"""Search (Chapters 3-4) The way to use this code is to subclass Problem to create a class of problems, then create problem instances and solve them with calls to the various search functions.""" from . utils import * import math import random import sys import time import bisect import string #______________________________________________________________________________ class Problem(object): """The abstract class for a formal problem. You should subclass this and implement the methods actions and result, and possibly __init__, goal_test, and path_cost. Then you will create instances of your subclass and solve them with the various search functions.""" def __init__(self, initial, goal=None): """The constructor specifies the initial state, and possibly a goal state, if there is a unique goal. Your subclass's constructor can add other arguments.""" self.initial = initial self.goal = goal def actions(self, state): """Return the actions that can be executed in the given state. The result would typically be a list, but if there are many actions, consider yielding them one at a time in an iterator, rather than building them all at once.""" raise NotImplementedError def result(self, state, action): """Return the state that results from executing the given action in the given state. The action must be one of self.actions(state).""" raise NotImplementedError def goal_test(self, state): """Return True if the state is a goal. The default method compares the state to self.goal, as specified in the constructor. Override this method if checking against a single self.goal is not enough.""" return state == self.goal def path_cost(self, c, state1, action, state2): """Return the cost of a solution path that arrives at state2 from state1 via action, assuming cost c to get up to state1. If the problem is such that the path doesn't matter, this function will only look at state2. If the path does matter, it will consider c and maybe state1 and action. The default method costs 1 for every step in the path.""" return c + 1 def value(self, state): """For optimization problems, each state has a value. Hill-climbing and related algorithms try to maximize this value.""" raise NotImplementedError #______________________________________________________________________________ class Node: """A node in a search tree. Contains a pointer to the parent (the node that this is a successor of) and to the actual state for this node. Note that if a state is arrived at by two paths, then there are two nodes with the same state. Also includes the action that got us to this state, and the total path_cost (also known as g) to reach the node. Other functions may add an f and h value; see best_first_graph_search and astar_search for an explanation of how the f and h values are handled. You will not need to subclass this class.""" def __init__(self, state, parent=None, action=None, path_cost=0): "Create a search tree Node, derived from a parent by an action." update(self, state=state, parent=parent, action=action, path_cost=path_cost, depth=0) if parent: self.depth = parent.depth + 1 def __repr__(self): return "" % (self.state,) def expand(self, problem): "List the nodes reachable in one step from this node." return [self.child_node(problem, action) for action in problem.actions(self.state)] def child_node(self, problem, action): "Fig. 3.10" next = problem.result(self.state, action) return Node(next, self, action, problem.path_cost(self.path_cost, self.state, action, next)) def solution(self): "Return the sequence of actions to go from the root to this node." return [node.action for node in self.path()[1:]] def path(self): "Return a list of nodes forming the path from the root to this node." node, path_back = self, [] while node: path_back.append(node) node = node.parent return list(reversed(path_back)) # We want for a queue of nodes in breadth_first_search or # astar_search to have no duplicated states, so we treat nodes # with the same state as equal. [Problem: this may not be what you # want in other contexts.] def __eq__(self, other): return isinstance(other, Node) and self.state == other.state def __hash__(self): return hash(self.state) #______________________________________________________________________________ class SimpleProblemSolvingAgentProgram: """Abstract framework for a problem-solving agent. [Fig. 3.1]""" def __init__(self, initial_state=None): update(self, state=initial_state, seq=[]) def __call__(self, percept): self.state = self.update_state(self.state, percept) if not self.seq: goal = self.formulate_goal(self.state) problem = self.formulate_problem(self.state, goal) self.seq = self.search(problem) if not self.seq: return None return self.seq.pop(0) def update_state(self, percept): raise NotImplementedError def formulate_goal(self, state): raise NotImplementedError def formulate_problem(self, state, goal): raise NotImplementedError def search(self, problem): raise NotImplementedError #______________________________________________________________________________ # Uninformed Search algorithms def tree_search(problem, frontier): """Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. Don't worry about repeated paths to a state. [Fig. 3.7]""" frontier.append(Node(problem.initial)) while frontier: node = frontier.pop() if problem.goal_test(node.state): return node frontier.extend(node.expand(problem)) return None def graph_search(problem, frontier): """Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. If two paths reach a state, only use the first one. [Fig. 3.7]""" frontier.append(Node(problem.initial)) explored = set() while frontier: node = frontier.pop() if problem.goal_test(node.state): return node explored.add(node.state) frontier.extend(child for child in node.expand(problem) if child.state not in explored and child not in frontier) return None def breadth_first_tree_search(problem): "Search the shallowest nodes in the search tree first." return tree_search(problem, FIFOQueue()) def depth_first_tree_search(problem): "Search the deepest nodes in the search tree first." return tree_search(problem, Stack()) def depth_first_graph_search(problem): "Search the deepest nodes in the search tree first." return graph_search(problem, Stack()) def breadth_first_search(problem): "[Fig. 3.11]" node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = FIFOQueue() frontier.append(node) explored = set() while frontier: node = frontier.pop() explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: if problem.goal_test(child.state): return child frontier.append(child) return None def best_first_graph_search(problem, f): """Search the nodes with the lowest f scores first. You specify the function f(node) that you want to minimize; for example, if f is a heuristic estimate to the goal, then we have greedy best first search; if f is node.depth then we have breadth-first search. There is a subtlety: the line "f = memoize(f, 'f')" means that the f values will be cached on the nodes as they are computed. So after doing a best first search you can examine the f values of the path returned.""" f = memoize(f, 'f') node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = PriorityQueue(min, f) frontier.append(node) explored = set() while frontier: node = frontier.pop() if problem.goal_test(node.state): return node explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: frontier.append(child) elif child in frontier: incumbent = frontier[child] if f(child) < f(incumbent): del frontier[incumbent] frontier.append(child) return None def uniform_cost_search(problem): "[Fig. 3.14]" return best_first_graph_search(problem, lambda node: node.path_cost) def depth_limited_search(problem, limit=50): "[Fig. 3.17]" def recursive_dls(node, problem, limit): if problem.goal_test(node.state): return node elif node.depth == limit: return 'cutoff' else: cutoff_occurred = False for child in node.expand(problem): result = recursive_dls(child, problem, limit) if result == 'cutoff': cutoff_occurred = True elif result is not None: return result return ('cutoff' if cutoff_occurred else None) # Body of