{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": false, "deletable": true, "editable": true }, "source": [ "# Grid\n", "\n", "The functions here are used often when dealing with 2D grids (like in TicTacToe)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Heading\n", "\n", "With the `turn_heading`, `turn_left` and `turn_right` functions an agent can turn around in a grid. In a 2D grid the orientations normally are:\n", "\n", "* North: (0,1)\n", "* South: (0,-1)\n", "* East: (1,0)\n", "* West: (-1,0)\n", "\n", "In code:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "orientations = [(1, 0), (0, 1), (-1, 0), (0, -1)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We signify a left turn with a +1 and a right turn with a -1.\n", "\n", "The functions `turn_left` and `turn_right` call `turn_heading`, which then turns the agent around according to the input.\n", "\n", "First the code for `turn_heading`:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "def turn_heading(heading, inc, headings=orientations):\n", " return headings[(headings.index(heading) + inc) % len(headings)]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now use the function to turn left:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(-1, 0)\n" ] } ], "source": [ "print(turn_heading((0, 1), 1))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We were facing north and we turned left, so we are now facing west.\n", "\n", "Let's now take a look at the other two functions, which automate this process:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def turn_right(heading):\n", " return turn_heading(heading, -1)\n", "\n", "def turn_left(heading):\n", " return turn_heading(heading, +1)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The first one turns the agent right, so it passes -1 to `turn_heading`, while the second one turns the agent left, so it passes +1.\n", "\n", "Let's see what happens when we are facing north and want to turn left and right:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(-1, 0)\n", "(1, 0)\n" ] } ], "source": [ "print(turn_left((0, 1)))\n", "print(turn_right((0, 1)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "When we turn left from north we end up facing west, while on the other hand if we turn right we end up facing east." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Distance\n", "\n", "The function returns the Euclidean Distance between two points in the 2D space." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "import math\n", "\n", "def distance(a, b):\n", " \"\"\"The distance between two (x, y) points.\"\"\"\n", " return math.hypot((a[0] - b[0]), (a[1] - b[1]))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "For example:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5.0\n" ] } ], "source": [ "print(distance((1, 2), (5, 5)))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Distance Squared\n", "\n", "This function returns the square of the distance between two points." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "def distance_squared(a, b):\n", " \"\"\"The square of the distance between two (x, y) points.\"\"\"\n", " return (a[0] - b[0])**2 + (a[1] - b[1])**2" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "For example:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "25\n" ] } ], "source": [ "print(distance_squared((1, 2), (5, 5)))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "### Vector Clip\n", "\n", "With this function we can make sure the values of a vector are within a given range. It takes as arguments three vectors: the vector to clip (`vector`), a vector containing the lowest values allowed (`lowest`) and a vector for the highest values (`highest`). All these vectors are of the same length. If a value `v1` in `vector` is lower than the corresponding value `v2` in `lowest`, then we set `v1` to `v2`. Similarly we \"clip\" the values exceeding the `highest` values." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true, "deletable": true, "editable": true }, "outputs": [], "source": [ "from utils import clip\n", "\n", "def vector_clip(vector, lowest, highest):\n", " \"\"\"Return vector, except if any element is less than the corresponding\n", " value of lowest or more than the corresponding value of highest, clip to\n", " those values.\"\"\"\n", " return type(vector)(map(clip, vector, lowest, highest))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "For example:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false, "deletable": true, "editable": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "(0, 9)\n" ] } ], "source": [ "print(vector_clip((-1, 10), (0, 0), (9, 9)))" ] }, { "cell_type": "markdown", "metadata": { "deletable": true, "editable": true }, "source": [ "The vector we wanted to clip was the tuple (-1, 10). The lowest allowed values were (0, 0) and the highest (9, 9). So, the result is the tuple (0,9)." ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" } }, "nbformat": 4, "nbformat_minor": 0 }