"""Learn to estimate functions from examples. (Chapters 18-20)""" from utils import ( removeall, unique, product, argmax, argmax_random_tie, mean, dotproduct, vector_add, scalar_vector_product, weighted_sample_with_replacement, weighted_sampler, num_or_str, normalize, clip, sigmoid, print_table, DataFile, Fig ) import copy import heapq import math import random from collections import defaultdict # ______________________________________________________________________________ def rms_error(predictions, targets): return math.sqrt(ms_error(predictions, targets)) def ms_error(predictions, targets): return mean([(p - t)**2 for p, t in zip(predictions, targets)]) def mean_error(predictions, targets): return mean([abs(p - t) for p, t in zip(predictions, targets)]) def mean_boolean_error(predictions, targets): return mean([(p != t) for p, t in zip(predictions, targets)]) # ______________________________________________________________________________ class DataSet: """A data set for a machine learning problem. It has the following fields: d.examples A list of examples. Each one is a list of attribute values. d.attrs A list of integers to index into an example, so example[attr] gives a value. Normally the same as range(len(d.examples[0])). d.attrnames Optional list of mnemonic names for corresponding attrs. d.target The attribute that a learning algorithm will try to predict. By default the final attribute. d.inputs The list of attrs without the target. d.values A list of lists: each sublist is the set of possible values for the corresponding attribute. If initially None, it is computed from the known examples by self.setproblem. If not None, an erroneous value raises ValueError. d.distance A function from a pair of examples to a nonnegative number. Should be symmetric, etc. Defaults to mean_boolean_error since that can handle any field types. d.name Name of the data set (for output display only). d.source URL or other source where the data came from. Normally, you call the constructor and you're done; then you just access fields like d.examples and d.target and d.inputs.""" def __init__(self, examples=None, attrs=None, attrnames=None, target=-1, inputs=None, values=None, distance=mean_boolean_error, name='', source='', exclude=()): """Accepts any of DataSet's fields. Examples can also be a string or file from which to parse examples using parse_csv. Optional parameter: exclude, as documented in .setproblem(). >>> DataSet(examples='1, 2, 3') """ self.name = name self.source = source self.values = values self.distance = distance # Initialize .examples from string or list or data directory if isinstance(examples, str): self.examples = parse_csv(examples) elif examples is None: self.examples = parse_csv(DataFile(name + '.csv').read()) else: self.examples = examples # Attrs are the indices of examples, unless otherwise stated. if not attrs and self.examples: attrs = list(range(len(self.examples[0]))) self.attrs = attrs # Initialize .attrnames from string, list, or by default if isinstance(attrnames, str): self.attrnames = attrnames.split() else: self.attrnames = attrnames or attrs self.setproblem(target, inputs=inputs, exclude=exclude) def setproblem(self, target, inputs=None, exclude=()): """Set (or change) the target and/or inputs. This way, one DataSet can be used multiple ways. inputs, if specified, is a list of attributes, or specify exclude as a list of attributes to not use in inputs. Attributes can be -n .. n, or an attrname. Also computes the list of possible values, if that wasn't done yet.""" self.target = self.attrnum(target) exclude = list(map(self.attrnum, exclude)) if inputs: self.inputs = removeall(self.target, inputs) else: self.inputs = [a for a in self.attrs if a != self.target and a not in exclude] if not self.values: self.values = list(map(unique, list(zip(*self.examples)))) self.check_me() def check_me(self): "Check that my fields make sense." assert len(self.attrnames) == len(self.attrs) assert self.target in self.attrs assert self.target not in self.inputs assert set(self.inputs).issubset(set(self.attrs)) list(map(self.check_example, self.examples)) def add_example(self, example): "Add an example to the list of examples, checking it first." self.check_example(example) self.examples.append(example) def check_example(self, example): "Raise ValueError if example has any invalid values." if self.values: for a in self.attrs: if example[a] not in self.values[a]: raise ValueError('Bad value %s for attribute %s in %s' % (example[a], self.attrnames[a], example)) def attrnum(self, attr): "Returns the number used for attr, which can be a name, or -n .. n-1." if isinstance(attr, str): return self.attrnames.index(attr) elif attr < 0: return len(self.attrs) + attr else: return attr def