depth_limited_search: return recursive_dls(Node(problem.initial), problem, limit) def iterative_deepening_search(problem): "[Fig. 3.18]" for depth in range(sys.maxsize): result = depth_limited_search(problem, depth) if result != 'cutoff': return result #______________________________________________________________________________ # Informed (Heuristic) Search greedy_best_first_graph_search = best_first_graph_search # Greedy best-first search is accomplished by specifying f(n) = h(n). def astar_search(problem, h=None): """A* search is best-first graph search with f(n) = g(n)+h(n). You need to specify the h function when you call astar_search, or else in your Problem subclass.""" h = memoize(h or problem.h, 'h') return best_first_graph_search(problem, lambda n: n.path_cost + h(n)) #______________________________________________________________________________ # Other search algorithms def recursive_best_first_search(problem, h=None): "[Fig. 3.26]" h = memoize(h or problem.h, 'h') def RBFS(problem, node, flimit): if problem.goal_test(node.state): return node, 0 # (The second value is immaterial) successors = node.expand(problem) if len(successors) == 0: return None, infinity for s in successors: s.f = max(s.path_cost + h(s), node.f) while True: # Order by lowest f value successors.sort(lambda x, y: cmp(x.f, y.f)) best = successors[0] if best.f > flimit: return None, best.f if len(successors) > 1: alternative = successors[1].f else: alternative = infinity result, best.f = RBFS(problem, best, min(flimit, alternative)) if result is not None: return result, best.f node = Node(problem.initial) node.f = h(node) result, bestf = RBFS(problem, node, infinity) return result def hill_climbing(problem): """From the initial node, keep choosing the neighbor with highest value, stopping when no neighbor is better. [Fig. 4.2]""" current = Node(problem.initial) while True: neighbors = current.expand(problem) if not neighbors: break neighbor = argmax_random_tie(neighbors, lambda node: problem.value(node.state)) if problem.value(neighbor.state) <= problem.value(current.state): break current = neighbor return current.state def exp_schedule(k=20, lam=0.005, limit=100): "One possible schedule function for simulated annealing" return lambda t: (k * math.exp(-lam * t) if t < limit else 0) def simulated_annealing(problem, schedule=exp_schedule()): "[Fig. 4.5]" current = Node(problem.initial) for t in range(sys.maxsize): T = schedule(t) if T == 0: return current neighbors = current.expand(problem) if not neighbors: return current next = random.choice(neighbors) delta_e = problem.value(next.state) - problem.value(current.state) if delta_e > 0 or probability(math.exp(delta_e/T)): current = next def and_or_graph_search(problem): "[Fig. 4.11]" unimplemented() def online_dfs_agent(s1): "[Fig. 4.21]" unimplemented() def lrta_star_agent(s1): "[Fig. 4.24]" unimplemented() #______________________________________________________________________________ # Genetic Algorithm def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20): """Call genetic_algorithm on the appropriate parts of a problem. This requires the problem to have states that can mate and mutate, plus a value method that scores states.""" s = problem.initial_state states = [problem.result(s, a) for a in problem.actions(s)] random.shuffle(states) return genetic_algorithm(states[:n], problem.value, ngen, pmut) def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.1): "[Fig. 4.8]" for i in range(ngen): new_population = [] for i in len(population): fitnesses = list(map(fitness_fn, population)) p1, p2 = weighted_sample_with_replacement(population, fitnesses, 2) child = p1.mate(p2) if random.uniform(0, 1) < pmut: child.mutate() new_population.append(child) population = new_population return argmax(population, fitness_fn) class GAState: "Abstract class for individuals in a genetic search." def __init__(self, genes): self.genes = genes def mate(self, other): "Return a new individual crossing self and other." c = random.randrange(len(self.genes)) return self.