best matches. Also handle the special syntax for 'learn: command'.""" if query_text.startswith("learn:"): doctext = os.popen(query_text[len("learn:"):], 'r').read() self.index_document(doctext, query_text) return [] qwords = [w for w in words(query_text) if w not in self.stopwords] shortest = argmin(qwords, key=lambda w: len(self.index[w])) docids = self.index[shortest] return heapq.nlargest(n, ((self.total_score(qwords, docid), docid) for docid in docids)) def score(self, word, docid): """Compute a score for this word on the document with this docid.""" # There are many options; here we take a very simple approach return (log(1 + self.index[word][docid]) / log(1 + self.documents[docid].nwords)) def total_score(self, words, docid): """Compute the sum of the scores of these words on the document with this docid.""" return sum(self.score(word, docid) for word in words) def present(self, results): """Present the results as a list.""" for (score, docid) in results: doc = self.documents[docid] print( ("{:5.2}|{:25} | {}".format(100 * score, doc.url, doc.title[:45].expandtabs()))) def present_results(self, query_text, n=10): """Get results for the query and present them.""" self.present(self.query(query_text, n)) class UnixConsultant(IRSystem): """A trivial IR system over a small collection of Unix man pages.""" def __init__(self): IRSystem.__init__(self, stopwords="how do i the a of") import os aima_root = os.path.dirname(__file__) mandir = os.path.join(aima_root, 'aima-data/MAN/') man_files = [mandir + f for f in os.listdir(mandir) if f.endswith('.txt')] self.index_collection(man_files) class Document: """Metadata for a document: title and url; maybe add others later.""" def __init__(self, title, url, nwords): self.title = title self.url = url self.nwords = nwords def words(text, reg=re.compile('[a-z0-9]+')): """Return a list of the words in text, ignoring punctuation and converting everything to lowercase (to canonicalize). >>> words("``EGAD!'' Edgar cried.") ['egad', 'edgar', 'cried'] """ return reg.findall(text.lower()) def canonicalize(text): """Return a canonical text: only lowercase letters and blanks. >>> canonicalize("``EGAD!'' Edgar cried.") 'egad edgar cried' """ return ' '.join(words(text)) # ______________________________________________________________________________ # Example application (not in book): decode a cipher. # A cipher is a code that substitutes one character for another. # A shift cipher is a rotation of the letters in the alphabet, # such as the famous rot13, which maps A to N, B to M, etc. alphabet = 'abcdefghijklmnopqrstuvwxyz' # Encoding def shift_encode(plaintext, n): """Encode text with a shift cipher that moves each letter up by n letters. >>> shift_encode('abc z', 1) 'bcd a' """ return encode(plaintext, alphabet[n:] + alphabet[:n]) def rot13(plaintext): """Encode text by rotating letters by 13 spaces in the alphabet. >>> rot13('hello') 'uryyb' >>> rot13(rot13('hello')) 'hello' """ return shift_encode(plaintext, 13) def translate(plaintext, function): """Translate chars of a plaintext with the given function.""" result = "" for char in plaintext: result += function(char) return result def maketrans(from_, to_): """Create a translation table and return the proper function.""" trans_table = {} for n, char in enumerate(from_): trans_table[char] = to_[n] return lambda char: trans_table.get(char, char) def encode(plaintext, code): """Encodes text, using a code which is a permutation of the alphabet.""" trans = maketrans(alphabet + alphabet.upper(), code + code.upper()) return translate(plaintext, trans) def bigrams(text): """Return a list of pairs in text (a sequence of letters or words). >>> bigrams('this') ['th', 'hi', 'is'] >>> bigrams(['this', 'is', 'a', 'test']) [['this', 'is'], ['is', 'a'], ['a', 'test']] """ return [text[i:i + 2] for i in range(len(text) - 1)] # Decoding a Shift (or Caesar) Cipher class ShiftDecoder: """There are only 26 possible encodings, so we can try all of them, and return the one with the highest probability, according to a bigram probability distribution.""" def __init__(self, training_text): training_text = canonicalize(training_text) self.P2 = CountingProbDist(bigrams(training_text), default=1) def score(self, plaintext): """Return a score for text based on how common letters pairs are.""" s = 1.0 for bi in bigrams(plaintext): s = s * self.P2[bi] return s def decode(self, ciphertext): """Return the shift decoding of text with the best score.""" list_ = [(self.score(shift), shift) for shift in all_shifts(ciphertext)] return max(list_, key=lambda elm: elm[0])[1] def all_shifts(text): """Return a list of all 26 possible encodings of text by a shift cipher.""" yield from (shift_encode(text, i) for i, _ in enumerate(alphabet)) # Decoding a General Permutation Cipher class PermutationDecoder: """This is a much harder problem than the shift decoder. There are 26! permutations, so we can't try them all. Instead we have to search. We want to search well, but there are many things to consider: Unigram probabilities (E is the most common letter); Bigram probabilities (TH is the most common bigram); word probabilities (I and A are the most common one-letter words, etc.); etc. We could represent a search state as a permutation of the 26 letters, and alter the solution through hill climbing. With an initial guess based on unigram probabilities, this would probably fare well. However, I chose instead to have an incremental representation. A state is represented as a letter-to-letter map; for example {'z': 'e'} to represent that 'z' will be translated to 'e'. """ def __init__(self, training_text, ciphertext=None): self.Pwords = UnigramTextModel(words(training_text)) self.P1 = UnigramTextModel(training_text) # By letter self.P2 = NgramTextModel(2, training_text) # By letter pair def decode(self, ciphertext): """Search for a decoding of the ciphertext.""" self.ciphertext = ciphertext problem = PermutationDecoderProblem(decoder=self) return search.best_first_tree_search( problem, lambda node: self.score(node.state)) def score(self, code): """Score is product of word scores, unigram scores, and bigram scores. This can get very small, so we use logs and exp.""" text = permutation_decode(self.ciphertext, code) logP = (sum([log(self.Pwords[word]) for word in words(text)]) + sum([log(self.P1[c]) for c in text]) + sum([log(self.P2[b]) for b in bigrams(text)])) return exp(logP) class PermutationDecoderProblem(search.Problem): def __init__(self, initial=None, goal=None, decoder=None): self.initial = initial or {} self.decoder = decoder def actions(self, state): # Find the best p, plainchar = max([(self.decoder.P1[c], c) for c in alphabet if c not in state]) succs = [extend(state, plainchar, cipherchar)] # ???? # noqa def goal_test(self, state): """We're done when we get all 26 letters assigned.""" return len(state) >= 26