sanitize(self, example): "Return a copy of example, with non-input attributes replaced by None." return [attr_i if i in self.inputs else None for i, attr_i in enumerate(example)] def __repr__(self): return '' % ( self.name, len(self.examples), len(self.attrs)) # ______________________________________________________________________________ def parse_csv(input, delim=','): r"""Input is a string consisting of lines, each line has comma-delimited fields. Convert this into a list of lists. Blank lines are skipped. Fields that look like numbers are converted to numbers. The delim defaults to ',' but '\t' and None are also reasonable values. >>> parse_csv('1, 2, 3 \n 0, 2, na') [[1, 2, 3], [0, 2, 'na']] """ lines = [line for line in input.splitlines() if line.strip()] return [list(map(num_or_str, line.split(delim))) for line in lines] # ______________________________________________________________________________ class CountingProbDist: """A probability distribution formed by observing and counting examples. If p is an instance of this class and o is an observed value, then there are 3 main operations: p.add(o) increments the count for observation o by 1. p.sample() returns a random element from the distribution. p[o] returns the probability for o (as in a regular ProbDist).""" def __init__(self, observations=[], default=0): """Create a distribution, and optionally add in some observations. By default this is an unsmoothed distribution, but saying default=1, for example, gives you add-one smoothing.""" self.dictionary = {} self.n_obs = 0.0 self.default = default self.sampler = None for o in observations: self.add(o) def add(self, o): "Add an observation o to the distribution." self.smooth_for(o) self.dictionary[o] += 1 self.n_obs += 1 self.sampler = None def smooth_for(self, o): """Include o among the possible observations, whether or not it's been observed yet.""" if o not in self.dictionary: self.dictionary[o] = self.default self.n_obs += self.default self.sampler = None def __getitem__(self, item): "Return an estimate of the probability of item." self.smooth_for(item) return self.dictionary[item] / self.n_obs # (top() and sample() are not used in this module, but elsewhere.) def top(self, n): "Return (count, obs) tuples for the n most frequent observations." return heapq.nlargest( n, [(v, k) for (k, v) in list(self.dictionary.items())]) def sample(self): "Return a random sample from the distribution." if self.sampler is None: self.sampler = weighted_sampler(list(self.dictionary.keys()), list(self.dictionary.values())) return self.sampler() # ______________________________________________________________________________ def PluralityLearner(dataset): """A very dumb algorithm: always pick the result that was most popular in the training data. Makes a baseline for comparison.""" most_popular = mode([e[dataset.target] for e in dataset.examples]) def predict(example): "Always return same result: the most popular from the training set." return most_popular return predict # ______________________________________________________________________________ def NaiveBayesLearner(dataset): """Just count how many times each value of each input attribute occurs, conditional on the target value. Count the different target values too.""" targetvals = dataset.values[dataset.target] target_dist = CountingProbDist(targetvals) attr_dists = dict(((gv, attr), CountingProbDist(dataset.values[attr])) for gv in targetvals for attr in dataset.inputs) for example in dataset.examples: targetval = example[dataset.target] target_dist.add(targetval) for attr in dataset.inputs: attr_dists[targetval, attr].add(example[attr]) def predict(example): """Predict the target value for example. Consider each possible value, and pick the most likely by looking at each attribute independently.""" def class_probability(targetval): return (target_dist[targetval] * product(attr_dists[targetval, attr][example[attr]] for attr in dataset.inputs)) return argmax(targetvals, key=class_probability) return predict # ______________________________________________________________________________ def NearestNeighborLearner(dataset, k=1): "k-NearestNeighbor: the k nearest neighbors vote." def predict(example): "Find the k closest, and have them vote for the best." best = heapq.nsmallest(k, ((dataset.distance(e, example), e) for e in dataset.examples)) return mode(e[dataset.target] for (d, e) in best) return predict # ______________________________________________________________________________ class DecisionFork: """A fork of a decision tree holds an attribute to test, and a dict of branches, one for each of the attribute's values.""" def __init__(self, attr, attrname=None, branches=None): "Initialize by saying what attribute this node