__class__(self.genes[:c] + other.genes[c:]) def mutate(self): "Change a few of my genes." raise NotImplementedError #_____________________________________________________________________________ # The remainder of this file implements examples for the search algorithms. #______________________________________________________________________________ # Graphs and Graph Problems class Graph: """A graph connects nodes (verticies) by edges (links). Each edge can also have a length associated with it. The constructor call is something like: g = Graph({'A': {'B': 1, 'C': 2}) this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from A to B, and an edge of length 2 from A to C. You can also do: g = Graph({'A': {'B': 1, 'C': 2}, directed=False) This makes an undirected graph, so inverse links are also added. The graph stays undirected; if you add more links with g.connect('B', 'C', 3), then inverse link is also added. You can use g.nodes() to get a list of nodes, g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the length of the link from A to B. 'Lengths' can actually be any object at all, and nodes can be any hashable object.""" def __init__(self, dict=None, directed=True): self.dict = dict or {} self.directed = directed if not directed: self.make_undirected() def make_undirected(self): "Make a digraph into an undirected graph by adding symmetric edges." for a in list(self.dict.keys()): for (b, distance) in list(self.dict[a].items()): self.connect1(b, a, distance) def connect(self, A, B, distance=1): """Add a link from A and B of given distance, and also add the inverse link if the graph is undirected.""" self.connect1(A, B, distance) if not self.directed: self.connect1(B, A, distance) def connect1(self, A, B, distance): "Add a link from A to B of given distance, in one direction only." self.dict.setdefault(A, {})[B] = distance def get(self, a, b=None): """Return a link distance or a dict of {node: distance} entries. .get(a,b) returns the distance or None; .get(a) returns a dict of {node: distance} entries, possibly {}.""" links = self.dict.setdefault(a, {}) if b is None: return links else: return links.get(b) def nodes(self): "Return a list of nodes in the graph." return list(self.dict.keys()) def UndirectedGraph(dict=None): "Build a Graph where every edge (including future ones) goes both ways." return Graph(dict=dict, directed=False) def RandomGraph(nodes=list(range(10)), min_links=2, width=400, height=300, curvature=lambda: random.uniform(1.1, 1.5)): """Construct a random graph, with the specified nodes, and random links. The nodes are laid out randomly on a (width x height) rectangle. Then each node is connected to the min_links nearest neighbors. Because inverse links are added, some nodes will have more connections. The distance between nodes is the hypotenuse times curvature(), where curvature() defaults to a random number between 1.1 and 1.5.""" g = UndirectedGraph() g.locations = {} # Build the cities for node in nodes: g.locations[node] = (random.randrange(width), random.randrange(height)) # Build roads from each city to at least min_links nearest neighbors. for i in range(min_links): for node in nodes: if len(g.get(node)) < min_links: here = g.locations[node] def distance_to_node(n): if n is node or g.get(node, n): return infinity return distance(g.locations[n], here) neighbor = argmin(nodes, distance_to_node) d = distance(g.locations[neighbor], here) * curvature() g.connect(node, neighbor, int(d)) return g romania = UndirectedGraph(dict( A=dict(Z=75, S=140, T=118), B=dict(U=85, P=101, G=90, F=211), C=dict(D=120, R=146, P=138), D=dict(M=75), E=dict(H=86), F=dict(S=99), H=dict(U=98), I=dict(V=92, N=87), L=dict(T=111, M=70), O=dict(Z=71, S=151), P=dict(R=97), R=dict(S=80), U=dict(V=142))) romania.locations = dict( A=(91, 492), B=(400, 327), C=(253, 288), D=(165, 299), E=(562, 293), F=(305, 449), G=(375, 270), H=(534, 350), I=(473, 506), L=(165, 379), M=(168, 339), N=(406, 537), O=(131, 571), P=(320, 368), R=(233, 410), S=(207, 457), T=(94, 410), U=(456, 350), V=(509, 444), Z=(108, 531)) australia = UndirectedGraph(dict( T=dict(), SA=dict(WA=1, NT=1, Q=1, NSW=1, V=1), NT=dict(WA=1, Q=1), NSW=dict(Q=1, V=1))) australia.locations = dict(WA=(120, 24), NT=(135, 20), SA=(135, 30), Q=(145, 20), NSW=(145, 32), T=(145, 42), V=(145, 37)) class GraphProblem(Problem): "The problem of searching a graph from one node to another." def __init__(self, initial, goal, graph): Problem.