tests." self.attr = attr self.attrname = attrname or attr self.branches = branches or {} def __call__(self, example): "Given an example, classify it using the attribute and the branches." attrvalue = example[self.attr] return self.branches[attrvalue](example) def add(self, val, subtree): "Add a branch. If self.attr = val, go to the given subtree." self.branches[val] = subtree def display(self, indent=0): name = self.attrname print('Test', name) for (val, subtree) in list(self.branches.items()): print(' ' * 4 * indent, name, '=', val, '==>', end=' ') subtree.display(indent + 1) def __repr__(self): return ('DecisionFork(%r, %r, %r)' % (self.attr, self.attrname, self.branches)) class DecisionLeaf: "A leaf of a decision tree holds just a result." def __init__(self, result): self.result = result def __call__(self, example): return self.result def display(self, indent=0): print('RESULT =', self.result) def __repr__(self): return repr(self.result) # ______________________________________________________________________________ def DecisionTreeLearner(dataset): "[Fig. 18.5]" target, values = dataset.target, dataset.values def decision_tree_learning(examples, attrs, parent_examples=()): if len(examples) == 0: return plurality_value(parent_examples) elif all_same_class(examples): return DecisionLeaf(examples[0][target]) elif len(attrs) == 0: return plurality_value(examples) else: A = choose_attribute(attrs, examples) tree = DecisionFork(A, dataset.attrnames[A]) for (v_k, exs) in split_by(A, examples): subtree = decision_tree_learning( exs, removeall(A, attrs), examples) tree.add(v_k, subtree) return tree def plurality_value(examples): """Return the most popular target value for this set of examples. (If target is binary, this is the majority; otherwise plurality.)""" popular = argmax_random_tie(values[target], key=lambda v: count(target, v, examples)) return DecisionLeaf(popular) def count(attr, val, examples): "Count the number of examples that have attr = val." return count(e[attr] == val for e in examples) def all_same_class(examples): "Are all these examples in the same target class?" class0 = examples[0][target] return all(e[target] == class0 for e in examples) def choose_attribute(attrs, examples): "Choose the attribute with the highest information gain." return argmax_random_tie(attrs, key=lambda a: information_gain(a, examples)) def information_gain(attr, examples): "Return the expected reduction in entropy from splitting by attr." def I(examples): return information_content([count(target, v, examples) for v in values[target]]) N = float(len(examples)) remainder = sum((len(examples_i) / N) * I(examples_i) for (v, examples_i) in split_by(attr, examples)) return I(examples) - remainder def split_by(attr, examples): "Return a list of (val, examples) pairs for each val of attr." return [(v, [e for e in examples if e[attr] == v]) for v in values[attr]] return decision_tree_learning(dataset.examples, dataset.inputs) def information_content(values): "Number of bits to represent the probability distribution in values." probabilities = normalize(removeall(0, values)) return sum(-p * log2(p) for p in probabilities) # ______________________________________________________________________________ # A decision list is implemented as a list of (test, value) pairs. def DecisionListLearner(dataset): """[Fig. 18.11]""" def decision_list_learning(examples): if not examples: return [(True, False)] t, o, examples_t = find_examples(examples) if not t: raise Failure return [(t, o)] + decision_list_learning(examples - examples_t) def find_examples(examples): """Find a set of examples that all have the same outcome under some test. Return a tuple of the test, outcome, and examples.""" unimplemented() def passes(example, test): "Does the example pass the test?" unimplemented() def predict(example): "Predict the outcome for the first passing test." for test, outcome in predict.decision_list: if passes(example, test): return outcome predict.decision_list = decision_list_learning(set(dataset.examples)) return predict # ______________________________________________________________________________ def NeuralNetLearner(dataset, hidden_layer_sizes=[3], learning_rate=0.01, epoches=100): """ Layered feed-forward network. hidden_layer_sizes: List of number of hidden units per hidden layer learning_rate: Learning rate of gradient decent epoches: Number of passes over the dataset """ examples = dataset.examples i_units = len(dataset.inputs) o_units = 1 # As of now, dataset.target gives only one index. # construct a network raw_net = network(i_units, hidden_layer_sizes, o_units) learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epoches) def predict(example): # Input nodes i_nodes = learned_net[0] # Activate input layer for v, n in zip(example, i_nodes): n.value = v # Forward pass for layer in learned_net[1:]: for node in layer: inc = [n.value for n in node.inputs] in_val = dotproduct(inc, node.weights) node.value = node.activation(in_val) # Hypothesis o_nodes = learned_net[-1] pred = [o_nodes[i].value for i in range(o_units)] return 1 if pred[0] >= 0.5 else 0 return predict class NNUnit: """ Single Unit of Multiple Layer Neural Network inputs: Incoming connections weights: weights to incoming connections """ def __init__(self, weights=None, inputs=None): self.weights = [] self.inputs = [] self.value = None self.activation = sigmoid def network(input_units, hidden_layer_sizes, output_units): """ Create of Directed Acyclic Network of given number layers hidden_layers_sizes : list number of neuron units in each hidden layer excluding input and output layers. """ # Check for PerceptronLearner if hidden_layer_sizes: layers_sizes = [input_units] + hidden_layer_sizes + [output_units] else: layers_sizes = [input_units] + [output_units] net = [[NNUnit() for n in range(size)] for size in layers_sizes] n_layers = len(net) # Make Connection for i in range(1, n_layers): for n in net[i]: for k in net[i-1]: n.inputs.append(k) n.weights.append(0) return net def BackPropagationLearner(dataset, net, learning_rate, epoches): "[Fig. 18.23] The back-propagation algorithm for multilayer network" # Initialise weights for layer in net: for node in layer: node.weights = [random.uniform(-0.5, 0.5) for i in range(len(node.weights))] examples = dataset.examples ''' As of now dataset.target gives an int instead of list, Changing dataset class will have effect on all the learners. Will be taken care of later ''' idx_t = [dataset.target] idx_i = dataset.inputs n_layers = len(net) o_nodes = net[-1] i_nodes = net[0] for epoch in range(epoches): # Iterate over each example for e in examples: i_val = [e[i] for i in idx_i] t_val = [e[i] for i in idx_t] # Activate input layer for v, n in zip(i_val, i_nodes): n.value = v # Forward pass for layer in net[1:]: for node in layer: inc = [n.value for n in node.inputs] in_val = dotproduct(inc, node.weights) node.value = node.activation(in_val) # Initialize delta delta = [[] for i in range(n_layers)] # Compute outer layer delta o_units = len(o_nodes) err = [t_val[i] - o_nodes[i].value for i in range(o_units)] delta[-1] = [(o_nodes[i].value)*(1 - o_nodes[i].value) * (err[i]) for i in range(o_units)] # Backward pass h_layers = n_layers - 2 for i in range(h_layers, 0, -1): layer = net[i] h_units = len(layer) nx_layer = net[i+1] # weights from each ith layer node to each i + 1th layer node w = [[node.weights[k] for node in nx_layer] for k in range(h_units)] delta[i] = [(layer[j].value) * (1 - layer[j].value) * dotproduct(w[j], delta[i+1]) for j in range(h_units)] # Update weights for i in range(1, n_layers): layer = net[i] inc = [node.value for node in net[i-1]] units = len(layer) for j in range(units): layer[j].weights = vector_add(layer[j].weights, scalar_vector_product( learning_rate * delta[i][j], inc)) return net def PerceptronLearner(dataset, learning_rate=0.01, epoches=100): """Logistic Regression, NO hidden layer""" examples = dataset.examples i_units = len(dataset.inputs) o_units = 1 # As of now, dataset.target gives only one index. hidden_layer_sizes = [] raw_net = network(i_units, hidden_layer_sizes, o_units) learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epoches) def predict(example): # Input nodes i_nodes = learned_net[0] # Activate input layer for v, n in zip(example, i_nodes): n.value = v # Forward pass for layer in learned_net[1:]: for node in layer: inc = [n.value for n in node.inputs] in_val = dotproduct(inc, node.weights) node.value = node.activation(in_val) # Hypothesis o_nodes = learned_net[-1] pred = [o_nodes[i].value for i in range(o_units)] return 1 if pred[0] >= 0.5 else 0 return predict # ______________________________________________________________________________ def Linearlearner(dataset, learning_rate=0.01, epochs=100): """Define with learner = Linearlearner(data); infer with learner(x).""" idx_i = dataset.inputs idx_t = dataset.target # As of now, dataset.target gives only one index. examples = dataset.examples # X transpose X_col = [dataset.values[i] for i in idx_i] # vertical columns of X # Add dummy ones = [1 for i in range(len(examples))] X_col = ones + X_col # Initialize random weigts w = [random(-0.5, 0.5) for i in range(len(idx_i) + 1)] for epoch in range(epochs): err = [] # Pass over all examples for example in examples: x = [example[i] for i in range(idx_i)] x = [1] + x y = dotproduct(w, x) t = example[idx_t] err.append(t - y) # update weights for i in range(len(w)): w[i] = w[i] - dotproduct(err, X_col[i]) def predict(example): x = [1] + example