__init__(self, initial, goal) self.graph = graph def actions(self, A): "The actions at a graph node are just its neighbors." return list(self.graph.get(A).keys()) def result(self, state, action): "The result of going to a neighbor is just that neighbor." return action def path_cost(self, cost_so_far, A, action, B): return cost_so_far + (self.graph.get(A, B) or infinity) def h(self, node): "h function is straight-line distance from a node's state to goal." locs = getattr(self.graph, 'locations', None) if locs: return int(distance(locs[node.state], locs[self.goal])) else: return infinity #______________________________________________________________________________ class NQueensProblem(Problem): """The problem of placing N queens on an NxN board with none attacking each other. A state is represented as an N-element array, where a value of r in the c-th entry means there is a queen at column c, row r, and a value of None means that the c-th column has not been filled in yet. We fill in columns left to right. >>> depth_first_tree_search(NQueensProblem(8)) """ def __init__(self, N): self.N = N self.initial = [None] * N def actions(self, state): "In the leftmost empty column, try all non-conflicting rows." if state[-1] is not None: return [] # All columns filled; no successors else: col = state.index(None) return [row for row in range(self.N) if not self.conflicted(state, row, col)] def result(self, state, row): "Place the next queen at the given row." col = state.index(None) new = state[:] new[col] = row return new def conflicted(self, state, row, col): "Would placing a queen at (row, col) conflict with anything?" return any(self.conflict(row, col, state[c], c) for c in range(col)) def conflict(self, row1, col1, row2, col2): "Would putting two queens in (row1, col1) and (row2, col2) conflict?" return (row1 == row2 # same row or col1 == col2 # same column or row1-col1 == row2-col2 # same \ diagonal or row1+col1 == row2+col2) # same / diagonal def goal_test(self, state): "Check if all columns filled, no conflicts." if state[-1] is None: return False return not any(self.conflicted(state, state[col], col) for col in range(len(state))) #______________________________________________________________________________ # Inverse Boggle: Search for a high-scoring Boggle board. A good domain for # iterative-repair and related search techniques, as suggested by Justin Boyan. ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' cubes16 = ['FORIXB', 'MOQABJ', 'GURILW', 'SETUPL', 'CMPDAE', 'ACITAO', 'SLCRAE', 'ROMASH', 'NODESW', 'HEFIYE', 'ONUDTK', 'TEVIGN', 'ANEDVZ', 'PINESH', 'ABILYT', 'GKYLEU'] def random_boggle(n=4): """Return a random Boggle board of size n x n. We represent a board as a linear list of letters.""" cubes = [cubes16[i % 16] for i in range(n*n)] random.shuffle(cubes) return list(map(random.choice, cubes)) # The best 5x5 board found by Boyan, with our word list this board scores # 2274 words, for a score of 9837 boyan_best = list('RSTCSDEIAEGNLRPEATESMSSID') def print_boggle(board): "Print the board in a 2-d array." n2 = len(board) n = exact_sqrt(n2) for i in range(n2): if i % n == 0 and i > 0: print() if board[i] == 'Q': print('Qu', end=' ') else: print(str(board[i]) + ' ', end=' ') print() def boggle_neighbors(n2, cache={}): """Return a list of lists, where the i-th element is the list of indexes for the neighbors of square i.""" if cache.get(n2): return cache.get(n2) n = exact_sqrt(n2) neighbors = [None] * n2 for i in range(n2): neighbors[i] = [] on_top = i < n on_bottom = i >= n2 - n on_left = i % n == 0 on_right = (i+1) % n == 0 if not on_top: neighbors[i].append(i - n) if not on_left: neighbors[i].append(i - n - 1) if not on_right: neighbors[i].append(i - n + 1) if not on_bottom: neighbors[i].append(i + n) if not on_left: neighbors[i].append(i + n - 1) if not on_right: neighbors[i].append(i + n + 1) if not on_left: neighbors[i].append(i - 1) if not on_right: neighbors[i].append(i + 1) cache[n2] = neighbors return neighbors def exact_sqrt(n2): "If n2 is a perfect square, return its square root, else raise error." n = int(math.sqrt(n2)) assert n * n == n2 return n #_____________________________________________________________________________ class Wordlist: """This class holds a list of words. You can use (word in wordlist) to check if a word is in the list, or wordlist.lookup(prefix) to see if prefix starts any of the words in the list.""" def __init__(self, filename, min_len=3): lines = open(filename).read().upper().split() self.words = [word for word in lines if len(word) >= min_len] self.words.sort() self.bounds = {} for c in ALPHABET: c2 = chr(ord(c) + 1) self.bounds[c] = (bisect.bisect(self.words, c), bisect.bisect(self.words, c2)) def lookup(self, prefix, lo=0, hi=None): """See if prefix is in dictionary, as a full word or as a prefix. Return two values: the first is the lowest i such that words[i].startswith(prefix), or is None; the second is True iff prefix itself is in the Wordlist.""" words = self.words if hi is None: hi = len(words) i = bisect.bisect_left(words, prefix, lo, hi) if i < len(words) and words[i].startswith(prefix): return i, (words[i] == prefix) else: return None, False def __contains__(self, word): return self.lookup(word)[1] def __len__(self): return len(self.words) #_____________________________________________________________________________ class BoggleFinder: """A class that allows you to find all the words in a Boggle board. """ wordlist = None # A class variable, holding a wordlist def __init__(self, board=None): if BoggleFinder.wordlist is None: BoggleFinder.wordlist = Wordlist("../data/EN-text/wordlist") self.found = {} if board: self.set_board(board) def set_board(self, board=None): "Set the board, and find all the words in it." if board is None: board = random_boggle() self.board = board self.neighbors = boggle_neighbors(len(board)) self.found = {} for i in range(len(board)): lo, hi = self.wordlist.bounds[board[i]] self.find(lo, hi, i, [], '') return self def find(self, lo, hi, i, visited, prefix): """Looking in square i, find the words that continue the prefix, considering the entries in self.wordlist.words[lo:hi], and not revisiting the squares in visited.""" if i in visited: return wordpos, is_word = self.wordlist.lookup(prefix, lo, hi) if wordpos is not None: if is_word: self.found[prefix] = True visited.append(i) c = self.board[i] if c == 'Q': c = 'QU' prefix += c for j in self.neighbors[i]: self.find(wordpos, hi, j, visited, prefix) visited.pop() def words(self): "The words found." return list(self.found.keys()) scores = [0, 0, 0, 0, 1, 2, 3, 5] + [11] * 100 def score(self): "The total score for the words found, according to the rules." return sum([self.scores[len(w)] for w in self.words()]) def __len__(self): "The number of words found." return len(self.found) #_____________________________________________________________________________ def boggle_hill_climbing(board=None, ntimes=100, verbose=True): """Solve inverse Boggle by hill-climbing: find a high-scoring board by starting with a random one and changing it.""" finder = BoggleFinder() if board is None: board = random_boggle() best = len(finder.set_board(board)) for _ in range(ntimes): i, oldc = mutate_boggle(board) new = len(finder.set_board(board)) if new > best: best = new if verbose: print(best, _, board) else: board[i] = oldc # Change back if verbose: print_boggle(board) return board, best def mutate_boggle(board): i = random.randrange(len(board)) oldc = board[i] # random.choice(boyan_best) board[i] = random.choice(random.choice(cubes16)) return i, oldc #______________________________________________________________________________ # Code to compare searchers on various problems. class InstrumentedProblem(Problem): """Delegates to a problem, and keeps statistics.""" def __init__(self, problem): self.problem = problem self.succs = self.goal_tests = self.states = 0 self.found = None def actions(self, state): self.succs += 1 return self.problem.actions(state) def result(self, state, action): self.states += 1 return self.problem.result(state, action) def goal_test(self, state): self.goal_tests += 1 result = self.problem.goal_test(state) if result: self.found = state return result def path_cost(self, c, state1, action, state2): return self.problem.path_cost(c, state1, action, state2) def value(self, state): return self.problem.value(state) def __getattr__(self, attr): return getattr(self.problem, attr) def __repr__(self): return '<%4d/%4d/%4d/%s>' % (self.succs, self.goal_tests, self.states, str(self.found)[:4]) def compare_searchers(problems, header, searchers=[breadth_first_tree_search, breadth_first_search, depth_first_graph_search, iterative_deepening_search, depth_limited_search, recursive_best_first_search]): def do(searcher, problem): p = InstrumentedProblem(problem) searcher(p) return p table = [[name(s)] + [do(s, p) for p in problems] for s in searchers] print_table(table, header) def compare_graph_searchers(): """Prints a table of results like this: >>> compare_graph_searchers() Searcher Romania(A, B) Romania(O, N) Australia breadth_first_tree_search < 21/ 22/ 59/B> <1158/1159/3288/N> < 7/ 8/ 22/WA> breadth_first_search < 7/ 11/ 18/B> < 19/ 20/ 45/N> < 2/ 6/ 8/WA> depth_first_graph_search < 8/ 9/ 20/B> < 16/ 17/ 38/N> < 4/ 5/ 11/WA> iterative_deepening_search < 11/ 33/ 31/B> < 656/1815/1812/N> < 3/ 11/ 11/WA> depth_limited_search < 54/ 65/ 185/B> < 387/1012/1125/N> < 50/ 54/ 200/WA> recursive_best_first_search < 5/ 6/ 15/B> <5887/5888/16532/N> < 11/ 12/ 43/WA>""" compare_searchers(problems=[GraphProblem('A', 'B', romania), GraphProblem('O', 'N', romania), GraphProblem('Q', 'WA', australia)], header=['Searcher', 'Romania(A, B)', 'Romania(O, N)', 'Australia']) #______________________________________________________________________________ __doc__ += """ >>> ab = GraphProblem('A', 'B', romania) >>> breadth_first_tree_search(ab).solution() ['S', 'F', 'B'] >>> breadth_first_search(ab).solution() ['S', 'F', 'B'] >>> uniform_cost_search(ab).solution() ['S', 'R', 'P', 'B'] >>> depth_first_graph_search(ab).solution() ['T', 'L', 'M', 'D', 'C', 'P', 'B'] >>> iterative_deepening_search(ab).solution() ['S', 'F', 'B'] >>> len(depth_limited_search(ab).solution()) 50 >>> astar_search(ab).solution() ['S', 'R', 'P', 'B'] >>> recursive_best_first_search(ab).solution() ['S', 'R', 'P', 'B'] >>> board = list('SARTELNID') >>> print_boggle(board) S A R T E L N I D >>> f = BoggleFinder(board) >>> len(f) 206 """ __doc__ += """ Random tests >>> ' '.join(f.words()) 'LID LARES DEAL LIE DIETS LIN LINT TIL TIN RATED ERAS LATEN DEAR TIE LINE INTER STEAL LATED LAST TAR SAL DITES RALES SAE RETS TAE RAT RAS SAT IDLE TILDES LEAST IDEAS LITE SATED TINED LEST LIT RASE RENTS TINEA EDIT EDITS NITES ALES LATE LETS RELIT TINES LEI LAT ELINT LATI SENT TARED DINE STAR SEAR NEST LITAS TIED SEAT SERAL RATE DINT DEL DEN SEAL TIER TIES NET SALINE DILATE EAST TIDES LINTER NEAR LITS ELINTS DENI RASED SERA TILE NEAT DERAT IDLEST NIDE LIEN STARED LIER LIES SETA NITS TINE DITAS ALINE SATIN TAS ASTER LEAS TSAR LAR NITE RALE LAS REAL NITER ATE RES RATEL IDEA RET IDEAL REI RATS STALE DENT RED IDES ALIEN SET TEL SER TEN TEA TED SALE TALE STILE ARES SEA TILDE SEN SEL ALINES SEI LASE DINES ILEA LINES ELD TIDE RENT DIEL STELA TAEL STALED EARL LEA TILES TILER LED ETA TALI ALE LASED TELA LET IDLER REIN ALIT ITS NIDES DIN DIE DENTS STIED LINER LASTED RATINE ERA IDLES DIT RENTAL DINER SENTI TINEAL DEIL TEAR LITER LINTS TEAL DIES EAR EAT ARLES SATE STARE DITS DELI DENTAL REST DITE DENTIL DINTS DITA DIET LENT NETS NIL NIT SETAL LATS TARE ARE SATI' >>> boggle_hill_climbing(list('ABCDEFGHI'), verbose=False) (['E', 'P', 'R', 'D', 'O', 'A', 'G', 'S', 'T'], 123) """