return dotproduct(w, x) return predict # ______________________________________________________________________________ def EnsembleLearner(learners): """Given a list of learning algorithms, have them vote.""" def train(dataset): predictors = [learner(dataset) for learner in learners] def predict(example): return mode(predictor(example) for predictor in predictors) return predict return train # ______________________________________________________________________________ def AdaBoost(L, K): """[Fig. 18.34]""" def train(dataset): examples, target = dataset.examples, dataset.target N = len(examples) epsilon = 1. / (2 * N) w = [1. / N] * N h, z = [], [] for k in range(K): h_k = L(dataset, w) h.append(h_k) error = sum(weight for example, weight in zip(examples, w) if example[target] != h_k(example)) # Avoid divide-by-0 from either 0% or 100% error rates: error = clip(error, epsilon, 1 - epsilon) for j, example in enumerate(examples): if example[target] == h_k(example): w[j] *= error / (1. - error) w = normalize(w) z.append(math.log((1. - error) / error)) return WeightedMajority(h, z) return train def WeightedMajority(predictors, weights): "Return a predictor that takes a weighted vote." def predict(example): return weighted_mode((predictor(example) for predictor in predictors), weights) return predict def weighted_mode(values, weights): """Return the value with the greatest total weight. >>> weighted_mode('abbaa', [1,2,3,1,2]) 'b'""" totals = defaultdict(int) for v, w in zip(values, weights): totals[v] += w return max(list(totals.keys()), key=totals.get) # _____________________________________________________________________________ # Adapting an unweighted learner for AdaBoost def WeightedLearner(unweighted_learner): """Given a learner that takes just an unweighted dataset, return one that takes also a weight for each example. [p. 749 footnote 14]""" def train(dataset, weights): return unweighted_learner(replicated_dataset(dataset, weights)) return train def replicated_dataset(dataset, weights, n=None): "Copy dataset, replicating each example in proportion to its weight." n = n or len(dataset.examples) result = copy.copy(dataset) result.examples = weighted_replicate(dataset.examples, weights, n) return result def weighted_replicate(seq, weights, n): """Return n selections from seq, with the count of each element of seq proportional to the corresponding weight (filling in fractions randomly). >>> weighted_replicate('ABC', [1,2,1], 4) ['A', 'B', 'B', 'C']""" assert len(seq) == len(weights) weights = normalize(weights) wholes = [int(w * n) for w in weights] fractions = [(w * n) % 1 for w in weights] return (flatten([x] * nx for x, nx in zip(seq, wholes)) + weighted_sample_with_replacement(seq, fractions, n - sum(wholes))) def flatten(seqs): return sum(seqs, []) # _____________________________________________________________________________ # Functions for testing learners on examples def test(predict, dataset, examples=None, verbose=0): "Return the proportion of the examples that are NOT correctly predicted." if examples is None: examples = dataset.examples if len(examples) == 0: return 0.0 right = 0.0 for example in examples: desired = example[dataset.target] output = predict(dataset.sanitize(example)) if output == desired: right += 1 if verbose >= 2: print(' OK: got %s for %s' % (desired, example)) elif verbose: print('WRONG: got %s, expected %s for %s' % ( output, desired, example)) return 1 - (right / len(examples)) def train_and_test(dataset, start, end): """Reserve dataset.examples[start:end] for test; train on the remainder.""" start = int(start) end = int(end) examples = dataset.examples train = examples[:start] + examples[end:] val = examples[start:end] return train, val def cross_validation(learner, size, dataset, k=10, trials=1): """Do k-fold cross_validate and return their mean. That is, keep out 1/k of the examples for testing on each of k runs. Shuffle the examples first; If trials>1, average over several shuffles. Returns Training error, Validataion error""" if k is None: k = len(dataset.examples) if trials > 1: trial_errT = 0 trial_errV = 0 for t in range(trials): errT, errV = cross_validation(learner, size, dataset, k=10, trials=1) trial_errT += errT trial_errV += errV return trial_errT/trials, trial_errV/trials else: fold_errT = 0 fold_errV = 0 n = len(dataset.examples) examples = dataset.examples for fold in range(k): random.shuffle(dataset.examples) train_data, val_data = train_and_test(dataset, fold * (n/k), (fold + 1) * (n/k)) dataset.examples = train_data h = learner(dataset, size) fold_errT += test(h, dataset, train_data) fold_errV += test(h, dataset, val_data) # Reverting back to original once test is completed dataset.examples = examples return fold_errT/k, fold_errV/k def cross_validation_wrapper(learner, dataset, k=10, trials=1): """ Fig 18.8 Return the optimal value of size having minimum error on validataion set err_train: a training error array, indexed by size err_val: a validataion error array, indexed by size """ err_val = [] err_train = [] size = 1 while True: errT, errV = cross_validation(learner, size, dataset, k) # Check for convergence provided err_val is not empty if (err_val and math.isclose(err_val[-1], errV, rel_tol=1e-6)): best_size = size return learner(dataset, best_size) err_val.append(errV) err_train.append(errT) print(err_val) size += 1 def leave_one_out(learner, dataset): "Leave one out cross-validation over the dataset." return cross_validation(learner, size, dataset, k=len(dataset.examples)) def learningcurve(learner, dataset, trials=10, sizes=None): if sizes is None: sizes = list(range(2, len(dataset.examples) - 10, 2)) def score(learner, size): random.shuffle(dataset.examples) return train_and_test(learner, dataset, 0, size) return [(size, mean([score(learner, size) for t in range(trials)])) for size in sizes] # ______________________________________________________________________________ # The rest of this file gives datasets for machine learning problems. orings = DataSet(name='orings', target='Distressed', attrnames="Rings Distressed Temp Pressure Flightnum") zoo = DataSet(name='zoo', target='type', exclude=['name'], attrnames="name hair feathers eggs milk airborne aquatic " + "predator toothed backbone breathes venomous fins legs tail " + "domestic catsize type") iris = DataSet(name="iris", target="class", attrnames="sepal-len sepal-width petal-len petal-width class") # ______________________________________________________________________________ # The Restaurant example from Fig. 18.2 def RestaurantDataSet(examples=None): "Build a DataSet of Restaurant waiting examples. [Fig. 18.3]" return DataSet(name='restaurant', target='Wait', examples=examples, attrnames='Alternate Bar Fri/Sat Hungry Patrons Price ' + 'Raining Reservation Type WaitEstimate Wait') restaurant = RestaurantDataSet() def T(attrname, branches): branches = dict((value, (child if isinstance(child, DecisionFork) else DecisionLeaf(child))) for value, child in list(branches.items())) return DecisionFork(restaurant.attrnum(attrname), attrname, branches) Fig[18, 2] = T('Patrons', {'None': 'No', 'Some': 'Yes', 'Full': T('WaitEstimate', {'>60': 'No', '0-10': 'Yes', '30-60': T('Alternate', {'No': T('Reservation', {'Yes': 'Yes', 'No': T('Bar', {'No': 'No', 'Yes': 'Yes' })}), 'Yes': T('Fri/Sat', {'No': 'No', 'Yes': 'Yes'})}), '10-30': T('Hungry', {'No': 'Yes', 'Yes': T('Alternate', {'No': 'Yes', 'Yes': T('Raining', {'No': 'No', 'Yes': 'Yes'}) })})})}) def SyntheticRestaurant(n=20): "Generate a DataSet with n examples." def gen(): example = list(map(random.choice, restaurant.values)) example[restaurant.target] = Fig[18, 2](example) return example return RestaurantDataSet([gen() for i in range(n)]) # ______________________________________________________________________________ # Artificial, generated datasets. def Majority(k, n): """Return a DataSet with n k-bit examples of the majority problem: k random bits followed by a 1 if more than half the bits are 1, else 0.""" examples = [] for i in range(n): bits = [random.choice([0, 1]) for i in range(k)] bits.append(int(sum(bits) > k / 2)) examples.append(bits) return DataSet(name="majority", examples=examples) def Parity(k, n, name="parity"): """Return a DataSet with n k-bit examples of the parity problem: k random bits followed by a 1 if an odd number of bits are 1, else 0.""" examples = [] for i in range(n): bits = [random.choice([0, 1]) for i in range(k)] bits.append(sum(bits) % 2) examples.append(bits) return DataSet(name=name, examples=examples) def Xor(n): """Return a DataSet with n examples of 2-input xor.""" return Parity(2, n, name="xor") def ContinuousXor(n): "2 inputs are chosen uniformly from (0.0 .. 2.0]; output is xor of ints." examples = [] for i in range(n): x, y = [random.uniform(0.0, 2.0) for i in '12'] examples.append([x, y, int(x) != int(y)]) return DataSet(name="continuous xor", examples=examples) # ______________________________________________________________________________ def compare(algorithms=[PluralityLearner, NaiveBayesLearner, NearestNeighborLearner, DecisionTreeLearner], datasets=[iris, orings, zoo, restaurant, SyntheticRestaurant(20), Majority(7, 100), Parity(7, 100), Xor(100)], k=10, trials=1): """Compare various learners on various datasets using cross-validation. Print results as a table.""" print_table([[a.__name__.replace('Learner', '')] + [cross_validation(a, d, k, trials) for d in datasets] for a in algorithms], header=[''] + [d.name[0:7] for d in datasets], numfmt='%.2f')